Oxygen-Blown Gasification of Pulp Mill Bark Residues for Synthetic Fuel Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Gasifier
2.2. Fuels
2.3. Operating Conditions
2.4. Syngas Sampling and Analysis
2.4.1. Gaseous Components
2.4.2. Particulate Matter
2.5. Online Tunable Diode Laser Absorption Spectroscopy (TDLAS) Measurements
2.6. Ash Sampling and Analysis
2.7. Thermodynamic Equilibrium Calculations
3. Results and Discussion
3.1. Process Temperature
3.2. Major Syngas Species and Gasification Efficiency
3.3. Gasification Efficiency
3.4. Minor Syngas Components and Particles
3.5. Online TDLAS Measurements
3.6. Inorganic Element Distribution
3.6.1. Bottom Ash
3.6.2. Syngas Particulate Matter
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Comission. A European Strategy for Low-Emission Mobility. 2020. Available online: https://ec.europa.eu/clima/policies/transport_en (accessed on 17 November 2020).
- European Comission. Sustainability Criteria. 2020. Available online: https://ec.europa.eu/energy/topics/renewable-energy/biofuels/sustainability-criteria_en (accessed on 17 November 2020).
- Higman, C.; van der Burgt, M. Gasification; Gulf Professional Publishing: Houston, TX, USA, 2008. [Google Scholar]
- Van Dyk, J.; Keyser, M.; Coertzen, M. Syngas production from South African coal sources using Sasol-Lurgi gasifiers. Int. J. Coal Geol. 2006, 65, 243–253. [Google Scholar] [CrossRef]
- Molino, A.; LaRocca, V.; Chianese, S.; Musmarra, D. Biofuels production by biomass gasification: A review. Energies 2018, 11, 811. [Google Scholar] [CrossRef] [Green Version]
- Farzad, S.; Mandegari, M.; Görgens, J. A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuels Res. J. 2016, 12, 483–495. [Google Scholar] [CrossRef]
- Landälv, I.; Gebart, R.; Marke, B.; Granberg, F.; Furusjö, E.; Löwnertz, P.; Öhrman, O.; Sørensen, E.; Salomonsson, P. Two years experience of the BioDME project—A complete wood to wheel concept. Environ. Prog. Sustain. Energy 2014, 33, 744–750. [Google Scholar] [CrossRef]
- Khodakov, A.Y.; Chu, W.; Fongarland, P. Advances in the development of novel Cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 2007, 107, 1692–1744. [Google Scholar] [CrossRef]
- Weiland, F. Pressurized Entrained Flow Gasification of Pulverized Biomass: Experimental Characterization of the Process Performance. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2015. [Google Scholar]
- Correa, C.; Kruse, A. Supercritical water gasification of biomass for hydrogen production—Review. J. Supercrit. Fluids 2018, 133, 573–590. [Google Scholar] [CrossRef]
- Rönnlund, I.; Myréen, L.; Lundqvist, K.; Ahlbeck, J.; Westerlund, T. Waste to energy by industrially integrated supercritical water gasification—Effects of alkali salts in residual by-product from the pulp and paper industry. Energy 2011, 36, 2151–2163. [Google Scholar] [CrossRef]
- Pulp&Fuel. Pulp&Fuel—Pulp and Paper Industry Wastes to Fuel. 2020. Available online: http://pulpandfuel.eu/ (accessed on 18 November 2020).
- Wiinikka, H.; Wennebro, J.; Gullberg, M.; Pettersson, E.; Weiland, F. Pure oxygen fixed-bed gasification of wood under high temperature (>1000 °C) freeboard conditions. Appl. Energy 2017, 191, 153–162. [Google Scholar] [CrossRef]
- Weiland, F.; Wiinikka, H.; Hedman, H.; Wennebro, J.; Pettersson, E.; Gebart, R. Influence of process parameters on the performance of an oxygen blown entrained flow biomass gasifier. Fuel 2015, 153, 510–519. [Google Scholar] [CrossRef]
- Goldstein, C.; Spearrin, R.; Jeffries, J.; Hanson, R. Infrared laser-absorption sensing for combustion. Prog. Energy Combust. Sci. 2017, 60, 132–176. [Google Scholar] [CrossRef] [Green Version]
- Ögren, Y.; Gullberg, M.; Wennebro, J.; Sepman, A.; Tóth, P.; Wiinikka, H. Influence of oxidizer injection angle on the entrained flow gasification of torrefied wood powder. Fuel Process. Technol. 2018, 181, 8–17. [Google Scholar] [CrossRef]
- Wiinikka, H.; Sepman, A.; Ögren, Y.; Lindblom, B.; Nordin, L.-O. Combustion evaluation of renewable fuels for iron-ore pellet induration. Energy Fuels 2019, 33, 7819–7829. [Google Scholar] [CrossRef]
- Weiland, F.; Hedman, H.; Marklund, M.; Wiinikka, H.; Öhrman, O.; Gebart, R. Pressurized oxygen blown entrained-flow gasification of wood powder. Energy Fuels 2013, 27, 932–941. [Google Scholar] [CrossRef]
- Weiland, F.; Nilsson, P.; Gebart, R.; Wiinikka, H.; Gudmundsson, A.; Sanati, M. Online characterization of syngas particulates using aerosol mass spectrometry in entrained-flow biomass gasification. Aerosol Sci. Technol. 2014, 48, 1145–1155. [Google Scholar] [CrossRef]
- Weiland, F.; Nordwaeger, M.; Olofsson, I.; Nordin, A.; Wiinikka, H. Entrained flow gasification of torrefied wood residues. Fuel Process. Technol. 2014, 125, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Wiinikka, H.; Johansson, A.-C.; Wennebro, J.; Carlsson, P.; Öhrman, O.G. Evaluation of black liquor gasification intended for synthetic fuel or power production. Fuel Process. Technol. 2015, 139, 216–225. [Google Scholar] [CrossRef]
- Devi, L.; Ptasinski, K.; Janssen, F. A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 2003, 24, 125–140. [Google Scholar] [CrossRef]
- Evans, T.; Evans, R.; Abatzoglou, N. Biomass Gasifier Tars: Their Nature, Formation, and Conversion; National Renewable Energy Laboratory: Golden, CO, USA, 1998.
- Apicella, B.; Russo, C.; Cerciello, F.; Stanzione, F.; Ciajolo, A.; Scherer, V.; Senneca, O. Insights on the role of primary and secondary tar reactions in soot inception during fast pyrolysis of coal. Fuel 2020, 275, 117957. [Google Scholar] [CrossRef]
- Qin, K.; Jensen, P.; Weigang, L.; Jensen, A. Biomass gasification behavior in an entrained flow reactor: Gas product distribution and soot formation. Energy Fuels 2012, 26, 5992–6002. [Google Scholar] [CrossRef] [Green Version]
- Qin, K.; Lin, W.; Jensen, P.; Jensen, A. High-temperature entrained flow gasification of biomass. Fuel 2012, 93, 589–600. [Google Scholar] [CrossRef]
- Zhang, Y.; Kajitani, S.; Ashizawa, M.; Oki, Y. Tar destruction and coke formation during rapid pyrolysis and gasification of biomass in a drop-tube furnace. Fuel 2010, 89, 302–309. [Google Scholar] [CrossRef]
- Wiinikka, H.; Toth, P.; Jansson, K.; Molinder, R.; Broström, M.; Sandström, L.; Lighty, J.; Weiland, F. Particle formation during pressurized entrained flow gasification of wood powder: Effects of process conditions on chemical composition, nanostructure and reactivity. Combust. Flame 2018, 189, 240–256. [Google Scholar] [CrossRef]
- Porbatzki, D.; Stemmler, M.; Müller, M. Release of inorganic trace elements during gasification of wood, straw, and miscanthus. Biomass Bioenergy 2011, 35 (Suppl. 1), S79–S86. [Google Scholar] [CrossRef]
- Bläsing, M.; Nazeri, K.; Müller, M. Release of alkali metal, sulphur and chlorine species during high-temperature gasification and co-gasification of hard coal, refinery residue, and petroleum coke. Fuel 2014, 126, 62–68. [Google Scholar] [CrossRef]
- Meng, X.; de Jong, W.; Fu, N.; Verkooijen, A. Biomass gasification in a 100 kWth steam-oxygen blown circulating fluidized bed gasifier: Effect of operational conditions on the product gas distribution and tar formation. Biomass Bioenergy 2011, 35, 2910–2924. [Google Scholar] [CrossRef]
- Bläsing, M.; Zini, M.; Müller, M. Influence of feedstock on the release of potassium, sodium, chlorine, sulfur, and phosphorus species during gasification of wood and biomass shells. Energy Fuels 2013, 27, 1439–1445. [Google Scholar] [CrossRef]
- Zhou, J.; Masutani, S.; Ishimura, D.; Turn, S.; Kinoshita, C. Release of fuel-bound nitrogen during biomass gasification. Ind. Eng. Chem. Res. 2000, 39, 626–634. [Google Scholar] [CrossRef]
- Bläsing, M.; Melchior, T.; Müller, M. Influence of the temperature on the release of inorganic species during high-temperature gasification of hard coal. Energy Fuels 2010, 24, 4153–4160. [Google Scholar] [CrossRef]
- Wang, Q.; Qiu, J.; Liu, Y.; Zheng, C. Effect of atmosphere and temperature on the speciation of mineral in coal combustion. Fuel Process. Technol. 2004, 85, 1431–1441. [Google Scholar] [CrossRef]
- Xuan, W.; Wang, H.; Xia, D. Deep structure analysis on coal slags with increasing silicon content and correlation with melt viscosity. Fuel 2019, 242, 362–367. [Google Scholar] [CrossRef]
- Chen, X.; Kong, L.; Bai, J.; Dai, X.; Li, H.; Bai, Z.; Li, W. The key for sodium-rich coal utilization in entrained flow gasifier: The role of sodium on slag viscosity-temperature behavior at high temperatures. Appl. Energy 2017, 206, 1241–1249. [Google Scholar] [CrossRef]
- Risnes, H.; Fjellerup, J.; Henriksen, U.; Moilanen, A.; Norby, P.; Papadikis, K.; Posselt, D.; Sørensen, L. Calcium addition in straw gasification. Fuel 2003, 82, 641–651. [Google Scholar] [CrossRef]
Proximate Analysis (wt.%, as Received) | Softwood Bark | Hardwood Bark |
---|---|---|
Moisture * | 11.7 | 11.4 |
Volatile matter | 62.5 | 62.6 |
Fixed carbon | 19.1 | 19.4 |
Ash | 6.7 | 6.6 |
Ultimate analysis (wt.%, dry) | ||
Carbon | 50.0 | 43.4 |
Hydrogen | 5.62 | 5.21 |
Oxygen | 36.3 | 43.4 |
Sulfur | <0.10 | <0.10 |
Nitrogen | 0.36 | 0.58 |
Chlorine | 0.02 | 0.04 |
Calorific analysis (MJ/kg, dry) | ||
Lower heating value (LHV) | 18.6 | 17.1 |
Major inorganic elements (mg/kg, dry) | ||
Silicon | 15,100 | 16,400 |
Aluminum | 2670 | 2710 |
Calcium | 5950 | 17,400 |
Iron | 1540 | 1320 |
Potassium | 2000 | 3470 |
Magnesium | 744 | 1270 |
Manganese | 159 | 238 |
Sodium | 372 | 383 |
Phosphorus | 185 | 408 |
Titanium | 155 | 155 |
Fuel | Fuel Feeding Rate | O2 Feeding Rate | λ | Process Temp. | Carbon Closure | ||
---|---|---|---|---|---|---|---|
Prim. | Sec. | Tert. | *T (S) | ||||
kg/h | NL/min | NL/min | NL/min | - | °C | % | |
Softwood | 4.21 | 12.96 | 6.24 | 0.00 | 0.30 | 957 | 89 |
4.24 | 12.96 | 6.24 | 3.20 | 0.35 | 996 | 93 | |
4.20 | 5.18 | 14.01 | 6.40 | 0.40 | 992 | 108 | |
4.20 | 6.02 | 11.81 | 11.88 | 0.47 | 1052 | 104 | |
4.12 | 12.97 | 6.17 | 12.76 | 0.51 | 1120 | 103 | |
4.04 | 12.97 | 6.17 | 15.95 | 0.57 | 1136 | 106 | |
4.23 | 12.97 | 6.17 | 19.14 | 0.60 | 1125 | 105 | |
Hardwood | 4.31 | 9.34 | 4.63 | 0.00 | 0.26 | 950 | 78 |
4.42 | 13.48 | 2.26 | 0.00 | 0.29 | 944 | 88 | |
4.35 | 11.34 | 5.42 | 2.79 | 0.36 | 971 | 94 | |
4.59 | 14.34 | 2.42 | 5.59 | 0.39 | 861 | 103 | |
4.38 | 11.34 | 5.42 | 8.38 | 0.46 | 1014 | 96 | |
4.48 | 13.48 | 2.26 | 10.50 | 0.47 | 1017 | 97 | |
4.49 | 14.34 | 2.42 | 11.17 | 0.50 | 1073 | 105 | |
4.39 | 14.34 | 2.42 | 13.97 | 0.56 | 1077 | 103 | |
4.39 | 14.34 | 2.42 | 16.76 | 0.62 | 1062 | 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiland, F.; Lundström, S.; Ögren, Y. Oxygen-Blown Gasification of Pulp Mill Bark Residues for Synthetic Fuel Production. Processes 2021, 9, 163. https://doi.org/10.3390/pr9010163
Weiland F, Lundström S, Ögren Y. Oxygen-Blown Gasification of Pulp Mill Bark Residues for Synthetic Fuel Production. Processes. 2021; 9(1):163. https://doi.org/10.3390/pr9010163
Chicago/Turabian StyleWeiland, Fredrik, Sandra Lundström, and Yngve Ögren. 2021. "Oxygen-Blown Gasification of Pulp Mill Bark Residues for Synthetic Fuel Production" Processes 9, no. 1: 163. https://doi.org/10.3390/pr9010163