Biorefining Oat Husks into High-Quality Lignin and Enzymatically Digestible Cellulose with Acid-Catalyzed Ethanol Organosolv Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate
2.2. Organosolv Pretreatment
2.3. Enzymatic Hydrolysis
2.4. Analytical Methods
2.4.1. Moisture Content
2.4.2. Extractives, Lignin, Polysaccharides, Protein, and Ash
2.4.3. High-Performance Liquid Chromatography (HPLC)
2.5. Calculations
2.6. Statistical Analysis
3. Results
3.1. Effect of Temperature
3.2. Effect of Retention Time
3.3. Effect of Solid-To-Liquid Ratio
3.4. Digestibility of the Glucan-Rich Fraction
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Statista. Available online: http://www.statista.com/ (accessed on 1 March 2020).
- Taherzadeh, M.J. Bioengineering to tackle environmental challenges, climate changes and resource recovery. Bioengineered 2019, 10, 698–699. [Google Scholar] [CrossRef] [Green Version]
- Sekar, R.; Shin, H.D.; DiChristina, T.J. Direct conversion of cellulose and hemicellulose to fermentable sugars by a microbially-driven Fenton reaction. Bioresour. Technol. 2016, 218, 1133–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.; Pathak, V.V.; Kothari, R.; Singh, R.P. Prospects for pretreatment methods of lignocellulosic waste biomass for biogas enhancement: Opportunities and challenges. Biofuels 2018, 9, 575–594. [Google Scholar] [CrossRef]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.u.; Zhang, R.; Liu, G.; Chen, C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017, 7, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Liu, J.; Chang, X.; Chen, D.; Xue, Y.; Liu, P.; Lin, H.; Han, S. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Sci. Technol. 2017, 160, 196–206. [Google Scholar] [CrossRef]
- Zhang, Z.; Harrison, M.D.; Rackemann, D.W.; Doherty, W.O.S.; O’Hara, I.M. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem. 2016, 18, 360–381. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.A.; Taherzadeh, M.J. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresour. Technol. 2020, 299, 122695. [Google Scholar] [CrossRef]
- Tian, D.; Hu, J.; Bao, J.; Chandra, R.P.; Saddler, J.N.; Lu, C. Lignin valorization: Lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnol. Biofuels 2017, 10, 192. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Yao, W.; Zhu, J. Biogas and CH4 Productivity by Co-Digesting Swine Manure with Three Crop Residues as an External Carbon Source. In 2010 Pittsburgh, PA, 20 June-23 June, 2010; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2010; p. 1. [Google Scholar]
- Oliveira, L.A.; Porto, A.L.F.; Tambourgi, E.B. Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes. Bioresour. Technol. 2006, 97, 862–867. [Google Scholar] [CrossRef]
- Cortivo, P.R.D.; Hickert, L.R.; Hector, R.; Ayub, M.A.Z. Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments. Ind. Crop Prod. 2018, 113, 10–18. [Google Scholar] [CrossRef]
- Baibakova, O.V.; Skiba, E.A.; Budaeva, V.V.; Sakovich, G.V. Preparing bioethanol from oat hulls pretreated with a dilute nitric acid: Scaling of the production process on a pilot plant. Catal. Ind. 2017, 9, 257–263. [Google Scholar] [CrossRef]
- Kashcheyeva, E.I.; Gismatulina, Y.A.; Budaeva, V.V. Pretreatments of non-woody cellulosic feedstocks for bacterial cellulose synthesis. Polymers 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Kashcheyeva, E.I.; Gladysheva, E.K.; Skiba, E.A.; Budaeva, V.V. A study of properties and enzymatic hydrolysis of bacterial cellulose. Cellulose 2019, 26, 2255–2265. [Google Scholar] [CrossRef]
- Skiba, E.A.; Budaeva, V.V.; Ovchinnikova, E.V.; Gladysheva, E.K.; Kashcheyeva, E.I.; Pavlov, I.N.; Sakovich, G.V. A technology for pilot production of bacterial cellulose from oat hulls. Chem. Eng. J. 2020, 383, 123128. [Google Scholar] [CrossRef]
- Oliveira, J.P.d.; Bruni, G.P.; Lima, K.O.; Halal, S.L.M.E.; Rosa, G.S.d.; Dias, A.R.G.; Zavareze, E.d.R. Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chem. 2017, 221, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Merijs-Meri, R.; Zicans, J.; Ivanova, T.; Bochkov, I.; Varkale, M.; Franciszczak, P.; Bledzki, A.K.; Danilovas, P.P.; Gravitis, J.; Rubenis, K.; et al. Development and characterization of grain husks derived lignocellulose filler containing polypropylene composites. Polym. Eng. Sci. 2019, 59, 2467–2473. [Google Scholar] [CrossRef]
- Demirel, F.; Germec, M.; Coban, H.B.; Turhan, I. Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition. Cellulose 2018, 25, 6377–6393. [Google Scholar] [CrossRef]
- Budaeva, V.V.; Skiba, E.A.; Baibakova, O.V.; Makarova, E.I.; Orlov, S.E.; Kukhlenko, A.A.; Udoratina, E.V.; Shcherbakova, T.P.; Kuchin, A.V.; Sakovich, G.V. Kinetics of the enzymatic hydrolysis of lignocellulosic materials at different concentrations of the substrate. Catal. Ind. 2016, 8, 81–87. [Google Scholar] [CrossRef]
- Makarova, E.I.; Budaeva, V.V.; Kukhlenko, A.A.; Orlov, S.E. Enzyme kinetics of cellulose hydrolysis of Miscanthus and oat hulls. 3 Biotech 2017, 7, 317. [Google Scholar] [CrossRef]
- Skiba, E.A.; Budaeva, V.V.; Baibakova, O.V.; Zolotukhin, V.N.; Sakovich, G.V. Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochem. Eng. J. 2017, 126, 118–125. [Google Scholar] [CrossRef]
- Skiba, E.A.; Mironova, G.F.; Kukhlenko, A.A.; Orlov, S.E. Enhancing the yield of bioethanol from the lignocellulose of oat hulls by optimizing the composition of the nutrient medium. Catal. Ind. 2018, 10, 257–262. [Google Scholar] [CrossRef]
- Skiba, E.A.; Baibakova, O.V.; Budaeva, V.V.; Pavlov, I.N.; Vasilishin, M.S.; Makarova, E.I.; Sakovich, G.V.; Ovchinnikova, E.V.; Banzaraktsaeva, S.P.; Vernikovskaya, N.V.; et al. Pilot technology of ethanol production from oat hulls for subsequent conversion to ethylene. Chem. Eng. J. 2017, 329, 178–186. [Google Scholar] [CrossRef]
- Karki, B.; Rijal, B.; Pryor, S.W. Simultaneous saccharification and fermentation of aqueous ammonia pretreated oat straw for ethanol production. Biol. Eng. Trans. 2011, 4, 157–166. [Google Scholar]
- Denisova, M.N.; Budaeva, V.V.; Pavlov, I.N. Pulps isolated from Miscanthus, oat hulls, and intermediate flax straw with sodium benzoate. Korean J. Chem. Eng. 2015, 32, 202–205. [Google Scholar] [CrossRef]
- Germec, M.; Demirel, F.; Tas, N.; Ozcan, A.; Yilmazer, C.; Onuk, Z.; Turhan, I. Microwave-assisted dilute acid pretreatment of different agricultural bioresources for fermentable sugar production. Cellulose 2017, 24, 4337–4353. [Google Scholar] [CrossRef]
- Debiagi, F.; Madeira, T.B.; Nixdorf, S.L.; Mali, S. Pretreatment efficiency using autoclave high-pressure steam and ultrasonication in sugar production from liquid hydrolysates and access to the residual solid fractions of wheat bran and oat hulls. Appl. Biochem. Biotechnol. 2020, 190, 166–181. [Google Scholar] [CrossRef]
- Soleimani, M.; Tabil, L.G.; Niu, C. Delignification of intact biomass and cellulosic coproduct of acid-catalyzed hydrolysis. AIChE J. 2015, 61, 1783–1791. [Google Scholar] [CrossRef]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting nitrogen into protein—Beyond 6.25 and Jones′ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; NREL: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; NREL: Golden, CO, USA, 2011. [Google Scholar]
- Ferreira, J.A.; Lennartsson, P.R.; Taherzadeh, M.J. Production of ethanol and biomass from thin stillage by Neurospora intermedia: A pilot study for process diversification. Eng. Life Sci. 2015, 15, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.A.; Lennartsson, P.R.; Taherzadeh, M.J. Production of ethanol and biomass from thin stillage using food-grade Zygomycetes and Ascomycetes filamentous fungi. Energies 2014, 7, 3872–3885. [Google Scholar] [CrossRef] [Green Version]
- Resch, M.G.; Baker, J.O.; Decker, S.R. Enzymatic Saccharification of Lignocellulosic Biomass; NREL: Golden, CO, USA, 2015. [Google Scholar]
- Matsakas, L.; Nitsos, C.; Raghavendran, V.; Yakimenko, O.; Persson, G.; Olsson, E.; Rova, U.; Olsson, L.; Christakopoulos, P. A novel hybrid organosolv: Steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnol. Biofuels 2018, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Matsakas, L.; Rova, U.; Christakopoulos, P. Heterotrophic cultivation of Auxenochlorella protothecoides using forest biomass as a feedstock for sustainable biodiesel production. Biotechnol. Biofuels 2018, 11, 169. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Gong, Z.; Wang, G.; Zhou, W.; Liu, Y.; Wang, X.; Zhao, M. Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility. Bioresour. Technol. 2018, 265, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.H.; Zhou, Q.; Li, M.F.; Bian, J.; Peng, F. Tetrahydro-2-furanmethanol pretreatment of eucalyptus to enhance cellulose enzymatic hydrolysis and to produce high-quality lignin. Bioresour. Technol. 2019, 280, 489–492. [Google Scholar] [CrossRef]
- Romaní, A.; Larramendi, A.; Yáñez, R.; Cancela, Á.; Sánchez, Á.; Teixeira, J.A.; Domingues, L. Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Ind. Crop Prod. 2019, 132, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Chotirotsukon, C.; Raita, M.; Champreda, V.; Laosiripojana, N. Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification. Ind. Crop Prod. 2019, 141, 111753. [Google Scholar] [CrossRef]
- Kalogiannis, K.G.; Matsakas, L.; Lappas, A.A.; Rova, U.; Christakopoulos, P. Aromatics from beechwood organosolv lignin through thermal and catalytic pyrolysis. Energies 2019, 12, 1606. [Google Scholar] [CrossRef] [Green Version]
- Matsakas, L.; Karnaouri, A.; Cwirzen, A.; Rova, U.; Christakopoulos, P. Formation of lignin nanoparticles by combining organosolv pretreatment of birch biomass and homogenization processes. Molecules 2018, 23, 1822. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.A.; Brancoli, P.; Agnihotri, S.; Bolton, K.; Taherzadeh, M.J. A review of integration strategies of lignocelluloses and other wastes in 1st generation bioethanol processes. Process Biochem. 2018, 75, 173–186. [Google Scholar] [CrossRef]
- Mitra, D.; Rasmussen, M.L.; Chand, P.; Chintareddy, V.R.; Yao, L.; Grewell, D.; Verkade, J.G.; Wang, T.; van Leeuwen, J. Value-added oil and animal feed production from corn-ethanol stillage using the oleaginous fungus Mucor circinelloides. Bioresour. Technol. 2012, 107, 368–375. [Google Scholar] [CrossRef]
- Lennartsson, P.R.; Erlandsson, P.; Taherzadeh, M.J. Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour. Technol. 2014, 165, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter (% g/g) 2 | Oat Husks | Glucan-Rich Fraction 1 | Lignin-Rich Fraction 1 |
---|---|---|---|
Moisture | 9.80 ± 0.00 | NA | NA |
Starch | 7.72 ± 0.73 | NA | NA |
Crude protein 3 | 3.32 ± 0.12 | NA | NA |
Water-soluble extractives | 5.8 | NA | NA |
Ethanol-soluble extractives | - | NA | NA |
Ash | 5.70 ± 0.50 | 6.90 ± 0.10 | 4.10 ± 1.10 |
Lignin | 21.59 ± 0.35 | 27.50 ± 2.70 | 74.90 ± 7.60 |
Glucan | 24.78 ± 0.88 | 74.50 ± 11.40 | 12.40 ± 1.70 |
Xylan | 19.47 ± 0.79 | NA | NA |
Arabinan | 1.94 ± 0.01 | NA | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chopda, R.; Ferreira, J.A.; Taherzadeh, M.J. Biorefining Oat Husks into High-Quality Lignin and Enzymatically Digestible Cellulose with Acid-Catalyzed Ethanol Organosolv Pretreatment. Processes 2020, 8, 435. https://doi.org/10.3390/pr8040435
Chopda R, Ferreira JA, Taherzadeh MJ. Biorefining Oat Husks into High-Quality Lignin and Enzymatically Digestible Cellulose with Acid-Catalyzed Ethanol Organosolv Pretreatment. Processes. 2020; 8(4):435. https://doi.org/10.3390/pr8040435
Chicago/Turabian StyleChopda, Rushab, Jorge A. Ferreira, and Mohammad J. Taherzadeh. 2020. "Biorefining Oat Husks into High-Quality Lignin and Enzymatically Digestible Cellulose with Acid-Catalyzed Ethanol Organosolv Pretreatment" Processes 8, no. 4: 435. https://doi.org/10.3390/pr8040435
APA StyleChopda, R., Ferreira, J. A., & Taherzadeh, M. J. (2020). Biorefining Oat Husks into High-Quality Lignin and Enzymatically Digestible Cellulose with Acid-Catalyzed Ethanol Organosolv Pretreatment. Processes, 8(4), 435. https://doi.org/10.3390/pr8040435