Cooling Performance Analysis of the Lab-Scale Hybrid Oyster Refrigeration System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual and 3D Design of the Lab-Scale Hybird Oyster Refrigeration System
2.2. Fabrication and Assembly of the Lab-Scale Hybird Oyster Refrigeration System
2.3. Experimental Setup and Operating Conditions
3. Results and Discussion
3.1. Effects of Air Circulation on Cooling Performance
3.2. Effect of Operating Conditions on Cooling Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Turner, J.S.; Kellogg, M.L.; Massey, G.M.; Friedrichs, C.T. Minimal effects of oyster aquaculture on local water quality: Examples from southern Chesapeake Bay. PLoS ONE 2019, 14, e0224768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, G.L. Food safety impacts from post-harvest processing procedures of molluscan shellfish. Foods 2016, 5, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dungan, C.F.; Carnegie, R.B.; Hill, K.M.; McCollough, C.B.; Laramore, S.E.; Kelly, C.J.; Scarpa, J. Diseases of oysters Crassostrea ariakensis and C. virginica reared in ambient waters from the Choptank River, Maryland and the Indian River Lagoon, Florida. Dis. Aquat. Organ. 2012, 101, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Rothschild, B.J.; Ault, J.S.; Goulletquer, P.; Heral, M. Decline of the Chesapeake Bay oyster population: A century of habitat destruction and overfishing. Mar. Ecol. Prog. Ser. 1994, 111, 29–39. [Google Scholar] [CrossRef]
- Van Senten, J.; Engle, C.; Parker, M.; Webster, D. Analysis of the Economic Benefits of the Maryland Shellfish Aquaculture Industry. Final Project Report, 31 December 2019. Available online: https://www.cbf.org/document-library/non-cbf-documents/analysis-of-the-economic-benefits-of-the-maryland-shellfish-aquaculture-industry-full-report.pdf (accessed on 7 April 2020).
- Hudson, K. Virginia Shellfish Aquaculture Situation and Outlook Report. Results of the 2017 Virginia Shellfish Aquaculture Crop Reporting Survey. VIMS Marine Resources Report No 2018–9. Available online: www.vims.edu/map/aquaculture (accessed on 3 May 2020).
- Aaraas, R.; Hernar, I.J.; Vorre, A.; Bergslien, H.; Lunestad, B.T.; Skeie, S.; Mortensen, S. Sensory, histological, and bacteriological changes in flat oysters, ostrea edulis L., during different storage conditions. J. Food Sci. 2004, 69, S205–S210. [Google Scholar] [CrossRef]
- Mudoh, M.; Parveen, S.; Schwarz, J.; Rippen, T.; Chaudhuri, A. The effects of storage temperature on the growth of Vibrio parahaemolyticus and organoleptic properties in oysters. Front. Public Health 2014, 2, 45. [Google Scholar] [CrossRef] [Green Version]
- Love, D.C.; Lane, R.M.; Davis, B.J.; Clancy, K.; Fry, J.P.; Harding, J.; Hudson, B. Performance of cold chains for Chesapeake Bay farmed oysters and modeled growth of Vibrio parahaemolyticus. J. Food Prot. 2019, 82, 168–178. [Google Scholar] [CrossRef]
- Muth, M.K.; Viator, C.L.; Karns, S.A.; Cajka, J.C.; O’Neil, M. Analysis of the costs and economic feasibility of requiring postharvest processing for raw oysters. Compr. Rev. Food Sci. Food Saf. 2013, 12, 652–661. [Google Scholar] [CrossRef]
- Jones, J.L.; Lydon, K.A.; Kinsey, T.P.; Friedman, B.; Curtis, M.; Schuster, R.; Bowers, J.C. Effects of ambient exposure, refrigeration, and icing on Vibrio vulnificus and Vibrio parahaemolyticus abundances in oysters. Int. J. Food Microbiol. 2017, 253, 54–58. [Google Scholar] [CrossRef] [PubMed]
- FDA/ISSC. National Shellfish Sanitation Program (NSSP) Guide for the Control of Molluscan Shellfish: 2015 Revision. Available online: https://www.fda.gov/food/federalstate-food-programs/national-shellfish-sanitation-program-nssp (accessed on 5 May 2020).
- Cook, D.W. Refrigeration of oyster shellstock: Conditions which minimize the outgrowth of Vibrio vulnificus. J. Food Prot. 1997, 60, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Nikbay, M.; Acikgoz, M.B.; Kerpicci, H. Investigation of airflow and temperature distribution in the freezer cabinet of a domestic no-frost refrigerator. In Proceedings of the ASME 2009 Heat Transfer Summer Conference Collocated with the InterPACK09 and 3rd Energy Sustainability Conferences, San Francisco, CA, USA, 19–23 July 2009; pp. 689–694. [Google Scholar]
- Wang, L.; Zhang, L.; Lian, G. A CFD simulation of 3D air flow and temperature variation in refrigeration cabinet. Procedia Eng. 2015, 102, 1599–1611. [Google Scholar] [CrossRef] [Green Version]
- Gupta, J.K.; Gopal, M.R.; Chakraborty, S. Modeling of a domestic frost-free refrigerator. Int. J. Refrig. 2007, 30, 311–322. [Google Scholar] [CrossRef]
- Belman-Flores, J.M.; Ledesma, S.; Gallegos-Muñoz, A.; Hernandez, D. Thermal simulation of the fresh food compartment in a domestic refrigerator. Energies 2017, 10, 128. [Google Scholar] [CrossRef] [Green Version]
- Laguerre, O.; Flick, D. Temperature prediction in domestic refrigerators: Deterministic and stochastic approaches. Int. J. Refrig. 2010, 33, 41–51. [Google Scholar] [CrossRef]
- Fukuyo, K.; Tanaami, T.; Ashida, H. Thermal uniformity and rapid cooling inside refrigerators. Int. J. Refrig. 2003, 26, 249–255. [Google Scholar] [CrossRef]
- Yang, K.S.; Chang, W.R.; Chen, I.Y.; Wang, C.C. An investigation of a top-mounted domestic refrigerator. Energ. Convers. Manag. 2010, 51, 1422–1427. [Google Scholar] [CrossRef]
- Ding, G.L.; Qiao, H.T.; Lu, Z.L. Ways to improve thermal uniformity inside a refrigerator. Appl. Therm. Eng. 2004, 24, 1827–1840. [Google Scholar] [CrossRef]
- Melody, K.; Senevirathne, R.; Janes, M.; Jaykus, L.A.; Supan, J. Effectiveness of icing as a post-harvest treatment control of Vibrio vulnificus and Vibrio parahaemolyticus in the Eastern oyster (Crassostrea virginica). J. Food Prot. 2008, 71, 1475–1480. [Google Scholar] [CrossRef]
- Lychnos, G.; Tamainot-Telto, Z. Prototype of hybrid refrigeration system using refrigerant R723. Appl. Therm. Eng. 2018, 134, 95–106. [Google Scholar] [CrossRef]
- Wang, S.G.; Wang, R.Z. Recent developments of refrigeration technology in fishing vessels. Renew. Energy 2005, 30, 589–600. [Google Scholar] [CrossRef]
- Hafner, I.A.; Gabrielii, C.H.; Widell, K. Refrigeration Units in Marine Vessels: Alternatives to HCFCs and High GWP HFCs; Nordic Council of Ministers: Copenhagen, Denmark, 2019. [Google Scholar]
- Tassou, S.A.; Lewis, J.S.; Ge, Y.T.; Hadawey, A.; Chaer, I. A review of emerging technologies for food refrigeration applications. Appl. Therm. Eng. 2010, 30, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.Y. Cooling and dehumidification performance analysis of internally-cooled liquid desiccant absorbers. Appl. Therm. Eng. 1998, 18, 265–281. [Google Scholar] [CrossRef]
- Ko, J.S.; Huh, J.H.; Kim, J.C. Improvement of energy efficiency and control performance of cooling system fan applied to Industry 4.0 data center. Electronics 2019, 8, 582. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Liu, Q.S.; Wang, R.Z. Performance and applicability of a dc refrigerator powered by the photovoltaics. J. Renew. Sustain. Energy 2010, 2, 013101. [Google Scholar] [CrossRef]
- Aktacir, M.A. Experimental study of a multi-purpose PV-refrigerator system. Int. J. Phys. Sci. 2011, 6, 746–757. [Google Scholar]
- Luo, J.; Rohn, J.; Bayer, M.; Priess, A.; Wilkmann, L.; Xiang, W. Heating and cooling performance analysis of a ground source heat pump system in Southern Germany. Geothermics 2015, 53, 57–66. [Google Scholar] [CrossRef]
- Wang, W.; Gao, J.; Shi, X.; Xu, L. Cooling performance analysis of steam cooled gas turbine nozzle guide vane. Int. J. Heat Mass Transf. 2013, 62, 668–679. [Google Scholar] [CrossRef]
- Qian, X.; Lee, S.W. The design and analysis of energy efficient building envelopes for the commercial buildings by mixed-level factorial design and statistical methods. In Proceedings of the ASEE Middle Atlantic American Society of Engineering Education, Swarthmore, PA, USA, 14–15 November 2014. [Google Scholar]
- Qian, X.; Chen, G.; Kattel, B.; Lee, S.; Yang, Y. Factorial analysis of vertical ground reaction force and required coefficient of friction for safety of stair ascent and descent. Inter. J. Ind. Oper. Res. 2018, 1, 002. [Google Scholar] [CrossRef]
- Qian, X. Statistical Analysis and Evaluation of the Advanced Biomass and Natural Gas. Co-Combustion Performance. Ph.D. Thesis, Morgan State University, Baltimore, MD, USA, May 2019. [Google Scholar]
110 Volt AC Cooling Unit (Left Section) | 12 Volt DC Cooling Unit (Right Section) | ||
Compartment 1 (kg) | Compartment 4 (kg) | ||
4.76 shell + 0.5 water | 4.76 shell + 0.5 water | 4.76 shell + 0.5 water | 4.76 shell + 0.5 water |
Total: 9.52 shell + 1 water | Total: 9.52 shell + 1 water | ||
Compartment 2 (kg) | Compartment 5 (kg) | ||
9.52 shell + 1 water | 9.52 shell + 1 water | 9.52 shell + 1 water | 9.52 shell + 1 water |
Total: 19.04 shell + 2 water | Total: 19.04 shell + 2 water | ||
Compartment 3 (kg) | Compartment 6 (kg) | ||
9.52 shell + 1 water | 9.52 shell + 1 water | 9.52 shell + 1 water | 9.52 shell + 1 water |
Total: 19.04 shell + 2 water | Total: 19.04 shell + 2 water |
Factor | Treatment Combination | Replicate | ||
---|---|---|---|---|
A | B | I | II | |
− | − | A low, B low | 1.63 | 1.63 |
+ | − | A high, B low | 2.49 | 2.34 |
− | + | A low, B high | 2.67 | 2.33 |
+ | + | A high, B high | 1.95 | 1.46 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
A (Fan Location) | 1 | 0.00005 | 0.00005 | 0.00 | 0.976 |
B (Fan Direction) | 1 | 0.01280 | 0.01280 | 0.27 | 0.630 |
2-Way Interaction | 1 | 1.24820 | 1.24820 | 26.40 | 0.007 |
Error | 4 | 0.18910 | 0.04727 | ||
Total | 7 | 1.45015 |
Factor | Treatment Combination | Replicate (min) | Total (Min) | Average (min) | ||
---|---|---|---|---|---|---|
A | B | I | II | |||
− | − | A low, B low | 300 | 100 | 400 | 150 |
+ | − | A high, B low | 140 | 120 | 260 | 130 |
− | + | A low, B high | 120 | 120 | 240 | 120 |
+ | + | A high, B high | 120 | 100 | 220 | 110 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, X.; Yang, Y.; Lee, S.W.; Caballes, M.J.L.; Alamu, O.S. Cooling Performance Analysis of the Lab-Scale Hybrid Oyster Refrigeration System. Processes 2020, 8, 899. https://doi.org/10.3390/pr8080899
Qian X, Yang Y, Lee SW, Caballes MJL, Alamu OS. Cooling Performance Analysis of the Lab-Scale Hybrid Oyster Refrigeration System. Processes. 2020; 8(8):899. https://doi.org/10.3390/pr8080899
Chicago/Turabian StyleQian, Xuejun, Yulai Yang, Seong W. Lee, Marc J. L. Caballes, and Oludayo S. Alamu. 2020. "Cooling Performance Analysis of the Lab-Scale Hybrid Oyster Refrigeration System" Processes 8, no. 8: 899. https://doi.org/10.3390/pr8080899
APA StyleQian, X., Yang, Y., Lee, S. W., Caballes, M. J. L., & Alamu, O. S. (2020). Cooling Performance Analysis of the Lab-Scale Hybrid Oyster Refrigeration System. Processes, 8(8), 899. https://doi.org/10.3390/pr8080899