A Critical Review on Advancement and Challenges of Biochar Application in Paddy Fields: Environmental and Life Cycle Cost Analysis
Abstract
:1. Introduction
2. Environmental Life Cycle Assessment (E-LCA)
2.1. Goal and Scope Definition
2.2. Inventory Analysis
2.3. Impact Assessment
2.4. Interpretation
3. Life Cycle Cost Analysis (LCCA)
- -
- High energy-intensiveness of the projects during their respective lifetimes, in a clime in which it is a known fact that energy prices will increase,
- -
- High project lifetimes, and, thereby, near certainty that the operation and maintenance expenses that must be managed, cannot be ignored,
- -
- High initial capital cost, which needs to be justified by an optimisation of operation and maintenance expenses.
4. Biochar
4.1. Biochar in Farming Systems
4.2. Biochar Production Technologies
4.3. Enriched Biochar Systems
4.4. Biochar-Compost Systems
4.5. Climate Change Impact of Biochar Systems
4.6. Human Health (Particulate Matter and Human Toxicity) Impacts
4.7. Economic Analysis of Biochar Systems
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sanderson, M.G.; Hemming, D.L.; Betts, R.A. Regional temperature and precipitation changes under high-end (≥4 °C) global warming. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Betts, R.A.; Collins, M.; Hemming, D.L.; Jones, C.D.; Lowe, J.A.; Sanderson, M.G. When could global warming reach 4 °C? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Warren, R. The role of interactions in a world implementing adaptation and mitigation solutions to climate change. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 217–241. [Google Scholar] [CrossRef] [PubMed]
- Gómez, N.; Rosas, J.G.; Cara, J.; Martínez, O.; Alburquerque, J.A.; Sánchez, M.E. Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 1. Effect of temperature on process performance on a pilot scale. J. Clean. Prod. 2014, 120, 181–190. [Google Scholar] [CrossRef]
- Mattila, T.; Grönroos, J.; Judl, J.; Korhonen, M.-R. Is biochar or straw-bale construction a better carbon storage from a life cycle perspective? Process. Saf. Environ. Prot. 2012, 90, 452–458. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J. Plant Nutr. Soil Sci. 2014, 177, 651–670. [Google Scholar] [CrossRef] [Green Version]
- Chandio, A.A.; Magsi, H.; Ozturk, I. Examining the effects of climate change on rice production: Case study of Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 7812–7822. [Google Scholar] [CrossRef]
- Ojo, T.; Baiyegunhi, L. Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria. Land Use Policy 2020, 95, 103946. [Google Scholar] [CrossRef]
- Tokunaga, S.; Okiyama, M.; Ikegawa, M. Spatial analysis of climate change impacts on regional economies through Japan’s rice production changes and innovative food industry cluster: Using the nine interregional CGE model. In Environmental Economics and Computable General Equilibrium Analysis; Springer: Tokyo, Japan, 2020; pp. 301–332. [Google Scholar]
- Liu, J.; Shen, J.; Li, Y.; Su, Y.; Ge, T.; Jones, D.L.; Wu, J. Effects of biochar amendment on the net greenhouse gas emission and greenhouse gas intensity in a Chinese double rice cropping system. Eur. J. Soil Biol. 2014, 65, 30–39. [Google Scholar] [CrossRef]
- Qin, X.; Li, Y.; Wang, H.; Liu, C.; Li, J.; Wan, Y.; Gao, Q.; Fan, F.; Liao, Y. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Sci. Total. Environ. 2016, 569–570, 1390–1401. [Google Scholar] [CrossRef]
- Sun, X.; Ding, J.; Jiang, Z.; Xu, J. Biochar improved rice yield and mitigated CH4 and N2O emissions from paddy field under controlled irrigation in the Taihu Lake Region of China. Atmos. Environ. 2019, 200, 69–77. [Google Scholar]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crop. Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Sun, H.; Feng, Y.; Xue, L.; Mandal, S.; Wang, H.; Shi, W.; Yang, L. Responses of ammonia volatilization from rice paddy soil to application of wood vinegar alone or combined with biochar. Chemosphere 2020, 242, 125247. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Feng, Q.; McGrouther, K.; Yang, M.; Wang, H.; Wu, W. Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. J. Soils Sediments 2015, 15, 153–162. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.T.; Son, J.Y.; Cho, Y.S. The adverse effects of fine particle air pollution on respiratory function in the elderly. Sci. Total. Environ. 2007, 385, 28–36. [Google Scholar] [CrossRef]
- Roberts, K.G.; Gloy, B.A.; Joseph, S.; Scott, N.R.; Lehmann, J. Life cycle assessment of Biochar systems: Estimating the energetic, economic and climate change potential. Environ. Sci. Technol. 2010, 44, 827–833. [Google Scholar] [CrossRef]
- ISO. International Organization for Standardization, ISO 14040:2006. Environmental Management. In Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Matuštík, J.; Hnátková, T.; Kočí, V. Life cycle assessment of biochar-to-soil systems: A review. J. Clean. Prod. 2020, 259, 120998. [Google Scholar] [CrossRef]
- Mohammadi, A.; Venkatesh, G.; Sandberg, M.; Eskandari, S.; Granström, K. Life cycle assessment of combination of anaerobic digestion and pyrolysis: Focusing on different options for biogas use. Adv. Geosci. 2019, 49, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Mekuria, W.; Getnet, K.; Noble, A.; Hoanh, C.T.; McCartney, M.; Langan, S. Economic valuation of organic and clay-based soil amendments in small-scale agriculture in Lao PDR. Field Crop. Res. 2013, 149, 379–389. [Google Scholar] [CrossRef]
- Uaeieni, R.N.; Arndt, C.; Masters, W.A. Determinants of Agricultural Technology Adoption in Mozambique; Discussion Paper No. 67E; National Directorate of Studies and Policy Analysis, Ministry of Planning and Development: Maputo, Mozambique, 2011.
- Myhre, G.; Shindell, D.; Bréon, M.F.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, F.J.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Venkatesh, G. Life-Cycle Costing—A Primer; Bookboon: Copenhagen, Denmark, 2019; ISBN 978-87-403-2759-5. [Google Scholar]
- Luerssen, C.; Gandhi, O.; Reindl, T.; Sekhar, C.; Cheong, D. Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications. Appl. Energy 2020, 273, 115145. [Google Scholar] [CrossRef]
- Yousefi, M.; Mohammadi, A. Economical analysis and energy use efficiency in alfalfa production systems in Iran. Sci. Res. Essays 2011, 6, 2332–2336. [Google Scholar]
- Saber, Z.; Esmaeili, M.; Pirdashti, H.; Motevali, A.; Nabavi-Pelesaraei, A. Exergoenvironmental-Life cycle cost analysis for conventional, low external input and organic systems of rice paddy production. J. Clean. Prod. 2020, 263, 121529. [Google Scholar] [CrossRef]
- Lehmann, J.; Abiven, S.; Kleber, M.; Pan, G.; Singh, B.P.; Sohi, S.P.; Zimmerman, A.R. Persistence of biochar in soil. In Biochar for Environmental Management: Science, Technology, and Implementation; Lehmann, J., Joseph, S., Eds.; Routledge: Milton Park, UK, 2015; pp. 233–280. [Google Scholar]
- Singh, B.P.; Cowie, A.L.; Smernik, R.J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 2012, 46, 11770–11778. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Lehmann, J.; Thies, J.E.; Burton, S.D. Stability of black carbon in soils across a climatic gradient. J. Geophys. Res. Biogeosci. 2008, 113, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Crane-Droesch, A.; Abiven, S.; Jeffery, S.; Torn, M.S. Heterogeneous global crop yield response to biochar: A meta-regression analysis. Environ. Res. Lett. 2013, 8, 044049. [Google Scholar] [CrossRef]
- Cayuela, M.L.; van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Blackwell, P.; Krull, E.; Butler, G.; Herbert, A.; Solaiman, Z. Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: An agronomic and economic perspective. Aust. J. Soil Res. 2010, 48, 531–545. [Google Scholar] [CrossRef]
- Eskandari, S.; Mohammadi, A.; Sandberg, M.; Eckstein, R.L.; Hedberg, K.; Granström, K. Hydrochar-Amended Substrates for Production of Containerized Pine Tree Seedlings under Different Fertilization Regimes. Agronomy 2019, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Kameyama, K.; Shinogi, Y.; Miyamoto, T.; Agarie, K. Estimation of net carbon sequestration potential with farmland application of bagasse charcoal: Life cycle inventory analysis through a pilot sugarcane bagasse carbonisation plant. Aust. J. Soil Res. 2010, 48, 586–592. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental benefits of biochar. J. Environ. Qual. 2012, 41, 967–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Chao, C.; Waqas, M.; Arp, H.P.; Zhu, Y.G. Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ. Sci. Technol. 2013, 47, 8624–8632. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lu, H.; Yang, S.; Wang, Y. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crop. Res. 2016, 191, 161–167. [Google Scholar] [CrossRef]
- Shen, J.; Tang, H.; Liu, J.; Wang, C.; Li, Y.; Ge, T.; Jones, D.L.; Wu, J. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agric. Ecosyst. Environ. 2014, 188, 264–274. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, Y.; Yu, Y.; Xie, Z.; Lin, X. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol. Biochem. 2012, 46, 80–88. [Google Scholar] [CrossRef]
- Singla, A.; Inubushi, K. Effect of biochar on CH4 and N2O emission from soils vegetated with paddy. Paddy Water Environ. 2014, 12, 239–243. [Google Scholar] [CrossRef]
- Knoblauch, C.; Maarifat, A.-A.; Pfeiffer, E.-M.; Haefele, S.M. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol. Biochem. 2011, 43, 1768–1778. [Google Scholar] [CrossRef]
- Zhang, A.; Cui, L.; Pan, G.; Li, L.; Hussain, Q.; Zhang, X.; Zheng, J.; Crowley, D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar] [CrossRef]
- Yanai, Y.; Toyota, K.; Okazaki, M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr. 2007, 53, 181–188. [Google Scholar] [CrossRef]
- Spokas, K.A.; Reicosky, D.C. Impacts of sixteen different biochar on soil greenhouse gas production. Ann. Environ. Sci. 2009, 3, 179–193. [Google Scholar]
- Andreev, N.; Ronteltap, M.; Lens, P.N.L.; Boincean, B.; Bulat, L.; Zubcov, E. Lacto-fermented mix of faeces and bio-waste supplemented by biochar improves the growth and yield of corn (Zea mays L.). Agric. Ecosyst. Environ. 2016, 232, 263–272. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total. Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Zahoor, A.; Nishihara, E. Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J. Food Agric. Environ. 2011, 9, 1137–1143. [Google Scholar]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, Z.; Sun, X.; Ding, J.; Xu, J. Effects of biochar amendment on CO2 emissions from paddy fields under water-saving irrigation. Int. J. Environ. Res. Public Health 2018, 15, 2580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Zhang, H.; Min, J.; Feng, Y.; Shi, W. Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy Water Environ. 2016, 14, 105–111. [Google Scholar] [CrossRef]
- Feng, Y.; Sun, H.; Xue, L.; Liu, Y.; Gao, Q.; Lu, K.; Yang, L. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere 2017, 168, 1277–1284. [Google Scholar] [CrossRef]
- Sun, X.; Zhong, T.; Zhang, L.; Zhang, K.; Wu, W. Reducing ammonia volatilization from paddy field with rice straw derived biochar. Sci. Total. Environ. 2019, 660, 512–518. [Google Scholar] [CrossRef]
- Yang, S.; Sun, X.; Ding, J.; Jiang, Z.; Xu, J. Effects of biochar addition on the NEE and soil organic carbon content of paddy fields under water-saving irrigation. Environ. Sci. Pollut. Res. 2019, 26, 8303–8311. [Google Scholar] [CrossRef]
- Chen, D.; Wang, C.; Shen, J.; Li, Y.; Wu, J. Response of CH4 emissions to straw and biochar applications in double-rice cropping systems: Insights from observations and modeling. Environ. Pollut. 2018, 235, 95–103. [Google Scholar] [CrossRef]
- Dong, D.; Wang, C.; Van Zwieten, L.; Wang, H.; Jiang, P.; Zhou, M.; Wu, W. An effective biochar-based slow-release fertilizer for reducing nitrogen loss in paddy fields. J. Soils Sediments 2019, 1–14. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Trinh, N.N.; Bach, Q.-V. Methane emissions and associated microbial activities from paddy salt-affected soil as influenced by biochar and cow manure addition. Appl. Soil Ecol. 2020, 152, 103531. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, Z.; Zhang, X.; Feng, L.; Xiong, Z. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system. Field Crop. Res. 2019, 241, 107568. [Google Scholar] [CrossRef]
- Sui, Y.; Gao, J.; Liu, C.; Zhang, W.; Lan, Y.; Li, S.; Meng, J.; Xu, Z.; Tang, L. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China. Sci. Total. Environ. 2016, 544, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Chen, J.; Pan, G.; Liu, X.; Zhang, X.; Li, L.; Bian, R.; Cheng, K.; Jinwei, Z. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Sci. Total. Environ. 2016, 571, 206–217. [Google Scholar] [CrossRef]
- Trinh, M.V.; Tesfai, M.; Borrell, A.; Nagothu, U.S.; Bui, T.P.L.; Quynh, V.D.; Thanh, L.Q. Effect of organic, inorganic and slow-release urea fertilisers on CH4 and N2O emissions from rice paddy fields. Paddy Water Environ. 2017, 15, 317–330. [Google Scholar] [CrossRef]
- Cai, F.; Feng, Z.; Zhu, L. Effects of biochar on CH4 emission with straw application on paddy soil. J. Soils Sediments 2017, 18, 599–609. [Google Scholar] [CrossRef]
- Koyama, S.; Katagiri, T.; Minamikawa, K.; Kato, M.; Hayashi, H. Effects of rice husk charcoal application on rice yield, methane emission, and soil carbon sequestration in andosol paddy soil. Jpn. Agric. Res. Q. JARQ 2016, 50, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Qu, J.; Li, L.; Zhang, A.; Jufeng, Z.; Zheng, J.; Pan, G. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?—A cross site field experiment from South China. Ecol. Eng. 2012, 42, 168–173. [Google Scholar] [CrossRef]
- Mohammadi, A.; Cowie, A.; Anh Mai, T.L.; Anaya de la Rosa, R.; Kristiansen, P.; Brandão, M.; Joseph, S. Biochar use for climate-change mitigation in rice cropping systems. J. Clean. Prod. 2016, 116, 61–70. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Herbert, S.; Xing, B. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 2013, 206, 32–39. [Google Scholar] [CrossRef]
- Laird, D.A.; Novak, J.M.; Collins, H.P.; Ippolito, J.A.; Karlen, D.L.; Lentz, R.D.; Sistani, K.R.; Spokas, K.; Van Pelt, R.S. Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma 2017, 289, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Tammeorg, P.; Simojoki, A.; Mäkelä, P.; Stoddard, F.L.; Alakukku, L.; Helenius, J. Biochar application to a fertile sandy clay loam in boreal conditions: Effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant Soil 2014, 374, 89–107. [Google Scholar] [CrossRef]
- Pandey, A.; Mai, V.T.; Vu, D.Q.; Bui, T.P.L.; Mai, T.L.A.; Jensen, L.S.; de Neergaard, A. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric. Ecosyst. Environ. 2014, 196, 137–146. [Google Scholar] [CrossRef]
- Yue, Y.; Lin, Q.; Xu, Y.; Li, G.; Zhao, X. Slow pyrolysis as a measure for rapidly treating cow manure and the biochar characteristics. J. Anal. Appl. Pyrolysis 2017, 124, 355–361. [Google Scholar] [CrossRef]
- Scholz, S.M.; Sembres, T.; Roberts, K.; Whitman, T.; Wilson, K.; Lehmann, J. Biochar Systems for Smallholders in Developing Countries; A World Bank Study: Washington, DC, USA, 2014; pp. 71–133. [Google Scholar]
- Hammond, J.; Shackley, S.; Sohi, S.; Brownsort, P. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy 2011, 39, 2646–2655. [Google Scholar] [CrossRef]
- Whitman, T.; Enders, A.; Lehmann, J. Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants. Soil Biol. Biochem. 2014, 73, 33–41. [Google Scholar] [CrossRef]
- Birzer, C.; Medwell, P.; MacFarlane, G.; Read, M.; Wilkey, J.; Higgins, M.; West, T. A biochar-producing, dung-burning cookstove for humanitarian purposes. Procedia Eng. 2014, 78, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Torres-Rojas, D.; Lehmann, J.; Hobbs, P.; Joseph, S.; Neufeldt, H. Biomass availability, energy consumption and biochar production in rural households of Western Kenya. Biomass Bioenergy 2011, 35, 3537–3546. [Google Scholar] [CrossRef]
- Joseph, S.; Lan Anh, M.; Shackley, S.; Clare, A. Socioeconomic feasibility, implementation and evaluation of small-scale biochar projects. In Biochar for Environmental Management: Science, Technology, and Implementation; Lehmann, J., Joseph, S., Eds.; Routledge: Milton Park, UK, 2015; pp. 359–373. [Google Scholar]
- Sparrevik, M.; Adam, C.; Martinsen, V.; Jubaedah; Cornelissen, G. Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved “retort” kilns. Biomass Bioenergy 2015, 72, 65–73. [Google Scholar] [CrossRef]
- de Miranda, R.C.; Bailis, R.; Vilela, A.d.O. Cogenerating electricity from charcoaling: A promising new advanced technology. Energy Sustain. Dev. 2013, 17, 171–176. [Google Scholar] [CrossRef]
- Bailis, R.; Rujanavech, C.; Dwivedi, P.; de Oliveira Vilela, A.; Chang, H.; de Miranda, R.C. Innovation in charcoal production: A comparative life-cycle assessment of two kiln technologies in Brazil. Energy Sustain. Dev. 2013, 17, 189–200. [Google Scholar] [CrossRef]
- Ly, P.; Duong Vu, Q.; Jensen, L.S.; Pandey, A.; de Neergaard, A. Effects of rice straw, biochar and mineral fertiliser on methane (CH4) and nitrous oxide (N2O) emissions from rice (Oryza sativa L.) grown in a rain-fed lowland rice soil of Cambodia: A pot experiment. Paddy Water Environ. 2015, 13, 465–475. [Google Scholar] [CrossRef]
- Joseph, S.; Graber, E.R.; Chia, C.; Munroe, P.; Donne, S.; Thomas, T.; Nielsen, S.; Marjo, C.; Rutlidge, H.; Pan, G.X.; et al. Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. 2013, 4, 323–343. [Google Scholar] [CrossRef] [Green Version]
- Sarkhot, D.V.; Berhe, A.A.; Ghezzehei, T.A. Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics. J. Environ. Qual. 2012, 41, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Chia, C.H.; Singh, B.P.; Joseph, S.; Graber, E.R.; Munroe, P. Characterization of an enriched biochar. J. Anal. Appl. Pyrolysis 2014, 108, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Munroe, P.; Joseph, S.; Henderson, R. Migration of dissolved organic carbon in biochars and biochar-mineral complexes. Pesqui. Agropecuária Bras. 2012, 47, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.; Anawar, H.M.; Storer, P.; Blackwell, P.; Chia, C.; Lin, Y.; Munroe, P.; Donne, S.; Horvat, J.; Wang, J.; et al. Effects of Enriched Biochars Containing Magnetic Iron Nanoparticles on Mycorrhizal Colonisation, Plant Growth, Nutrient Uptake and Soil Quality Improvement. Pedosphere 2015, 25, 749–760. [Google Scholar] [CrossRef]
- Bass, A.M.; Bird, M.I.; Kay, G.; Muirhead, B. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Sci. Total. Environ. 2016, 550, 459–470. [Google Scholar] [CrossRef]
- Steiner, C.; Das, K.C.; Melear, N.; Lakly, D. Reducing nitrogen loss during poultry litter composting using biochar. J. Environ. Qual. 2010, 39, 1236–1242. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Lu, H.; Dong, D.; Deng, H.; Strong, P.J.; Wang, H.; Wu, W. Insight into the effects of biochar on manure composting: Evidence supporting the relationship between N2O emission and denitrifying community. Environ. Sci. Technol. 2013, 47, 7341–7349. [Google Scholar] [CrossRef] [PubMed]
- Cowie, A.; Woolf, D.; Gaunt, J.; Brandão, M.; Anaya de la Rosa, R.; Cowie, A. Biochar, carbon accounting and climate change. In Biochar for Environmental Management: Science, Technology, and Implementation; Lehmann, J., Joseph, S., Eds.; Routledge: Milton Park, UK, 2015; pp. 763–794. [Google Scholar]
- Liu, Q.; Liu, B.; Ambus, P.; Zhang, Y.; Hansen, V.; Lin, Z.; Shen, D.; Liu, G.; Bei, Q.; Zhu, J.; et al. Carbon footprint of rice production under biochar amendment—A case study in a Chinese rice cropping system. GCB Bioenergy 2015, 8, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Cheng, K.; Wu, H.; Sun, J.; Yue, Q.; Pan, G. Greenhouse gas mitigation potential in crop production with biochar soil amendment—A carbon footprint assessment for cross-site field experiments from China. GCB Bioenergy 2019, 11, 592–605. [Google Scholar] [CrossRef]
- Mohammadi, A.; Cowie, A.; Anh Mai, T.L.; Anaya de la Rosa, R.; Kristiansen, P.; Brandão, M.; Joseph, S. Quantifying the greenhouse gas reduction benefits of utilising straw biochar and enriched biochar. Energy Procedia 2016, 97, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Cowie, A.L.; Anh Mai, T.L.; Brandão, M.; Anaya de la Rosa, R.; Kristiansen, P.; Joseph, S. Climate-change and health effects of using rice husk for biochar-compost: Comparing three pyrolysis systems. J. Clean. Prod. 2017, 162, 260–272. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Hussain, Q.; Li, L.; Pan, G.; Zheng, J.; Zhang, X.; Zheng, J. Change in net global warming potential of a rice–wheat cropping system with biochar soil amendment in a rice paddy from China. Agric. Ecosyst. Environ. 2013, 173, 37–45. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, D.L.; Schwenke, G.; Yang, B. The global warming potential of straw-return can be reduced by application of straw-decomposing microbial inoculants and biochar in rice-wheat production systems. Environ. Pollut. 2019, 252, 835–845. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, X.; Dong, Y.; Li, B.; Xiong, Z. Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: Six-year field observation and meta-analysis. Agric. For. Meteorol. 2019, 278, 107625. [Google Scholar] [CrossRef]
- Zhang, A.; Cheng, G.; Hussain, Q.; Zhang, M.; Feng, H.; Dyck, M.; Sun, B.; Zhao, Y.; Chen, H.; Chen, J.; et al. Contrasting effects of straw and straw–derived biochar application on net global warming potential in the Loess Plateau of China. Field Crop. Res. 2017, 205, 45–54. [Google Scholar] [CrossRef]
- Dutta, B.; Raghavan, V. A life cycle assessment of environmental and economic balance of biochar systems in Quebec. Int. J. Energy Environ. Eng. 2014, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Chen, C.; Chen, X.; Tao, P.; Jin, Z.; Han, Z. Persistent effects of biochar on soil organic carbon mineralization and resistant carbon pool in upland red soil, China. Environ. Earth Sci. 2018, 77, 177. [Google Scholar] [CrossRef]
- Rajabi Hamedani, S.; Kuppens, T.; Malina, R.; Bocci, E.; Colantoni, A.; Villarini, M. Life cycle assessment and environmental valuation of biochar production: Two case studies in Belgium. Energies 2019, 12, 2166. [Google Scholar] [CrossRef] [Green Version]
- Iribarren, D.; Peters, J.F.; Dufour, J. Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel 2012, 97, 812–821. [Google Scholar] [CrossRef]
- Majumder, S.; Neogi, S.; Dutta, T.; Powel, M.A.; Banik, P. The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages. J. Environ. Manag. 2019, 250, 109466. [Google Scholar] [CrossRef] [PubMed]
- Robb, S.; Dargusch, P. A financial analysis and life-cycle carbon emissions assessment of oil palm waste biochar exports from Indonesia for use in Australian broad-acre agriculture. Carbon Manag. 2018, 9, 105–114. [Google Scholar] [CrossRef]
- Thers, H.; Djomo, S.N.; Elsgaard, L.; Knudsen, M.T. Biochar potentially mitigates greenhouse gas emissions from cultivation of oilseed rape for biodiesel. Sci. Total. Environ. 2019, 671, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Clare, A.; Shackley, S.; Joseph, S.; Hammond, J.; Pan, G.; Bloom, A. Competing uses for China’s straw: The economic and carbon abatement potential of biochar. GCB Bioenergy 2015, 7, 1272–1282. [Google Scholar] [CrossRef]
- Ibarrola, R.; Shackley, S.; Hammond, J. Pyrolysis biochar systems for recovering biodegradable materials: A life cycle carbon assessment. Waste Manag. 2012, 32, 859–868. [Google Scholar] [CrossRef]
- Mohammadi, A.; Sandberg, M.; Venkatesh, G.; Eskandari, S.; Dalgaard, T.; Joseph, S.; Granström, K. Environmental analysis of producing biochar and energy recovery from pulp and paper mill biosludge. J. Ind. Ecol. 2019, 23, 1039–1051. [Google Scholar] [CrossRef]
- Mohammadi, A.; Sandberg, M.; Venkatesh, G.; Eskandari, S.; Dalgaard, T.; Joseph, S.; Granström, K. Environmental performance of end-of-life handling alternatives for paper-and-pulp-mill sludge: Using digestate as a source of energy or for biochar production. Energy 2019, 182, 594–605. [Google Scholar] [CrossRef]
- Kauffman, N.; Hayes, D.; Brown, R. A life cycle assessment of advanced biofuel production from a hectare of corn. Fuel 2011, 90, 3306–3314. [Google Scholar] [CrossRef]
- Peters, J.F.; Iribarren, D.; Dufour, J. Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ. Sci. Technol. 2015, 49, 5195–5202. [Google Scholar] [CrossRef] [PubMed]
- Bacenetti, J.; Fusi, A.; Negri, M.; Bocchi, S.; Fiala, M. Organic production systems: Sustainability assessment of rice in Italy. Agric. Ecosyst. Environ. 2016, 225, 33–44. [Google Scholar] [CrossRef]
- Zhong, J.; Wei, Y.; Wan, H.; Wu, Y.; Zheng, J.; Han, S.; Zheng, B. Greenhouse gas emission from the total process of swine manure composting and land application of compost. Atmos. Environ. 2013, 81, 348–355. [Google Scholar] [CrossRef]
- Sanchis, E.; Ferrer, M.; Calvet, S.; Coscollà, C.; Yusà, V.; Cambra-López, M. Gaseous and particulate emission profiles during controlled rice straw burning. Atmos. Environ. 2014, 98, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Schweikle, J.; Spreer, W.; Intani, K.; Shafer, D.M.; Tiyayon, P.; Saehang, S.; Santasup, C.; Sringarm, K.; Wiriya, W.; Müller, J. In-field biochar production from crop residues: An approach to reduce open field burning in northern Thailand. In Proceedings of the Tropentag Conference, Berlin, Germany, 16–18 September 2015. [Google Scholar]
- Shackley, S.; Carter, S.; Knowles, T.; Middelink, E.; Haefele, S.; Sohi, S.; Cross, A.; Haszeldine, S. Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy 2012, 42, 49–58. [Google Scholar] [CrossRef]
- Sparrevik, M.; Field, J.L.; Martinsen, V.; Breedveld, G.D.; Cornelissen, G. Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia. Environ. Sci. Technol. 2013, 47, 1206–1215. [Google Scholar] [CrossRef]
- Sparrevik, M.; Lindhjem, H.; Andria, V.; Fet, A.M.; Cornelissen, G. Environmental and socioeconomic impacts of utilizing waste for biochar in rural areas in Indonesia-a systems perspective. Environ. Sci. Technol. 2014, 48, 4664–4671. [Google Scholar] [CrossRef]
- Singh, B.; Macdonald, L.M.; Kookana, R.S.; van Zwieten, L.; Butler, G.; Joseph, S.; Weatherley, A.; Kaudal, B.B.; Regan, A.; Cattle, J.; et al. Opportunities and constraints for biochar technology in Australian agriculture: Looking beyond carbon sequestration. Soil Res. 2014, 52, 739–750. [Google Scholar] [CrossRef] [Green Version]
- Duan, N.; Khoshnevisan, B.; Lin, C.; Liu, Z.; Liu, H. Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environ. Int. 2020, 137, 105522. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.R.; El Hanandeh, A. Life cycle perspective of bio-oil and biochar production from hardwood biomass; what is the optimum mix and what to do with it? J. Clean. Prod. 2019, 212, 173–189. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environ. Int. 2016, 87, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Harsono, S.S.; Grundman, P.; Lau, L.H.; Hansen, A.; Salleh, M.A.M.; Meyer-Aurich, A.; Idris, A.; Ghazi, T.I.M. Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches. Resour. Conserv. Recycl. 2013, 77, 108–115. [Google Scholar] [CrossRef]
- Pratt, K.; Moran, D. Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass Bioenergy 2010, 34, 1149–1158. [Google Scholar] [CrossRef]
- Field, J.L.; Keske, C.M.H.; Birch, G.L.; DeFoort, M.W.; Cotrufo, M.F. Distributed biochar and bioenergy coproduction: A regionally specific case study of environmental benefits and economic impacts. GCB Bioenergy 2013, 5, 177–191. [Google Scholar] [CrossRef]
- Wrobel-Tobiszewska, A.; Boersma, M.; Sargison, J.; Adams, P.; Jarick, S. An economic analysis of biochar production using residues from Eucalypt plantations. Biomass Bioenergy 2015, 81, 177–182. [Google Scholar] [CrossRef]
- Shackley, S.; Carter, S.; Knowles, T.; Middelink, E.; Haefele, S.; Haszeldine, S. Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part II: Field trial results, carbon abatement, economic assessment and conclusions. Energy Policy 2012, 41, 618–623. [Google Scholar] [CrossRef]
- Bi, Y.; Cai, S.; Wang, Y.; Xia, Y.; Zhao, X.; Wang, S.; Xing, G. Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils: Views from crop production, carbon sequestration and net ecosystem economic benefits. J. Environ. Manag. 2019, 245, 173–186. [Google Scholar] [CrossRef]
- Galinato, S.P.; Yoder, J.K.; Granatstein, D. The economic value of biochar in crop production and carbon sequestration. Energy Policy 2011, 39, 6344–6350. [Google Scholar] [CrossRef]
- Dickinson, D.; Balduccio, L.; Buysse, J.; Ronsse, F.; Van Huylenbroeck, G.; Prins, W. Cost-benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy 2015, 7, 850–864. [Google Scholar] [CrossRef]
- Mohammadi, A.; Cowie, A.L.; Cacho, O.; Kristiansen, P.; Anh Mai, T.L.; Joseph, S. Biochar addition in rice farming systems: Economic and energy benefits. Energy 2017, 140, 415–425. [Google Scholar] [CrossRef]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of agricultural innovations in developing countries: A survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef] [Green Version]
- Pannell, D.J.; Marshall, G.R.; Barr, N.; Curtis, A.; Vanclay, F.; Wilkinson, R. Understanding and promoting adoption of conservation practices by rural landholders. Aust. J. Exp. Agric. 2006, 46, 1407–1424. [Google Scholar] [CrossRef] [Green Version]
- George, T. Why crop yields in developing countries have not kept pace with advances in agronomy. Glob. Food Secur. 2014, 3, 49–58. [Google Scholar] [CrossRef]
Reference | BC Substrate | BC Properties | Parameter | Application Rate | Effect |
---|---|---|---|---|---|
[54] | Rice straw | pH = 10.58 CEC = 50.6 cmol/kg TN = 1.08% TC = 47.21% | NH3 volatilization | 2.8 and 22.5 tonne (t)/ha | - 20% reduction in NH3 volatilization - Highest NH3-N/TN under higher BC rate - Highest plant N aboveground under a low BC rate |
[52] | Canola straws | pH = 8.9 TC = 65% TN = 0.23% | NH3 volatilization N2O emission | 10 t/ha | - BC mixed with calcium superphosphate reduced NH3 losses by 39% - N2O reduced by 19.5% - BC alone decreased N2O by 24% |
[12] | Rice straw | pH = 10.1 TC = 42.6% TN = 0.75% | CH4 emission N2O emission Yield | 0, 20, 40 t/ha | - Significantly increased CH4 emission and decreased N2O emission from paddy fields under flooding irrigation vis-à-vis controlled irrigation - 16.7 to 24.3% increased yield with BC |
[55] | Rice straw | pH = 10.1 TC = 42.6% TN = 0.75% | Soil organic carbon CO2 exchange | 0, 20, 40 t/ha | - Rice yields with BC addition of 20 and 40 t/ha increased by 24% and 36% - CO2 exchange increased by 2.4% and 31% - BC addition increased SOC by 19.1% |
[56] | Wheat straw | pH = 9.8 TC = 418 g/kg TN = 2.8 g/kg | CH4 emission | - | - 33.8 to 43.1% decreased CH4 emissions due to improved soil aeration |
[51] | Rice straw | - | CO2 emission Rice yield | 20, 40 t/ha | - Increased rice yield and water use efficiency by 9.35–36.30% and 15.1–42.5% - CO2 emissions from paddy fields under water-saving irrigation decreased by 2.22% compared with flood irrigation |
[14] | Straw biochar + wood vinegar | pH = 9.8 TN = 8.11 g/kg | NH3 volatilization | 7 t/ha | - 40.5 kg N/ha NH3 volatilization loss compared with 45.7 kg N/ha from control |
[53] | Wheat straw | pH = 8.81—9.51 TN = 13.3—14.15 g/kg | NH3 volatilization | 0.5 and 3 wt% | - Higher NH3 volatilization (20.5–31.9 kg N/ha) after N fertilization compared with the control (18.6 kg N/ha) - The increased NH3 volatilization at 3 wt% BC treatments is attributed to increased pH of surface floodwater and soil |
[57] | Rice straw | TC = 53.7 wt% TN = 1.2 wt% | N leaching | 0.95 t slow-released fertilizer a | - Decreased N leaching and more N supply to the rice plant in later stages of the production cycle |
[58] | Rice straw (RS) and rice husk (RH) | pH = 7.6 (RH), 9.4 (RS) TC = 47.5 (RH), 43.7 (RS) | CH4 emission | - | - BC addition decreased CH4 emissions from manure incorporated soils by 28% to 680% |
[59] | Wheat straw | TC = 453.4 g/kg TN = 5.5 g/kg pH = 9.2 | NH3 volatilization Yield N use efficiency | - | - Fresh BC reapplication increased NH3 volatilization losses - Aged BC (applied 3 years ago) decreased NH3 volatilization - No significant difference between yields - Nitrogen use efficiency was improved |
[60] | Rice straw | TC = 670.7 g/kg TN = 8.1 g/kg pH = 9.1 | CH4 emission CO2 emission Soil C | 0, 1.78, 14.8, 29.6 t/ha | - Only 14.8 t/ha BC decreased CO2 emissions - BC amendments significantly decreased CH4 emissions - Soil C increased by 5.75 mg/g and 11.69 mg/g with 14.8 and 29.6 t/ha BC |
[61] | Wheat straw | TC = 467 g/kg TN = 5.9 g/kg pH = 10.42 | Soil properties, microbial biomass, and enzyme activity | 20 and 40 t/ha | - BC changed soil properties in a rice paddy four years after incorporation - BC induced a lower microbial metabolic quotient and enzyme activity. - BC altered both bacterial and fungal community structures. - Fungal rather than bacterial community composition was more affected by BC |
[62] | Rice straw | TC = 20% TN = 0.26% pH = 8.1 | CH4 emission CO2 emission | 4.15 t/ha | - The lowest CH4 emissions under BC treatment (4.8–59 mg C/m2/hr) - The lowest N2O emissions under BC treatment (0.15–0.26 μg N/m2/hr) |
[63] | Rice straw | TC = 44.1–47.1% TN = 0.78–1.14% pH = 8.9–10.43 | CH4 emission Soil redox potential | 1 g/100 g soil | - Low temperature BC decreased soil redox potential - The abundance of methanogenic archaea increased under low temperature BC - High temperature BC had little effect on CH4 emissions |
[64] | Rice husk | TC = 427 g/kg TN = 4.01 g/kg pH = 8.4 | CH4 emission Soil redox potential Soil pH Rice yield and biomass | 0, 0.4, 2, 4, 20, 40 g/pot | - Significant increase in rice yield under a BC rate of 40 g/pot - Rates of 20 and 40 absorbed greater amounts of silicon - Not significantly increased CH4 emission - Soil carbon increased in proportion to the BC application rate |
Reference | FU | Impact Categories a | System Boundaries | Reference System | GWP Results |
---|---|---|---|---|---|
[91] | 1 ha of rice field | CF | Rice operations + corn straw BC production and application (2.4 t/ha) + bio-oil consumption | Rice cropping without BC | BC reduced CF by 1508 kg CO2-eq/ha |
[92] | 1 ha and kg of rice grains | CF | Wheat straw BC production and application (20 t/ha) + farm operations + system expansion for pyrolysis gas recycling | Rice cropping without BC | BC reduced CF by 20.4–41.3 t CO2-eq/ha |
[66] | 1 kg of milled rice | CF | Rice straw BC production and application (18 t/ha) + farm operations + system expansion for pyrolysis gas recycling | Rice cropping without BC | BC reduced CF of spring and summer rice by 49% and 38% |
[93] | 1 t of dry rice straw | GWP | Rice straw BC and enriched BC production and application (18 and 0.5 t/ha) without gas recycling | Open burning of rice straw | 0.27 and 0.61 t CO2-eq per t straw, for straw BC and enriched BC |
[94] | 1 kg of rice grain | GWP, PM, HT | BC-compost production (three pyrolysis systems) and application (5 t/ha) + system expansion for gas recycling | Open burning of rice straw and rice husk | Net GHG emissions ranging from −0.6 to −1.1 t CO2-eq/t rice husk |
[95] | 1 ha of rice field | GWP | Rice field management + Wheat straw BC application (10, 20, 40 t/ha) | Rice cropping without BC | 10%–20% reduction in GWP impact of BC treatments |
[10] | 1 ha of rice field | GWP | Rice field management + Wheat straw BC application (24, 48 t/ha) | Double rice cropping without BC | 31–36% decrease in GWP impact of BC systems |
[96] | 1 ha of rice field | GWP | Rice field management + Wheat straw BC application (20 t/ha) | Rice cropping without BC | 60% reduction in net GWP impact of BC treatments |
[40] | 1 ha of rice field | GWP | Rice field management + Rice straw BC application (20 t/ha) | Double rice cropping without BC | No significant difference between control and BC |
[97] | 1 ha of rice field | GWP | Rice field operations + Wheat straw BC application (20, 40 t/ha) | Rice system without BC | BC reduced GWP by 1.2–2.1 CO2-eq/ha |
[98] | 1 ha of rice field | GWP | Rice field management + Wheat straw BC application (8, 16 t/ha) | Rice cropping without BC | 65% reduction in net GWP of BC treatments |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadi, A.; Khoshnevisan, B.; Venkatesh, G.; Eskandari, S. A Critical Review on Advancement and Challenges of Biochar Application in Paddy Fields: Environmental and Life Cycle Cost Analysis. Processes 2020, 8, 1275. https://doi.org/10.3390/pr8101275
Mohammadi A, Khoshnevisan B, Venkatesh G, Eskandari S. A Critical Review on Advancement and Challenges of Biochar Application in Paddy Fields: Environmental and Life Cycle Cost Analysis. Processes. 2020; 8(10):1275. https://doi.org/10.3390/pr8101275
Chicago/Turabian StyleMohammadi, Ali, Benyamin Khoshnevisan, G. Venkatesh, and Samieh Eskandari. 2020. "A Critical Review on Advancement and Challenges of Biochar Application in Paddy Fields: Environmental and Life Cycle Cost Analysis" Processes 8, no. 10: 1275. https://doi.org/10.3390/pr8101275
APA StyleMohammadi, A., Khoshnevisan, B., Venkatesh, G., & Eskandari, S. (2020). A Critical Review on Advancement and Challenges of Biochar Application in Paddy Fields: Environmental and Life Cycle Cost Analysis. Processes, 8(10), 1275. https://doi.org/10.3390/pr8101275