# Characterization of Pyrolysis Products and Kinetic Analysis of Waste Jute Stick Biomass

^{*}

## Abstract

**:**

_{m}peaks and highest decomposition rate of the jute stick biomass. Both the highest point of TG and the lowest point of Derivative thermogravimetry (DTG) curves were shifted towards the maximum temperature. However, the heating rates also influenced the products of pyrolysis yield, including bio-char, bio-oil and the non-condensable gases. The average values of activation energy were found to be 139.21 and 135.99 kJ/mol based on FWO and KAS models, respectively.

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Materials

#### 2.2. Thermogravimetric Analysis

#### 2.3. Experimental Apparatus for Jute Stick Fixed-Bed Pyrolysis

#### 2.4. Pyrolysis Procedure

#### 2.5. Kinetic Study

_{i}= initial mass of the sample, m

_{a}= actual mass and m

_{f}= mass after pyrolysis. The rate constant k was expressed by Arrhenius equation:

^{−1}) and T = absolute temperature (K).

#### 2.6. Model-Free Methods

#### 2.6.1. Flynn–Wall–Ozawa (FWO) Method

_{α}) from a scheme of natural logarithm of heating rates, ln β

_{i}, versus 1/T

_{αi}and can be expressed as following:

_{αi}= the linear relation with a given value of conversion at various heating rates and α = given value of conversion, respectively. The activation energy E

_{α}was estimated from the slope −1.052E

_{α}/R.

#### 2.6.2. Kissinger–Akahira–Sunose (KAS) Method

_{i}/T

^{2}

_{αi}) vs. 1/Tαi for a given value of conversion, α, where slope = −E

_{α}/R.

## 3. Results and Discussion

#### 3.1. Proximate and Ultimate Analysis of Jute Stick

#### 3.2. Thermogravimetric Analysis of Jute Stick

_{m}peaks. When heating rate raises, both the initial and critical temperature of operative and inactive pyrolysis section increased (Figure 3). The maximum points of TGA and minimum points of DTG curves were shifted to the higher temperature due to the reason that, the interpretation is based on the limitations of heat transfer. Throughout the analysis, a higher amount of instantaneous thermal energy was supplied into the process, at lowest heating rate. However, at this stage, a longer time may be needed for the purge gas to reach equilibrium state. A higher heating rate has a short reaction period at the similar time and the similar temperature region. Therefore, the required temperature was found to be higher for the sample to decompose and resulted the maximum rate curve to move towards the higher temperature.

#### 3.3. The Yield of Pyrolysis Products

#### 3.3.1. Influence of Heating Rate on Bio-Oil Properties

#### 3.3.2. Effect of Heating Rate on Non-Condensable Gas

_{2}, CH

_{4}, CO

_{2}, CO. Overall, an increasing trend was observed for the concentration of CO

_{2}, CO and CH

_{4}, whereas the H

_{2}concentration followed a lightly decreasing trend under varying condition of the heating rates. A similar increasing trend was observed by Yang et al. [50,51] for concentration of CO and CO

_{2}, because CO and CO

_{2}remained dominant throughout the initial period of pyrolysis, and in the decomposition of hemicellulose and cellulose.

#### 3.3.3. Influence of Heating Rate on Bio-Char

#### 3.4. Kinetic Study of Jute Stick

^{2}(correlation coefficients) were higher than 0.9600 for all lines (Table 4). From Figure 6 and Figure 7 and Table 4 we can summarize that; the model free methods are dependent regarding in deciding the activation energy. For the several pyrolysis heating rates a straight line could be obtained from the various conversions. In addition, from the gradient of regression lines, the activation energy could be anticipated (Figure 7).

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Uddin, M.N.; Techato, K.; Taweekun, J.; Rahman, M.M.; Rasul, M.G.; Mahlia, T.M.I.; Ashrafur, S.M. An overview of recent developments in biomass pyrolysis technologies. Energies
**2018**, 11, 3115. [Google Scholar] [CrossRef] [Green Version] - Kraan, S. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig. Adapt. Strateg. Glob. Chang.
**2013**, 18, 27–46. [Google Scholar] [CrossRef] - Ceylan, S.; Topcu, Y.; Ceylan, Z. Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis. Bioresour. Technol.
**2014**, 171, 193–198. [Google Scholar] [CrossRef] [PubMed] - Uzun, B.B.; Yaman, E. Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis. J. Energy Inst.
**2017**, 90, 825–837. [Google Scholar] [CrossRef] - Cardoso, C.R.; Miranda, M.R.; Santos, K.G.; Ataíde, C.H. Determination of kinetic parameters and analytical pyrolysis of tobacco waste and sorghum bagasse. J. Anal. Appl. Pyrolysis
**2011**, 92, 392–400. [Google Scholar] [CrossRef] - Asadullah, M.; Rahman, M.A.; Ali, M.M.; Motin, M.A.; Sultan, M.B.; Alam, M.R.; Rahman, M.S. Jute stick pyrolysis for bio-oil production in fluidized bed reactor. Bioresour. Technol.
**2008**, 99, 44–50. [Google Scholar] [CrossRef] - Fan, X.; Zhu, J.L.; Zheng, A.L.; Wei, X.Y.; Zhao, Y.P.; Cao, J.P.; You, C.Y. Rapid characterization of heteroatomic molecules in a bio-oil from pyrolysis of rice husk using atmospheric solids analysis probe mass spectrometry. J. Anal. Appl. Pyrolysis
**2015**, 115, 16–23. [Google Scholar] [CrossRef] - Rulkens, W. Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options. Energy Fuels
**2008**, 22, 9–15. [Google Scholar] [CrossRef] - Slopiecka, K.; Bartocci, P.; Fantozzi, F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy
**2012**, 97, 491–497. [Google Scholar] [CrossRef] - Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy
**2012**, 38, 68–94. [Google Scholar] [CrossRef] - Auta, M.; Ern, L.M.; Hameed, B.H. Fixed-bed catalytic and non-catalytic empty fruit bunch biomass pyrolysis. J. Anal. Appl. Pyrolysis
**2014**, 107, 67–72. [Google Scholar] [CrossRef] - Colantoni, S.; Della Gatta, S.; De Prosperis, R.; Russo, A.; Fantozzi, F.; Desideri, U. Gas turbines fired with biomass pyrolysis syngas: Analysis of the overheating of hot gas path components. J. Eng. Gas Turbines Power
**2010**, 132. [Google Scholar] [CrossRef] - Mishra, G.; Kumar, J.; Bhaskar, T. Kinetic studies on the pyrolysis of pinewood. Bioresour. Technol.
**2015**, 182, 282–288. [Google Scholar] [CrossRef] [PubMed] - Zhou, L.; Zhang, G.; Zhang, L.; Klinger, D.; Meyer, B. Effects of Contact Conditions between Particles and Volatiles during Co-Pyrolysis of Brown Coal and Wheat Straw in a Thermogravimetric Analyzer and Fixed-Bed Reactor. Processes
**2019**, 7, 179. [Google Scholar] [CrossRef] [Green Version] - Huang, X.; Cao, J.P.; Zhao, X.Y.; Wang, J.X.; Fan, X.; Zhao, Y.P.; Wei, X.Y. Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel
**2016**, 169, 93–98. [Google Scholar] [CrossRef] - Szufa, S.; Wielgosiński, G.; Piersa, P.; Czerwińska, J.; Dzikuć, M.; Adrian, Ł.; Lewandowska, W.; Marczak, M. Torrefaction of straw from oats and maize for use as a fuel and additive to organic fertilizers—TGA analysis, kinetics as products for agricultural purposes. Energies
**2020**, 13, 2064. [Google Scholar] [CrossRef] [Green Version] - Ceylan, S.; Topçu, Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour. Technol.
**2014**, 156, 182–188. [Google Scholar] [CrossRef] - Lopez-Velazquez, M.A.; Santes, V.; Balmaseda, J.; Torres-Garcia, E. Pyrolysis of orange waste: A thermo-kinetic study. J. Anal. Appl. Pyrolysis
**2013**, 99, 170–177. [Google Scholar] [CrossRef] - Sarkar, J.K.; Wang, Q. Different Pyrolysis Process Conditions of South Asian Waste Coconut Shell and Characterization of Gas, Bio-Char, and Bio-Oil. Energies
**2020**, 13, 1970. [Google Scholar] [CrossRef] - Dhyani, V.; Kumar, J.; Bhaskar, T. Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresour. Technol.
**2017**, 245, 1122–1129. [Google Scholar] [CrossRef] - Islam, M.N.; Joardder, M.U.H.; Hoque, S.M.; Uddin, M. A comparative study on pyrolysis for liquid oil from different biomass solid wastes. Procedia Eng.
**2013**, 56, 643–649. [Google Scholar] [CrossRef] - Gai, C.; Dong, Y.; Zhang, T. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresour. Technol.
**2013**, 127, 298–305. [Google Scholar] [CrossRef] [PubMed] - Kumar, A.; Wang, L.; Dzenis, Y.A.; Jones, D.D.; Hanna, M.A. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass Bioenergy
**2008**, 32, 460–467. [Google Scholar] [CrossRef] - Amutio, M.; Lopez, G.; Aguado, R.; Artetxe, M.; Bilbao, J.; Olazar, M. Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel
**2012**, 95, 305–311. [Google Scholar] [CrossRef] - Damartzis, T.; Vamvuka, D.; Sfakiotakis, S.; Zabaniotou, A. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour. Technol.
**2011**, 102, 6230–6238. [Google Scholar] [CrossRef] - Mythili, R.; Venkatachalam, P.; Subramanian, P.; Uma, D. Characterization of bioresidues for biooil production through pyrolysis. Bioresour. Technol.
**2013**, 138, 71–78. [Google Scholar] [CrossRef] - Sait, H.H.; Hussain, A.; Salema, A.A.; Ani, F.N. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour. Technol.
**2012**, 118, 382–389. [Google Scholar] [CrossRef] - Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta
**2011**, 520, 1–19. [Google Scholar] [CrossRef] - Flynn, J.H.; Wall, L.A. A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B Polym. Lett.
**1966**, 4, 323–328. [Google Scholar] [CrossRef] - Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn.
**1965**, 38, 1881–1886. [Google Scholar] [CrossRef] [Green Version] - Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem.
**1957**, 29, 1702–1706. [Google Scholar] [CrossRef] - Akahira, T.; Sunose, T. Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba Inst. Technol. (Sci. Technol.)
**1971**, 16, 22–31. [Google Scholar] - Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev.
**2016**, 57, 1126–1140. [Google Scholar] [CrossRef] - Ceranic, M.; Kosanic, T.; Djuranovic, D.; Kaludjerovic, Z.; Djuric, S.; Gojkovic, P.; Bozickovic, R. Experimental investigation of corn cob pyrolysis. J. Renew. Sustain. Energy
**2016**, 8, 063102. [Google Scholar] [CrossRef] - Chen, Q.; Endo, T.; Wang, Q. Characterization of bamboo after ionic liquid-H
_{2}O pretreatment for the pyrolysis process. BioResources**2015**, 10, 2797–2808. [Google Scholar] [CrossRef] [Green Version] - Suriapparao, D.V.; Pradeep, N.; Vinu, R. Bio-oil production from Prosopis juliflora via microwave pyrolysis. Energy Fuels
**2015**, 29, 2571–2581. [Google Scholar] [CrossRef] - Wang, Q.; Sarkar, J. Pyrolysis behaviors of waste coconut shell and husk biomasses. Int. J. Energy Prod. Manag.
**2018**, 3, 34–43. [Google Scholar] [CrossRef] - Lv, G.; Wu, S. Analytical pyrolysis studies of corn stalk and its three main components by TG-MS and Py-GC/MS. J. Anal. Appl. Pyrolysis
**2012**, 97, 11–18. [Google Scholar] [CrossRef] - Gašparovič, L.; Koreňová, Z.; Jelemenský, Ľ. Kinetic study of wood chips decomposition by TGA. Chem. Pap.
**2010**, 64, 174–181. [Google Scholar] [CrossRef] - Mishra, R.K.; Mohanty, K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour. Technol.
**2018**, 251, 63–74. [Google Scholar] [CrossRef] - Strezov, V.; Moghtaderi, B.; Lucas, J. Thermal study of decomposition of selected biomass samples. J. Therm. Anal. Calorim.
**2003**, 72, 1041–1048. [Google Scholar] [CrossRef] - Mastral, A.M.; Murillo, R.; Callen, M.S.; Garcia, T.; Snape, C.E. Influence of process variables on oils from tire pyrolysis and hydropyrolysis in a swept fixed bed reactor. Energy Fuels
**2000**, 14, 739–744. [Google Scholar] [CrossRef] - Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.; Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod.
**2018**, 174, 977–987. [Google Scholar] [CrossRef] - Angın, D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour. Technol.
**2013**, 128, 593–597. [Google Scholar] [CrossRef] - Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Su, S.; Wang, J. Evaluation of the porous structure development of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and heating rate. J. Anal. Appl. Pyrolysis
**2012**, 98, 177–183. [Google Scholar] [CrossRef] - Oyedun, A.O.; Gebreegziabher, T.; Hui, C.W. Mechanism and modelling of bamboo pyrolysis. Fuel Process. Technol.
**2013**, 106, 595–604. [Google Scholar] [CrossRef] - Gerçel, H.F. Bio-oil production from Onopordum acanthium L. by slow pyrolysis. J. Anal. Appl. Pyrolysis
**2011**, 92, 233–238. [Google Scholar] [CrossRef] - Salehi, E.; Abedi, J.; Harding, T. Bio-oil from sawdust: Effect of operating parameters on the yield and quality of pyrolysis products. Energy Fuels.
**2011**, 25, 4145–4154. [Google Scholar] [CrossRef] - Acikgoz, C.; Kockar, O.M. Characterization of slow pyrolysis oil obtained from linseed (Linum usitatissimum L.). J. Anal. Appl. Pyrolysis
**2009**, 85, 151–154. [Google Scholar] [CrossRef] - Yang, H.; Huan, B.; Chen, Y.; Gao, Y.; Li, J.; Chen, H. Biomass-based pyrolytic polygeneration system for bamboo industry waste: Evolution of the char structure and the pyrolysis mechanism. Energy Fuels
**2016**, 30, 6430–6439. [Google Scholar] [CrossRef] - Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel
**2007**, 86, 1781–1788. [Google Scholar] [CrossRef] - Kaur, R.; Gera, P.; Jha, M.K.; Bhaskar, T. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour. Technol.
**2018**, 250, 422–428. [Google Scholar] [CrossRef] [PubMed]

Ultimate Analysis (wt%) | Proximate Analysis (wt%) | ||
---|---|---|---|

Carbon | 43.41 | moisture content | 8.59 |

Hydrogen | 5.78 | Volatile matter | 86.64 |

Nitrogen | 7.81 | fixed carbon | 3.59 |

Oxygen | 43.00 | ash | 1.18 |

Sulfur | ND | ||

HHV (MJ/kg) | 15.26 |

Heating Rate (°C/min) | Ultimate Analysis (%) | Water Content (%) | |||
---|---|---|---|---|---|

H | C | O | N | ||

10 | 5.65 | 56.32 | 37.73 | 0.30 | 33.59 |

20 | 5.70 | 54.39 | 39.61 | 0.31 | 32.95 |

30 | 5.66 | 54.16 | 39.86 | 0.31 | 31.12 |

40 | 5.72 | 52.97 | 41.01 | 0.30 | 30.71 |

**Table 3.**Proximate, ultimate and higher heating value (HHV) of jute-stick bio-char at several heating rate.

Heating Rate | Ultimate Analysis (%) | Proximate Analysis (%) | HHV (MJ/kg) | |||||
---|---|---|---|---|---|---|---|---|

C | H | O | N | Fixed Carbon | Volatiles | Ash | ||

10 | 85.46 | 0.81 | 13.29 | 0.44 | 84.32 | 11.63 | 4.06 | 27.66 |

20 | 84.94 | 1.09 | 13.48 | 0.49 | 85.03 | 10.33 | 4.64 | 27.86 |

30 | 84.26 | 1.11 | 14.16 | 0.47 | 84.87 | 9.61 | 5.52 | 27.54 |

40 | 84.08 | 1.45 | 13.89 | 0.58 | 85.32 | 8.84 | 5.84 | 28.01 |

**Table 4.**The fitted equations, correlation coefficients (R

^{2}) and activation energies (E, kj/mol) obtained by the FOW method and KAS method.

α | FWO Method | KAS Method | ||||
---|---|---|---|---|---|---|

Fitted Equation | R^{2} | Eα | Fitted Equation | R^{2} | Eα | |

0.1 | y = −15.17x + 29.78 | 0.97 | 119.90 | y = −14.04x + 15.10 | 0.97 | 116.70 |

0.2 | y = −16.41x + 30.80 | 0.98 | 129.67 | y = −15.22x + 16.03 | 0.98 | 126.57 |

0.3 | y = −17.68x + 31.96 | 0.98 | 139.73 | y = −16.46x + 17.13 | 0.98 | 136.82 |

0.4 | y = −18.15x + 31.88 | 0.98 | 143.42 | y = −16.90x + 16.99 | 0.98 | 140.41 |

0.5 | y = −18.63x + 32.00 | 0.99 | 147.25 | y = −17.35x + 17.07 | 0.99 | 144.21 |

0.6 | y = −18.74x + 31.70 | 0.99 | 148.12 | y = −17.44x + 16.73 | 0.99 | 144.95 |

0.7 | y = −18.33x + 30.71 | 0.99 | 144.88 | y = −17.01x + 15.72 | 0.99 | 141.40 |

0.8 | y = −17.80x + 29.55 | 0.99 | 140.71 | y = −16.46x + 14.53 | 0.99 | 136.86 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sarkar, J.K.; Wang, Q.
Characterization of Pyrolysis Products and Kinetic Analysis of Waste Jute Stick Biomass. *Processes* **2020**, *8*, 837.
https://doi.org/10.3390/pr8070837

**AMA Style**

Sarkar JK, Wang Q.
Characterization of Pyrolysis Products and Kinetic Analysis of Waste Jute Stick Biomass. *Processes*. 2020; 8(7):837.
https://doi.org/10.3390/pr8070837

**Chicago/Turabian Style**

Sarkar, Jayanto Kumar, and Qingyue Wang.
2020. "Characterization of Pyrolysis Products and Kinetic Analysis of Waste Jute Stick Biomass" *Processes* 8, no. 7: 837.
https://doi.org/10.3390/pr8070837