Influence of Selected Parameters and Different Methods of Implementing Vacuum Impregnation of Apple Tissue on Its Effectiveness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wet Vacuum Impregnation (WVI)
2.2. DryVacuum Impregnation (DVI)
2.3. Cyclic Wet Vacuum Impregnation
2.4. Control
2.5. Image Analysis
3. Results
3.1. Influence of Pressure Change Rate, Vacuum Maintenance Time, and Relaxation Time
3.2. Influence of Vacuum Impregnation Method
3.3. Influence of Solution Viscosity Coefficient
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shantz, T.; Versmold, R. Types of Vacuum Impregnation Processes. 2013. Available online: https://www.godfreywing.com/hs-fs/hub/107598/file-29521638-pdf/ (accessed on 15 January 2019).
- Datta, A.K. Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. J. Food Eng. 2007, 80, 80–95. [Google Scholar] [CrossRef]
- Datta, A.K. Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: Property data and representative results. J. Food Eng. 2007, 80, 96–110. [Google Scholar] [CrossRef]
- DeRossi, A.; De, T.; Severini, C. The Application of Vacuum Impregnation Techniques in Food Industry. In Scientific, Health and Social Aspects of the Food Industry; IntechOpen Ltd.: London, UK, 2012. [Google Scholar]
- Mebatsion, H.; Verboven, P.; Ho, Q.; Verlinden, B.; Nicolaï, B.M. Modelling fruit (micro)structures, why and how? Trends Food Sci. Technol. 2008, 19, 59–66. [Google Scholar] [CrossRef]
- Guillemin, A.; Guillon, F.; Degraeve, P.; Rondeau, C.; Devaux, M.-F.; Huber, F.; Badel, E.; Saurel, R.; Lahaye, M.; Rondeau-Mouro, C. Firming of fruit tissues by vacuum-infusion of pectin methylesterase: Visualisation of enzyme action. Food Chem. 2008, 109, 368–378. [Google Scholar] [CrossRef] [Green Version]
- Vargas, M.; Chiralt, A.; Albors, A.; González-Martínez, C. Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Boil. Technol. 2009, 51, 263–271. [Google Scholar] [CrossRef]
- Chiralt, A.; Fito, P.; Andres, A.; Barat, J.M.; Martinez-Monzo, J.; Martinez-Navarrete, N. Vacuum impregnation: A tool in minimally processing of foods. In Processing of Foods: Quality Optimization and Process Assessment; Oliveira, F.A.R., Oliveira, J.C., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 341–356. ISBN 13-978-0-8493-7905. [Google Scholar]
- Betoret, E.; Betoret, N.; Arilla, A.; Bennár, M.; Barrera, C.; Codoñer, P.; Fito, P. No invasive methodology to produce a probiotic low humid apple snack with potential effect against Helicobacter pylori. J. Food Eng. 2012, 110, 289–293. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A.; González-Martínez, C. Effect of solute on osmotic dehydration and rehydration of vacuum impregnated apple cylinders (cv. Granny Smith). J. Food Eng. 2008, 89, 49–56. [Google Scholar] [CrossRef]
- Barat, J.M.; Fito, P.; Chiralt, A. Modeling of simultaneous mass transfer and structural changes in fruit tissues. J. Food Eng. 2001, 49, 77–85. [Google Scholar] [CrossRef]
- Del Valle, J.; Aránguiz, V.; Diaz, L. Volumetric procedure to assess infiltration kinetics and porosity of fruits by applying a vacuum pulse. J. Food Eng. 1998, 38, 207–221. [Google Scholar] [CrossRef]
- Fito, P.; Pastor, R. Non-diffusional mechanisms occurring during vacuum osmotic dehydration. J. Food Eng. 1994, 21, 513–519. [Google Scholar] [CrossRef]
- Fito, P.; Andrés, A.; Chiralt, A.; Pardo, P. Coupling of hydrodynamic mechanism and deformation-relaxation phenomena during vacuum treatments in solid porous food-liquid systems. J. Food Eng. 1996, 27, 229–240. [Google Scholar] [CrossRef]
- Gras, M.L.; Fito, P.; Vidal, D.; Albors, A.; Chiralt, A.; Andres, A. The effect of vacuum impregnation upon some properties of vegetables. In Proceedings of the ICEF8 2001; Technomic Publishing Company: Lancanster, UK, 2001; ISBN 1566769515. [Google Scholar]
- Cruz, R.; Vieira, M.; Silva, C.L. The response of watercress (Nasturtium officinale) to vacuum impregnation: Effect of an antifreeze protein type I. J. Food Eng. 2009, 95, 339–345. [Google Scholar] [CrossRef]
- Perez-Cabrera, L.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Effectiveness of antibrowning agents applied by vacuum impregnation on minimally processed pear. LWT 2011, 44, 2273–2280. [Google Scholar] [CrossRef]
- Phoon, P.Y.; Galindo, F.G.; Vicente, A.A.; Dejmek, P. Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. J. Food Eng. 2008, 88, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Schulze, B.; Peth, S.; Hubbermann, E.M.; Schwarz, K. The influence of vacuum impregnation on the fortification of apple parenchyma with quercetin derivatives in combination with pore structures X-ray analysis. J. Food Eng. 2012, 109, 380–387. [Google Scholar] [CrossRef]
- Moreno, J.; Simpson, R.; Baeza, A.; Morales, J.; Muñoz, C.; Sastry, S.; Almonacid, S. Effect of ohmic heating and vacuum impregnation on the osmodehydration kinetics and microstructure of strawberries (cv. Camarosa). LWT 2012, 45, 148–154. [Google Scholar] [CrossRef]
- Martínez-Monzó, J.; Barat, J.M.; González-Martínez, C.; Chiralt, A.; Fito, P. Changes in thermal properties of apple due to vacuum impregnation. J. Food Eng. 2000, 43, 213–218. [Google Scholar] [CrossRef]
- Hironaka, K.; Kikuchi, M.; Koaze, H.; Sato, T.; Kojima, M.; Yamamoto, K.; Yasuda, K.; Mori, M.; Tsuda, S. Ascorbic acid enrichment of whole potato tuber by vacuum-impregnation. Food Chem. 2011, 127, 1114–1118. [Google Scholar] [CrossRef]
- Hofmeister, L.; Souza, J.; Laurindo, J. Use of dyed solutions to visualize different aspects of vacuum impregnation of Minas cheese. LWT 2005, 38, 379–386. [Google Scholar] [CrossRef]
- Barat, J.M.; Chiralt, A.; Fito, P.J. Effect of Osmotic Solution Concentration, Temperature and Vacuum Impregnation Pretreatment on Osmotic Dehydration Kinetics of Apple Slices. Food Sci. Technol. Int. 2001, 7, 451–456. [Google Scholar] [CrossRef]
- Guillemin, A.; Degraeve, P.; Noel, C.; Saurel, R. Influence of impregnation solution viscosity and osmolarity on solute uptake during vacuum impregnation of apple cubes (var. Granny Smith). J. Food Eng. 2008, 86, 475–483. [Google Scholar] [CrossRef]
- Mujica-Paz, H.; Valdez-Fragoso, A.; López-Malo, A.; Palou, E.; Welti-Chanes, J. Impregnation and osmotic dehydration of some fruits: Effect of the vacuum pressure and syrup concentration. J. Food Eng. 2003, 57, 305–314. [Google Scholar] [CrossRef]
- Barrera, C.; Betoret, N.; Betoret, E.; Fito, P. Calcium and temperature effect on structural damage of hot air dried apple slices: Nonlinear irreversible thermodynamic approach and rehydration analysis. J. Food Eng. 2016, 189, 106–114. [Google Scholar] [CrossRef]
- Carciofi, B.A.; Prat, M.; Laurindo, J.B. Dynamics of vacuum impregnation of apples: Experimental data and simulation results using a VOF model. J. Food Eng. 2012, 113, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Castagnini, J.M.; Betoret, N.; Betoret, E.; Fito, P. Vacuum impregnation and air drying temperature effect on individual anthocyanins and antiradical capacity of blueberry juice included into an apple matrix. LWT 2015, 64, 1289–1296. [Google Scholar] [CrossRef]
- Flores-Andrade, E.; Pineda, L.A.P.; Alarcón-Elvira, F.; Rascón-Díaz, M.P.; Pimentel, D.; Beristain, C. Effect of vacuum on the impregnation of Lactobacillus rhamnosus microcapsules in apple slices using double emulsion. J. Food Eng. 2017, 202, 18–24. [Google Scholar] [CrossRef]
- Petersen, B.; Egert, S.; Bosy-Westphal, A.; Müller, M.J.; Wolffram, S.; Hubbermann, E.M.; Rimbach, G.; Schwarz, K. Bioavailability of quercetin in humans and the influence of food matrix comparing quercetin capsules and different apple sources. Food Res. Int. 2016, 88, 159–165. [Google Scholar] [CrossRef]
- Panarese, V.; Dejmek, P.; Rocculi, P.; Galindo, F.G. Microscopic studies providing insight into the mechanisms of mass transfer in vacuum impregnation. Innov. Food Sci. Emerg. Technol. 2013, 18, 169–176. [Google Scholar] [CrossRef]
- Moreno, J.; Espinoza, C.; Simpson, R.; Petzold, G.; Nuñez, H.; Gianelli, M. Application of ohmic heating/vacuum impregnation treatments and air drying to develop an apple snack enriched in folic acid. Innov. Food Sci. Emerg. Technol. 2016, 33, 381–386. [Google Scholar] [CrossRef]
- Dellarosa, N.; Laghi, L.; Ragni, L.; Rosa, M.D.; Galante, A.; Ranieri, B.; Florio, T.M.; Alecci, M. Pulsed electric fields processing of apple tissue: Spatial distribution of electroporation by means of magnetic resonance imaging and computer vision system. Innov. Food Sci. Emerg. Technol. 2018, 47, 120–126. [Google Scholar] [CrossRef]
- Gras, M.; Vidal-Brotóns, N.; Betoret, A.; Chiralt, A.; Fito, P. The response of some vegetables to vacuum impregnation. Innov. Food Sci. Emerg. Technol. 2002, 3, 263–269. [Google Scholar] [CrossRef]
- Fito, P.; Chiralt, A.; Betoret, N.; Gras, M.; Chafer, M.; Martínez-Monzó, J.; Andrés, A.; Vidal, D. Vacuum impregnation and osmotic dehydration in matrix engineering. J. Food Eng. 2001, 49, 175–183. [Google Scholar] [CrossRef]
- Fito, P.; Chiralt, A.; Barat, J.M.; Andrés, A.; Martínez-Monzó, J.; Martínez-Navarrete, N. Vacuum impregnation for development of new dehydrated products. J. Food Eng. 2001, 49, 297–302. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, J. Practical applications of vacuum impregnation in fruit and vegetable processing. Trends Food Sci. Technol. 2004, 15, 434–451. [Google Scholar] [CrossRef]
- Mujica-Paz, H.; Valdez-Fragoso, A.; López-Malo, A.; Palou, E.; Welti-Chanes, J. Impregnation properties of some fruits at vacuum pressure. J. Food Eng. 2003, 56, 307–314. [Google Scholar] [CrossRef]
- DeRossi, A.; De Pilli, T.; Penna, M.P.; Severini, C. pH reduction and vegetable tissue structure changes of zucchini slices during pulsed vacuum acidification. LWT 2011, 44, 1901–1907. [Google Scholar] [CrossRef]
- Vursavuş, K.; Kelebek, H.; Selli, S. A study on some chemical and physico-mechanic properties of three sweet cherry varieties (Prunus avium L.) in Turkey. J. Food Eng. 2006, 74, 568–575. [Google Scholar] [CrossRef]
- Igual, M.; Castelló, M.L.; Ortolá, M.D.O.; Andrés, A. Influence of vacuum impregnation on respiration rate, mechanical and optical properties of cut persimmon. J. Food Eng. 2008, 86, 315–323. [Google Scholar] [CrossRef]
- Rydzak, L.; Andrejko, D. Vacuum impregnation process as a method used to prepare the wheat grain for milling in flour production. TEKA Kom. Mot. Energ. Roln. OL PAN 2008, 8, 134–141. [Google Scholar]
- Rydzak, L.; Sagan, A.; Andrejko, D.; Starek, A.; Ślaska-Grzywna, B.; Blicharz-Kania, A.; Natoniewski, M.; Kobus, Z. Changes in Particle Size Distribution of Bran and Flour Obtained from Vacuum Impregnated and Infra-red Heated Wheat Grain. Food Bioprocess Technol. 2017, 10, 1997–2004. [Google Scholar] [CrossRef]
Factor | Value | us(%)(SD) |
---|---|---|
Pressure change rate (kPa·s−1) | 5 | 80.5 (±15.2)a * |
10 | 84.4 (±16.3)a | |
30 | 76.5 (±14.4)a | |
Pressure change rate (kPa·s−1) | 5 | 80.1 (±12.5)a |
10 | 88.7 (±14.7)a | |
30 | 79.6 (±11.2)a | |
Time t1(s) | 0 | 84.1 (±13.1)a |
100 | 83.8 (±14.6)a | |
300 | 80.7 (±12.8)a | |
600 | 87.8 (±11.9)a | |
900 | 82.8 (±14.5)a | |
Time t2(s) | 0 | 84.5 (±17.4)a |
100 | 83.6 (±15.5)a | |
300 | 76.7 (±15.3)a | |
600 | 82.5 (±12.2)a | |
900 | 82.9 (±10.8)a | |
Impregnation method | WVI | 84.7 (±13.4)a |
WVI 5 | 89.4 (±15.7)a | |
WVI 10 | 88.4 (±16.2)a | |
DVI | 85.3 (±16.8)a | |
Pressurep (kPa) | 5 | 83.4 (±17.5)a |
pATM | 21.1 (±3.5)b | |
Viscosity coefficient(mPa·s) | 1 | 68.3 (±0.8)a |
50 | 37.4 (±7.6)b | |
100 | 27.0 (±8.3)c | |
200 | 21.1 (±5.3)cd | |
400 | 16.8 (±13.9)d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guz, T.; Rydzak, L.; Domin, M. Influence of Selected Parameters and Different Methods of Implementing Vacuum Impregnation of Apple Tissue on Its Effectiveness. Processes 2020, 8, 428. https://doi.org/10.3390/pr8040428
Guz T, Rydzak L, Domin M. Influence of Selected Parameters and Different Methods of Implementing Vacuum Impregnation of Apple Tissue on Its Effectiveness. Processes. 2020; 8(4):428. https://doi.org/10.3390/pr8040428
Chicago/Turabian StyleGuz, Tomasz, Leszek Rydzak, and Marek Domin. 2020. "Influence of Selected Parameters and Different Methods of Implementing Vacuum Impregnation of Apple Tissue on Its Effectiveness" Processes 8, no. 4: 428. https://doi.org/10.3390/pr8040428
APA StyleGuz, T., Rydzak, L., & Domin, M. (2020). Influence of Selected Parameters and Different Methods of Implementing Vacuum Impregnation of Apple Tissue on Its Effectiveness. Processes, 8(4), 428. https://doi.org/10.3390/pr8040428