# Computational Approaches for Studying Slag–Matte Interactions in the Flash Smelting Furnace (FSF) Settler

^{*}

## Abstract

**:**

## 1. Introduction

_{2}gas is also formed. The gas exits through the uptake shaft carrying dust that is collected in gas cleaning, and the gas is then used in sulfuric acid production. In addition, the thermal energy of the gas is recovered and used for heating input gases and possibly for the local community. The collected dust is then circulated back to the process [4].

^{®}Fluent 19.2 and EDEM

^{®}2019.1 with EDEM-Fluent coupling v2.2 provided by DEM Solutions Ltd., Edinburgh, Scotland, UK [24].

## 2. Methods

#### 2.1. Population Balance Model

#### 2.2. Coalescence Model

#### 2.3. Coupled CFD–DEM

#### 2.4. Geometry Dimensions and Materials

## 3. Results

#### 3.1. CFD Simulation

#### 3.2. Coupled CFD–DEM Simulation

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Arslan, C.; Arslan, F. Recovery of copper, cobalt, and zinc from copper smelter and converter slags. Hydrometallurgy
**2002**, 67, 1–7. [Google Scholar] [CrossRef] - Sarfo, P.; Das, A.; Wyss, G.; Young, C. Recovery of metal values from copper slag and reuse of residual secondary slag. Waste Manag.
**2017**, 70, 272–281. [Google Scholar] [CrossRef] [PubMed] - Kambham, K.; Sangameswaran, S.; Datar, S.R.; Kura, B. Copper slag: Optimization of productivity and consumption for cleaner production in dry abrasive blasting. J. Clean. Prod.
**2007**, 15, 2007. [Google Scholar] [CrossRef] - Kojo, I.V.; Storch, H. Copper production with Outokumpu Flash Smelting: An Update. In International Symposium on Sulfide Smelting, Proceedings of the Sohn International Symposium: Advanced Processing of Metals and Materials, San Diego, California, 27–31 August 2006; TMS: Warrendale, PA, USA, 2006; Volume 8. [Google Scholar]
- Xia, J.L.; Ahokainen, T.; Kankaanpää, T.; Järvi, J. Numerical Modeling of Flow and Heat Transfer in the Settler of a Copper Flash Smelting. In Proceedings of the 6th International Symposium on Heat Transfer, Beijing, China, 15–19 June 2004. [Google Scholar]
- Xia, J.L.; Ahokainen, T.; Kankaanpää, T.; Järvi, J.; Taskinen, P. Numerical modelling of copper droplet setting behavior in the settler of a flash smelting furnace. In Proceedings of the European Metallurgical Conference, EMC 2005, Dresden, Germany, 18–21 September 2005. [Google Scholar]
- Xia, J.L.; Ahokainen, T.; Kankaanpää, T.; Järvi, J.; Taskinen, P. Flow and heat transfer performance of slag and matte in the settler of a copper flash smelting furnace. Steel Res. Int.
**2007**, 78, 155–159. [Google Scholar] [CrossRef] - Zhou, J.; Zhou, J.; Chen, Z.; Mao, Y. Influence Analysis of Air Flow Momentum on Concentrate Dispersion and Combustion in Copper Flash Smelting Furnace by CFD Simulation. JOM
**2014**, 66, 1629–1637. [Google Scholar] [CrossRef] - Jylhä, J.-P.; Jokilaakso, A. CFD-DEM modelling of matte droplet behaviour in a flash smelting settler. In Proceedings of the 58th Conference of Metallurgists Hosting Copper 2019, Vancouver, BC, Canada, 18–21 August 2019. [Google Scholar]
- Khan, N.A.; Jokilaakso, A. Dynamic Modelling of Molten Slag-Matte Interactions in an Industrial Flash Smelting Furnace Settler. In Proceedings of the Extraction 2018, Ottawa, ON, Canada, 26–29 August 2018. [Google Scholar]
- Niemi, T. Particle Size Distribution in CFD Simulation of Gas-Particle Flows; Aalto University: Espoo, Finland, 2012. [Google Scholar]
- Warczok, A.; Utigard, A.T. Settling of copper drops in molten slags. Met. Materi. Trans. B
**1995**, 26, 1165–1173. [Google Scholar] [CrossRef] - Yu, D.; Mambakkam, V.; Rivera, H.A.; Li, D.; Chattopadhyay, K. Spent Potlining (SPL): A myriad of opportunities. In Aluminium International Today; Quartz Business Media Ltd.: Redhill, Surrey, UK, 2015. [Google Scholar]
- Elliott, F.J.; Mounier, M. Surface and Interfacial Tensions in Copper Matte-Slag Systems, 1200 °C. Can. J. Met. Mat. Sci.
**2013**, 21, 415–428. [Google Scholar] [CrossRef] - Phelan, D. The Modelling of Matte Droplet Coalescence in the Vanykov Process. Master’s thesis, University of Wollongong, Wollongong, Australia, 1999. [Google Scholar]
- Cheng, X.; Cui, Z.; Contreras, L.; Chen, M.; Nguyen, A.; Zhao, B. Introduction of Matte Droplets in Copper Smelting Slag. In Proceedings of the 8th International Symposium on High-Temperature Metallurgical Processing, Gewerbestrasse, Switzerland, 9 February 2017; pp. 385–394. [Google Scholar]
- Iwamasa, P.K.; Fruehan, R.J. Separation of Metal Droplets from Slag. ISIJ Int.
**1996**, 36, 1319–1327. [Google Scholar] [CrossRef][Green Version] - Miettinen, E. Thermal Conductivity and Characteristics of Copper Flash Smelting Flue Dust Accretions. Ph.D. Thesis, Helsinki University of Technology, Espoo, Finland, 2008. [Google Scholar]
- De Wilde, E.; Bellemans, I.; Campforts, M.; Guo, M.; Blanpain, B.; Moelans, N.; Verbeken, K. Investigation of High-Temperature Slag/Copper/Spinel Interactions. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci.
**2016**, 47, 3421–3434. [Google Scholar] [CrossRef][Green Version] - Jiménez, F.; Ríos, G.; Martinez, J.; Fernández-Caliani, J. Speciation of copper in flash, converter and slag-cleaning furnace slags. In Proceedings of the Copper 2013, Santiago, Chile, 1–4 December 2013. [Google Scholar]
- De Wilde, E.; Bellemans, I.; Zheng, L.; Campforts, M.; Guo, M.; Blanpain, B.; Moelans, N.; Verbeken, K. Origin and sedimentation of Cu-droplets sticking to spinel solids in pyrometallurgical slags. Mater. Sci. Tech.
**2016**, 32, 1911–1924. [Google Scholar] [CrossRef][Green Version] - Bellemans, I.; De Wilde, E.; Moelans, N.; Verbeken, K. Metal losses in pyrometallurgical operations—A review. Adv. Colloid Interface Sci.
**2018**, 255, 47–63. [Google Scholar] [CrossRef] [PubMed] - Taskinen, P.; Jokilaakso, A.; Lindberg, D.; Xia, J. Modelling copper smelting–the flash smelting plant, process and equipment. Min. Proc. Ext. Met.
**2019**. [Google Scholar] [CrossRef][Green Version] - DEM Solutions Ltd. EDEM 2019.1 User Guide; DEM Solutions Ltd.: Edinburgh, UK, 2019. [Google Scholar]
- Fagerlund, O.K.; Jalkanen, H. Microscale Simulation of Settler Processes in Copper Matte Smelting. Met. Materi. Trans. B
**2000**, 31, 439–451. [Google Scholar] - De Wilde, E. Methodology Development and Experimental Determination of the Origin of Sticking Copper Droplets in Pyrometallurgical Slags. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2015. [Google Scholar]
- Luo, H.; Svendsen, H.F. Theoretical model for drop and bubble breakup in turbulent dispersions. Am. Inst. Chem. Eng. J.
**1996**, 42, 1225–1233. [Google Scholar] [CrossRef] - Zhou, J.; Chen, Z.; Zhou, P.; Yu, J.; Liu, A. Numerical simulation of flow characteristics in settler of flash furnace. Trans. Nonf. Met. Soc. China
**2012**, 22, 1517–1525. [Google Scholar] [CrossRef] - Ping, Z.; Ping, J.Y.; Rong, H.C.; Chi, M. Settling mechanism and influencing factors on matte droplets in settler slag of copper flash smelting furnace. Chin. J. Nonf. Met.
**2006**, 16, 2032–2037. [Google Scholar] - Kamp, A.M.; Chesters, A.K.; Colin, C.; Fabre, J. Bubble coalescence in turbulent flows: A mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow. Int. J. Multip. Flow
**2001**, 27, 1363–1396. [Google Scholar] [CrossRef] - Wang, T.; Wang, J.; Jin, Y. Theoretical prediction of flow regime transition in bubble columns by the population balance model. Chem. Eng. Sci.
**2005**, 60, 6199–6209. [Google Scholar] [CrossRef] - Davenport, W.G.; Partelpoeg, E.H. Flash Smelting: Analysis, Control and Optimization, 1st ed.; Pergamon Press: New York, NJ, USA, 1987; pp. 22–28. [Google Scholar]
- Jun, Z.; Zhuo, C. Smelting Mechanism in the Reaction Shaft of a Commercial Copper Flash Furnace. In Proceedings of the Extraction 2018, Ottawa, ON, Canada, 26–29 August 2018. [Google Scholar]
- Guntoro, P.I.; Jokilaakso, A.; Hellstén, N.; Taskinen, P. Copper matte—Slag reaction sequences and separation processes in matte smelting. J. Min. Metall. B
**2018**, 54, 301–311. [Google Scholar] [CrossRef][Green Version] - Wan, X.; Shen, L.; Jokilaakso, A.; Eriç, H.; Taskinen, P. Experimental approach to matte-slag reactions in the flash smelting process. Min. Proc. Ext. Met. Rev
**2020**, in press. [Google Scholar] [CrossRef] - Wan, X.; Fellman, J.; Jokilaakso, A.; Klemettinen, L.; Marjakoski, M. Behavior of waste printed circuit board (WPCB) materials in the copper matte smelting process. Metals
**2018**, 8, 887. [Google Scholar] [CrossRef][Green Version]

**Figure 2.**Illustration of the computational fluid dynamics–discrete element method (CFD–DEM) calculation process.

**Figure 3.**Geometry and mesh of the CFD model for CFD–DEM simulation. Inlet (blue) on the top and tapping hole (red) on the right side.

**Figure 8.**Droplet sizes in the slag layer at 60 s. The 50 mm settling distance is marked with a line.

**Figure 10.**A comparison of the CFD and CFD–DEM results for matte settling in the small-scale settler model, revealing a similar funneling flow pattern at 15, 17, 18, and 20 s. Upper row: CFD, lower row: CFD–DEM.

Parameter | Slag | Matte |
---|---|---|

Feed rate (kg/s) | 0.022 | 0.0086 |

ρ (kg/m^{3}) | 3150 | 5100 |

Viscosity (kg/ms) | 0.45 | - |

Mean diameter (µm) | - | 500 |

Standard deviation | - | 0.1 |

Matte Droplets Size (μm) | Mass % | Volume Fraction in Mixture |
---|---|---|

500 | 2 | 0.006 |

300 | 67 | 0.201 |

150 | 18 | 0.054 |

100 | 4 | 0.012 |

75 | 1 | 0.003 |

60 | 2 | 0.006 |

50 | 6 | 0.018 |

**Table 3.**Results for Luo [27] coalescence model.

Droplet Size (µm) | Volume Fraction |
---|---|

1300 | |

900 | |

500 |

| | |

Time (Sec.) | |

70 | |

75 | |

80 |

Time (sec.) | |

70 | |

75 | |

80 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jylhä, J.-P.; Khan, N.A.; Jokilaakso, A.
Computational Approaches for Studying Slag–Matte Interactions in the Flash Smelting Furnace (FSF) Settler. *Processes* **2020**, *8*, 485.
https://doi.org/10.3390/pr8040485

**AMA Style**

Jylhä J-P, Khan NA, Jokilaakso A.
Computational Approaches for Studying Slag–Matte Interactions in the Flash Smelting Furnace (FSF) Settler. *Processes*. 2020; 8(4):485.
https://doi.org/10.3390/pr8040485

**Chicago/Turabian Style**

Jylhä, Jani-Petteri, Nadir Ali Khan, and Ari Jokilaakso.
2020. "Computational Approaches for Studying Slag–Matte Interactions in the Flash Smelting Furnace (FSF) Settler" *Processes* 8, no. 4: 485.
https://doi.org/10.3390/pr8040485