# Synthesizing Electrically Equivalent Circuits for Use in Electrochemical Impedance Spectroscopy through Grammatical Evolution

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Grammatical Evolution

#### 2.1. The Grammar

#### 2.2. Mapping Process Examples

#### 2.2.1. A Single Element Example

#### 2.2.2. A Complete Netlist

#### 2.3. Genetic Operations and Circuits

#### 2.3.1. Circuit Mutation

**70**, 76}. The effect of this change is that the resistor changes its value from two kiloohms to one kiloohm, as shown in Figure 3.

**117**, 127, 209, 21, 76}. That changes a resistor to a capacitor, as shown in Figure 4, which can of course result in a completely different function of the resulting circuit (which is not necessarily a bad thing).

**119**, 127, 209, 21, 76}. This string now represents two empty elements (119 and 127 both map to rule number 3, None), and the next codon (209) is used to determine the next element in the circuit, which will be a capacitor connected to ports 1 and 3 (mapped from <gpair> using the codon with the value of 21).

#### 2.3.2. Circuit Crossover

## 3. Experiments and Data

#### 3.1. Objective Function and Evaluation

#### Sheppard’s Objective Function

#### 3.2. Data Sets Used for Evaluation

#### 3.2.1. Randles Circuits

#### 3.2.2. Cole–Cole Model

#### 3.2.3. Solid Oxide Fuel Cell Data

## 4. Results

#### 4.1. Randles Impedance Characteristic Matching

#### 4.2. Cole–Cole Fitting

#### 4.3. Solid Oxide Fuel Cell Fitting

## 5. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Yuan, X.Z.; Song, C.; Wang, H.; Zhang, J. EIS Applications. In Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications; Springer: London, UK, 2010; pp. 263–345. [Google Scholar] [CrossRef]
- Wan, T.H.; Saccoccio, M.; Chen, C.; Ciucci, F. Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools. Electrochim. Acta
**2015**, 184, 483–499. [Google Scholar] [CrossRef] - Dion, F.; Lasia, A. The use of regularization methods in the deconvolution of underlying distributions in electrochemical processes. J. Electroanal. Chem.
**1999**, 475, 28–37. [Google Scholar] [CrossRef] - Zic, M.; Pereverzyev, S., Jr.; Subotic, V.; Pereverzyev, S. Adaptive multi-parameter regularization approach to construct the distribution function of relaxation times. Gem-Int. J. Geomath.
**2020**, 11, 1–23. [Google Scholar] [CrossRef] [Green Version] - Song, J.; Bazant, M. Electrochemical Impedance Imaging via the Distribution of Diffusion Times. Phys. Rev. Lett.
**2018**, 120, 116001. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Pereverzev, S.V.; Solodky, S.G.; Vasylyk, V.B.; Žic, M. Regularized Collocation in Distribution of Diffusion Times Applied to Electrochemical Impedance Spectroscopy. Comput. Methods Appl. Math.
**2020**, 20, 517–530. [Google Scholar] [CrossRef] - Boukamp, B.A. A nonlinear least-squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics
**1986**, 20, 31–44. [Google Scholar] [CrossRef] [Green Version] - Macdonald, J.R.; Schoonman, J.; Lehnen, A.P. The applicability and power of complex non-linear least-squares for the analysis of impedance and admittance data. J. Electroanal. Chem.
**1982**, 131, 77–95. [Google Scholar] [CrossRef] - Sihvo, J.; Roinila, T.; Stroe, D.I. Novel Fitting Algorithm for Parametrization of Equivalent Circuit Model of Li-Ion Battery from Broadband Impedance Measurements. IEEE Trans. Ind. Electron.
**2021**, 68, 4916–4926. [Google Scholar] [CrossRef] - Žic, M. An alternative approach to solve complex nonlinear least-squares problems. J. Electroanal. Chem.
**2016**, 760, 85–96. [Google Scholar] [CrossRef] - Kobayashi, K.; Suzuki, T. Development of impedance analysis software implementing a support function to find good initial guess using an interactive graphical user interface. Electrochemistry
**2020**, 88, 39–44. [Google Scholar] [CrossRef] [Green Version] - Žic, M.; Subotić, V.; Pereverzyev, S.; Fajfar, I. Solving CNLS problems using Levenberg-Marquardt algorithm: A new fitting strategy combining limits and a symbolic Jacobian matrix. J. Electroanal. Chem.
**2020**, 866, 114171. [Google Scholar] [CrossRef] - Lan, C.; Liao, Y.; Hu, G. A unified equivalent circuit and impedance analysis method for galloping piezoelectric energy harvesters. Mech. Syst. Signal Process.
**2022**, 165, 108339. [Google Scholar] [CrossRef] - Zic, M. Optimizing Noisy CNLS Problems by Using the Adaptive Nelder-Mead Algorithm: A New Approach to Escape from Local Minima. 2018. Available online: https://ricamwww.ricam.oeaw.ac.at/files/reports/18/rep18-22.pdf (accessed on 19 October 2021).
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math.
**1944**, 2, 164–168. [Google Scholar] [CrossRef] [Green Version] - Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math.
**1963**, 11, 431–441. [Google Scholar] [CrossRef] - Moré, J. The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical Analysis; Lecture Notes in Mathematics; Watson, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1978; Volume 630, pp. 105–116. [Google Scholar] [CrossRef] [Green Version]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J.
**1965**, 7, 308–313. [Google Scholar] [CrossRef] - Dellis, J.L.; Carpentier, J.L. Nelder and Mead algorithm in impedance spectra fitting. Solid State Ionics
**1993**, 62, 119–123. [Google Scholar] [CrossRef] - Kunaver, M. Grammatical Evolution-based Analog Circuit Synthesis. Inf. MIDEM
**2019**, 49, 229–239. [Google Scholar] - O’Neil, M.; Ryan, C. Grammatical Evolution. In Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language; Springer: Boston, MA, USA, 2003; pp. 33–47. [Google Scholar] [CrossRef]
- Macdonald, J.R. Impedance spectroscopy: Models, data fitting, and analysis. Solid State Ionics
**2005**, 176, 1961–1969. [Google Scholar] [CrossRef] - Tuinenga, P.W. SPICE: A Guide to Circuit Simulation and Analysis Using PSpice, 1st ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1988. [Google Scholar]
- Kunaver, M.; Fajfar, I. Grammatical Evolution in a Matrix Factorization Recommender System. In International Conference on Artificial Intelligence and Soft Computing; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9692, pp. 392–400. [Google Scholar] [CrossRef]
- Naur, P. Revised Report on the Algorithmic Language Algol 60. Commun. ACM
**1963**, 6, 1–23. [Google Scholar] - Sheppard, R.J.; Jordan, B.P.; Grant, E.H. Least squares analysis of complex data with applications to permittivity measurements. J. Phys. D Appl. Phys.
**1970**, 3, 1759–1764. [Google Scholar] [CrossRef] - Zoltowski, P. The error function for fitting of models to immittance data. J. Electroanal. Chem.
**1984**, 178, 11–19. [Google Scholar] [CrossRef] - Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys.
**1941**, 9, 341–351. [Google Scholar] [CrossRef] [Green Version] - Žic, M.; Fajfar, I.; Subotić, V.; Pereverzyev, S.; Kunaver, M. Investigation of Electrochemical Processes in Solid Oxide Fuel Cells by Modified Levenberg–Marquardt Algorithm: A New Automatic Update Limit Strategy. Processes
**2021**, 9, 108. [Google Scholar] [CrossRef] - Subotić, V.; Stoeckl, B.; Lawlor, V.; Strasser, J.; Schroettner, H.; Hochenauer, C. Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches. Appl. Energy
**2018**, 222, 748–761. [Google Scholar] [CrossRef]

**Figure 1.**A netlist created from the chromosome from Table 4.

**Figure 2.**The final circuit from the chromosome from Table 4.

**Figure 5.**Two circuits before (parents) and after (children) crossover. (

**a**) Parent 1; (

**b**) Parent 2; (

**c**) Child 1; (

**d**) Child 2.

**Figure 6.**Single ZARC characteristic and its equivalent circuit. (

**a**) Z characteristic; (

**b**) Equivalent circuit.

**Figure 7.**Double ZARC characteristic and its equivalent circuit. (

**a**) Z characteristic; (

**b**) Equivalent circuit.

**Figure 12.**A simplified circuit from Figure 11a.

**Figure 13.**The result of fitting the synthetic data obtained using the Cole–Cole equation (i.e., ZARC elements).

Nonterminal | Expands to |
---|---|

<netlist> | twelve space separated <part> nonterminals |

<part> | <res> | <cap> | <zarc> | None |

<res> | rXX (<gpair>) <num><num>e<exp> |

<cap> | cXX (<gpair>) <num><num>e-<exp> |

<zarc> | aXX (<gpair>) zarcX .model zarcY zarc |

(r=<num>e<exp> | |

tau=<num>e-<zexp>n=0.<znum><num>) | |

<num> | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 |

<exp> | 0 | 3 | 6 | 9 | 12 |

<zexp> | 1 | 2 | 3 | 4 | 5 |

<znum> | 5 | 6 | 7 | 8 | 9 |

<gpair> | input 1 | input 2 | input 3 | input 4 | input output | |

1 2 | 1 3 | 1 4 | 1 output | | |

2 3 | 2 4 | 2 output | | |

3 4 | 3 output | | |

4 output |

Parameter | Value Range |
---|---|

Resistance | [1 $\Omega $, 99 T$\Omega $] |

Capacitance | [99 pF, 99 F] |

ZARC resistance | [1 $\Omega $, 9 T$\Omega $] |

ZARC n factor | [$0.50$, $0.99$] |

ZARC time constant | [$9\times {10}^{-9}$ s, $9\times {10}^{-1}$ s] |

**Table 3.**Using the chromosome $\{12,127,209,21,76\}$ to map the start symbol <part> to an actual circuit element.

Number of Rules/ | Selected | ||
---|---|---|---|

Codon | Nonterminal | Resulting Rule | Terminal |

12 | <part> | 4/0 | <res> |

127 | <gpair> | 15/7 | 1 4 |

209 | <num> | 10/9 | 0 |

21 | <num> | 10/1 | 2 |

76 | <exp> | 5/1 | 3 |

236 | 143 | 231 | 47 | 145 | 125 | 33 | 201 | 237 | 187 | 180 |

104 | 251 | 217 | 172 | 112 | 143 | 31 | 227 | 45 | 228 | 183 |

101 | 218 | 83 | 152 | 4 | 253 | 220 | 215 | 77 | 183 | 51 |

147 | 32 | 220 | 173 | 31 | 177 | 0 | 113 | 30 | 211 | 157 |

212 | 45 | 22 | 201 | 117 | 230 | 223 | 171 | 89 | 143 | 243 |

135 | 135 | 11 | 37 | 178 | 161 | 139 | 191 | 148 | 208 | 219 |

159 | 200 | 196 | 231 | 252 | 254 | 232 | 183 | 119 | 165 | 156 |

219 | 205 | 138 | 254 | 133 | 123 | 96 | 68 | 204 | 77 | 229 |

114 | 116 | 139 | 219 | 189 | 97 | 32 | 101 | 166 | 140 | 98 |

168 | 220 | 198 | 93 | 146 | 129 | 130 | 194 | 6 | 125 | 236 |

32 | 51 | 68 | 20 | 183 | 249 | 96 | 156 | 28 | 12 | 62 |

104 | 253 | 104 | 174 | 65 | 11 | 185 | 37 | 137 | 26 | 238 |

86 | 103 | 58 | 122 | 110 | 80 | 222 | 83 | 125 | 18 | 163 |

73 | 19 | 255 | 85 | 104 | 149 | 105 | 127 | 189 | 218 | 54 |

198 | 183 | 144 | 162 | 161 | 47 | 77 | 56 | 21 | 9 | 15 |

16 | 66 | 34 | 132 | 101 | 150 | 135 | 192 | 184 | 138 | 134 |

96 | 96 | 183 | 212 | 147 | 3 | 196 | 101 | 246 | 9 | 241 |

156 | 109 | 113 | 254 | 115 | 13 | 35 | 48 | 117 | 65 | 141 |

8 | 21 | 229 | 74 | 100 | 222 | 69 | 23 | 90 | 7 | 42 |

168 | 120 | 227 | 206 | 147 | 139 | 190 | 22 | 127 | 148 | 187 |

45 | 235 | 97 | 36 | 192 | 92 | 254 | 64 | 188 | 247 | 51 |

183 | 194 | 164 | 61 | 121 | 188 | 100 | 58 | 226 | 255 | 137 |

16 | 88 | 223 | 148 | 155 | 225 | 28 | 233 | 120 | 222 | 167 |

246 | 216 | 225 | 163 | 2 | 86 | 52 | 189 | 45 | 232 | 159 |

118 | 165 | 172 | 74 | 151 | 80 | 19 | 219 | 141 | 0 | 22 |

129 | 33 | 190 | 184 | 253 | 248 | 205 | 30 | 186 | 6 | 186 |

84 | 71 | 126 | 199 | 133 | 127 | 180 | 172 | 159 | 166 | 71 |

27 | 105 | 189. |

Parameter | Description |
---|---|

Population Size | 300 |

Generations | 250 |

Mutation type | Fixed Mutation probability |

Mutation chance | 5% |

Fitness | Sheppard’s Objective Function |

Elitism | Best individual always survives |

Elite size | 60% of population |

Synthetic Data | ${\mathit{R}}_{1}(\mathbf{\Omega}\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}{\mathbf{cm}}^{2})$ | ${\mathit{\tau}}_{0,1}(\mathit{s})$ | ${\mathit{n}}_{1}$ | ${\mathit{R}}_{2}(\mathbf{\Omega}\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}{\mathbf{cm}}^{2})$ | ${\mathit{\tau}}_{0,2}(\mathit{s})$ | ${\mathit{n}}_{2}$ |
---|---|---|---|---|---|---|

ZARC | 50 | 0.01 | 0.7 | 50 | 0.0001 | 0.7 |

**Table 7.**ZARC values for the elements in circuit from Figure 14.

Element | $\mathit{R}(\mathbf{\Omega}\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{4.pt}{0ex}}{\mathbf{cm}}^{2})$ | $\mathit{\tau}(\mathbf{s})$ | n |
---|---|---|---|

ZARC1 | 348.21 | 0.0003 | 0.91 |

ZARC2 | 65 | 0.065 | 0.53 |

ZARC3 | 66 | 0.003 | 0.57 |

ZARC4 | 80 | 0.00005 | 0.5 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kunaver, M.; Žic, M.; Fajfar, I.; Tuma, T.; Bűrmen, Á.; Subotić, V.; Rojec, Ž.
Synthesizing Electrically Equivalent Circuits for Use in Electrochemical Impedance Spectroscopy through Grammatical Evolution. *Processes* **2021**, *9*, 1859.
https://doi.org/10.3390/pr9111859

**AMA Style**

Kunaver M, Žic M, Fajfar I, Tuma T, Bűrmen Á, Subotić V, Rojec Ž.
Synthesizing Electrically Equivalent Circuits for Use in Electrochemical Impedance Spectroscopy through Grammatical Evolution. *Processes*. 2021; 9(11):1859.
https://doi.org/10.3390/pr9111859

**Chicago/Turabian Style**

Kunaver, Matevž, Mark Žic, Iztok Fajfar, Tadej Tuma, Árpád Bűrmen, Vanja Subotić, and Žiga Rojec.
2021. "Synthesizing Electrically Equivalent Circuits for Use in Electrochemical Impedance Spectroscopy through Grammatical Evolution" *Processes* 9, no. 11: 1859.
https://doi.org/10.3390/pr9111859