Study on the Law of Diesel Oil Carrying Water in Lanzhou–Chengdu–Chongqing Product Oil Pipeline Based on Large Eddy Simulation
Abstract
:1. Introduction
2. Mathematical Model
2.1. Governing Equation of VOF Model
2.2. LES and Sub-Grid Scale Model
2.3. Surface Tension Model
3. Numerical Model
3.1. Geometrical Model
3.2. Mesh Generation
3.3. Parameter Settings
3.4. Numerical Methods
3.5. Mesh Independence Verification
3.6. Analysis of y+
4. Analysis of Simulation Results
4.1. Method Verification
4.2. Processes of Oil Carrying Water
4.3. The Transition of Flow Patterns
4.3.1. Distribution of Two Phases
4.3.2. Distribution of Oil-Water Velocity
4.4. Analysis of Water Carrying Capacity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shi, H.; Wang, L.; Luan, L. Aseismic design of Lanzhou-Chengdu-Chongqing oil product pipeline. Oil Gas Storage Transp. 2009, 28, 57–93. [Google Scholar]
- Zhou, L. Construction experiences of Lanzhou-Chengdu-Chongqing transportation oil pipeline. Pipeline Tech. Equip. 2006, 3, 1–2. [Google Scholar] [CrossRef]
- Wang, R.; Liu, X.; Wang, D. Discussion on formation mechanism of landslide disaster and its prevention. J. Jianghan Pet. Univ. Staff Work. 2015, 28, 41–43. [Google Scholar] [CrossRef]
- Jin, Z. Corrosion failure analysis of a certain product oil pipeline. Pet. Tubul. Goods Instrum. 2015, 1, 54–58. [Google Scholar] [CrossRef]
- Liu, G.; Hao, J.; Lu, X.; Chen, L.; Sui, B. Development of monitoring system carrying impurity of product oil and corrosion in oil pipeline. Res. Explor. Lab. 2017, 36, 59–63, 102. [Google Scholar] [CrossRef]
- Li, T.; Fan, J.; Liang, Y.; Liu, Y. The numerical simulation of the water’s motion states in oil pipeline. J. Shandong Univ. Technol. 2015, 29, 60–65. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; Han, S.; Lv, X.; Ren, A.; Liu, W.; Yan, B.; Chen, X. Internal corrosion cause analysis of a products pipeline before putting into operation. Corros. Sci. Prot. Technol. 2018, 30, 496–502. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, G.; Zhao, S. An experiment on dewatering for lower location of pipeline. Oil Gas Storage Transp. 2011, 30, 369–372. [Google Scholar]
- Liu, E.; Li, W.; Cai, H.; Peng, S. Formation mechanism of trailing oil in product oil pipeline. Processes 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Xiong, K.; Zhu, J.; Yu, D. Influence of water carrying capacity of oil products on internal corrosion of pipelines. Oil Gas Storage Transp. 2015, 34, 834–838. [Google Scholar] [CrossRef]
- Peng, S.; Chen, Q.; Zheng, C.; Liu, E. Analysis of particle deposition in a new-type rectifying plate system during shale gas extraction. Energy Sci. Eng. 2019, 8, 702–717. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhang, J.; Li, W.; Jiang, H.; Gong, J. Research on oil-water displacement in upward inclined pipes. Nat. Gas Oil 2019, 37, 8–14. [Google Scholar] [CrossRef]
- Su, Z.; Liu, E.; Xu, Y.; Xie, P.; Shang, C.; Zhu, Q. Flow field and noise characteristics of manifold in natural gas transportation station. Oil Gas Sci. Technol. 2019, 74, 70. [Google Scholar] [CrossRef]
- Zhao, S.; Hao, Y. Study on numerical simulation of the wave characteristics at oil-water interface in upward inclined pipeline. Chem. Equip. Technol. 2014, 35, 10–13. [Google Scholar] [CrossRef]
- Song, X.; Li, D.; Sun, X.; Mou, X.; Chen, Y.; Yang, Y. Numerical modeling of the critical pipeline inclination for the elimination of the water accumulation on the pipe floor in oil-water fluid. Petroleum 2020. [Google Scholar] [CrossRef]
- Song, X.; Yang, Y.; Zhang, T.; Xiong, K.; Wang, Z. Studies on water carrying of diesel oil in upward inclined pipes with different inclined angle. J. Pet. Sci. Eng. 2017, 157, 780–792. [Google Scholar] [CrossRef]
- Xu, G.; Cai, L.; Ullmann, A.; Brauner, N. Experiments and simulation of water displacement from lower sections of oil pipelines. J. Pet. Sci. Eng. 2016, 147, 829–842. [Google Scholar] [CrossRef]
- Magnini, M.; Ullmann, A.; Brauner, N.; Thome, J. Numerical study of water displacement from the elbow of an inclined oil pipeline. J. Pet. Sci. Eng. 2018, 166, 1000–1017. [Google Scholar] [CrossRef]
- Zhu, S.; Mou, X.; Li, W.; Song, X.; Gu, L. An experimental study on the flow patterns of oil-water two-phase flow in an upwardly inclined pipe. J. Southwest Pet. Univ. 2019, 41, 144–151. [Google Scholar] [CrossRef]
- Wen, S.; Zhang, T.; Zhang, Q. Phase distribution identification method for oil-water two-phase flow in updip. Oil Gas Storage Transp. 2019, 38, 1022–1028. [Google Scholar] [CrossRef]
- Gao, H.; Gu, H.; Guo, L. Numerical study of stratified oil–water two-phase turbulent flow in a horizontal tube. Int. J. Heat Mass Transf. 2003, 46, 749–754. [Google Scholar] [CrossRef]
- Garmroodi, M.D.; Ahmadpour, A. Numerical simulation of stratified waxy crude oil and water flows across horizontal pipes in the presence of wall heating. J. Pet. Sci. Eng. 2020, 193, 107458. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, G.; Liu, G.; Zhang, X.; Zhang, Y. Distribution Model of Water Phase Interface in Oil Transportation Pipeline with Water. Oil Gas Storage Transp. 2010, 29, 821–826. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, G.; Brauner, N.; Ullmann, A.; Liu, G.; Zhang, X. Interface profile in oil-dragging-water pipeline system. J. China Univ. Pet. 2011, 35, 124–129. [Google Scholar] [CrossRef]
- Zhang, H.; Lan, H.; Lin, N. A numerical simulation of water distribution associated with internal corrosion induced by water wetting in upward inclined oil pipes. J. Pet. Sci. Eng. 2019, 173, 351–361. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, G.; Zhao, S.; Wang, S. Analysis of characteristics of the oil purging water system in horizontal tube. J. Southwest Pet. Univ. 2011, 33, 173–177, 204. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, W.; Liu, Y.; He, Y.; Chen, J.; Qiao, L.; Wang, T. Study on hydrodynamic characteristics of oil-water annular flow in 90° elbow. Chem. Eng. Res. Des. 2020, 153, 443–451. [Google Scholar] [CrossRef]
- Ersoy, G.; Sarica, C.; Al-Safran, E.; Zhang, H. Three-phase gas-oil-water flow in undulating pipeline. J. Pet. Sci. Eng. 2017, 156, 468–483. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, B.; Wen, S.; Song, X.; Zhang, Z. Numerical study on diesel oil carrying water behaviors in inclined pipeline based on large eddy simulation. IEEE Access 2019, 7, 123219–123230. [Google Scholar] [CrossRef]
- Lafmejani, S.S.; Olesen, A.C.; Kær, S.K. VOF modelling of gas–liquid flow in PEM water electrolysis cell micro-channels. Int. J. Hydrogen Energy 2017, 42, 16333–16344. [Google Scholar] [CrossRef] [Green Version]
- Labourasse, E.; Lacanette, D.; Toutant, A.; Lubin, P.; Vincent, S.; Lebaigue, O.; Caltagirone, J.P.; Sagaut, P. Towards large eddy simulation of isothermal two-phase flows: Governing equations and a priori tests. Int. J. Multiphase Flow 2007, 33, 1–39. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, X.; Li, L.; Ai, Z. Influence of Y+ on the calculation of submarine flow field characteristics of LES. J. Huazhong Univ. Sci. Technol. 2015, 43, 79–83. [Google Scholar] [CrossRef]
- Lodh, B.; Das, A.; Singh, N. Investigation of Turbulence for Wind Flow over a Surface Mounted Cube using Wall Y+ Approach. Indian J. Sci. Technol. 2017, 10, 1–11. [Google Scholar] [CrossRef]
L1 (m) | L2 (m) | D (mm) | R (mm) | |
---|---|---|---|---|
10 | 10 | 508 | 9 | 2450 |
Medium | Dynamic Viscosity/mPa·s | Density/kg·m−3 |
---|---|---|
Diesel oil | 3.575 | 908.2 |
Water | 1.03 | 1000 |
Surface tension | 0.01795 N/m |
Specification | Category | Methods |
---|---|---|
Turbulence model | LES | Smagorinsky–Lilly |
Pressure-velocity coupling | Scheme | PISO |
Spatial discretization | Gradient | Least square cell based |
Pressure | PRESTO! | |
Momentum | Bounded central differencing | |
Volume fraction | First order upwind |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Chen, B.; Sun, K.; Chang, W. Study on the Law of Diesel Oil Carrying Water in Lanzhou–Chengdu–Chongqing Product Oil Pipeline Based on Large Eddy Simulation. Processes 2020, 8, 1049. https://doi.org/10.3390/pr8091049
Zhang T, Chen B, Sun K, Chang W. Study on the Law of Diesel Oil Carrying Water in Lanzhou–Chengdu–Chongqing Product Oil Pipeline Based on Large Eddy Simulation. Processes. 2020; 8(9):1049. https://doi.org/10.3390/pr8091049
Chicago/Turabian StyleZhang, Tao, Bin Chen, Kun Sun, and Wenjie Chang. 2020. "Study on the Law of Diesel Oil Carrying Water in Lanzhou–Chengdu–Chongqing Product Oil Pipeline Based on Large Eddy Simulation" Processes 8, no. 9: 1049. https://doi.org/10.3390/pr8091049
APA StyleZhang, T., Chen, B., Sun, K., & Chang, W. (2020). Study on the Law of Diesel Oil Carrying Water in Lanzhou–Chengdu–Chongqing Product Oil Pipeline Based on Large Eddy Simulation. Processes, 8(9), 1049. https://doi.org/10.3390/pr8091049