Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials
Abstract
1. Introduction
2. Flavonoids—Classification and Natural Sources
3. Sample Preparation
4. Extraction Techniques
4.1. Conventional Extraction Techniques
4.1.1. Maceration
4.1.2. Reflux and Soxhlet Extraction
4.2. Green Extraction Techniques
4.2.1. Ultrasound-Assisted Extraction (UAE)
4.2.2. Microwave-Assisted Extraction (MAE)
4.2.3. Pressurized Liquid Extraction (PLE)
4.2.4. Supercritical Fluid Extraction (SFE)
4.2.5. Enzyme-Assisted Extraction (EAE)
4.2.6. Matrix Solid-Phase Dispersion (MSPD)
4.2.7. Negative Pressure Cavitation Extraction (NPCE)
4.3. Other
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
UAE | Ultra sonic-assisted extraction |
MAE | Microwave-assisted extraction |
MA-ATPE | Microwave-assisted aqueous two-phase extraction |
DES-MAE | Deep eutectic solvent-based microwave-assisted extraction |
PLE | Pressurized liquid extraction |
PHWE | Pressurized hot water extraction |
SFE | Supercritical fluid extraction |
SC-CO2 | Supercritical-CO2 |
EAE | Enzyme-assisted extraction |
NPCE | Negative pressure cavitation extraction |
LDL | Low-density lipoprotein |
SPE | Solid phase extraction |
HPLC | High performance liquid extraction |
References
- Doughari, J.H. Phytochemicals: Extraction Methods, Basic Structures and Mode of Action as Potential Chemotherapeutic Agents. In Phytochemical—A Global Perspective of Their Role in Nutrition and Health; Rao, V., Ed.; InTechOpen: Rijeka, Croatia, 2012; pp. 1–33. [Google Scholar]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.C.; Gulliya, B. Chemistry and Pharmacology of Flavonoids—A Review. Indian J. Pharm. Educ. Res. 2019, 53, 8–20. [Google Scholar] [CrossRef]
- Hayashi, T.; Sawa, K.; Kawasaki, M.; Arisawa, M.; Shimizu, M.; Morita, N. Inhibition of cow’s milk xanthine oxidase by flavonoids. J. Nat. Prod. 1988, 51, 345–348. [Google Scholar] [CrossRef]
- Walker, E.; Pacold, M.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinations of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 2000, 6, 909–919. [Google Scholar] [CrossRef]
- Korkina, L.; Afanasev, I. Antioxidant and chelating properties of flavonoids. Adv. Pharmacol. 1997, 38, 151–163. [Google Scholar]
- Kerry, N.; Abbey, M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis 1997, 135, 93–102. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Chiodo, S.; Toscano, M. Iron chelation by the powerful antioxidant flavonoid quercetin. J. Agric. Food Chem. 2006, 54, 6343–6351. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Azwanida, N.N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4, 196. [Google Scholar]
- Stobiecki, M.; Kachlicki, P. Isolation and Identification of Flavonoids. In The Science of flavonoids; Grotewold, E., Ed.; Springer Science & Business Media, Inc.: New York, NY, USA, 2006; pp. 47–71. [Google Scholar]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Selvamuthukumaran, M.; Shi, J. Recent advances in extraction of antioxidants from plant by-products processing industries. Food Qual. Saf. 2017, 1, 61–81. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Raks, V.; Al-Suod, H.; Buszewski, B. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques. Chromatographia 2018, 81, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Smith, R. Before the inject ion-modern methods of sample preparation for separation techniques. J. Chromatogr. A 2003, 1000, 3–27. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Havsteen, B. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Alzand, K.I.; Mohamed, M.A. Flavonoids: Chemistry, Biochemistry and Antioxidant activity. J. Pharm. Res. 2012, 5, 4013–4020. [Google Scholar]
- Ollanketo, M.; Riekkola, M.L. Column-switching technique for selective determination of flavonoids in Finnish berry wines by high-performance liquid chromatography with diode array detection. J. Liq. Chromatogr. Relat. Technol. 2000, 23, 1339–1351. [Google Scholar] [CrossRef]
- Arts, I.C.W.; van de Putte, B.; Hollman, P.C.H. Catechin Contents of Foods Commonly Consumed in The Netherlands. 1. Fruits, Vegetables, Staple Foods, and Processed Foods. J. Agric. Food Chem. 2000, 48, 1746–1751. [Google Scholar] [CrossRef]
- De Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J. Agric. Food Chem. 2000, 48, 5331–5337. [Google Scholar] [CrossRef] [PubMed]
- Crozier, A.; Lean, M.E.J.; McDonald, M.S.; Black, C. Quantitative analysis of the flavonoids content of commercial tomatoes, onions, lettuce and celery. J. Agric. Food Chem. 1997, 45, 590–595. [Google Scholar] [CrossRef]
- Raffo, A.; la Malfa, G.; Fogliano, V.; Maiani, G.; Quaglia, G. Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). J. Food Compost. Anal. 2006, 19, 11–19. [Google Scholar] [CrossRef]
- Hara, Y.; Luo, S.J.; Wickremasinghe, R.L.; Yamanishi, T. Special issue on tea. Food Rev. Int. 1995, 11, 371–542. [Google Scholar]
- Xu, J.Z.; Leung, L.K.; Huang, Y.; Chen, Z.Y. Epimerisation of tea polyphenols in tea drinks. J. Sci. Food Agric. 2003, 83, 1617–1621. [Google Scholar] [CrossRef]
- Price, K.R.; Rhodes, M.J.C.; Barnes, K.A. Flavonol glycoside content and composition of tea infusions made from commercially available teas and tea products. J. Agric. Food Chem. 1998, 46, 2517–2522. [Google Scholar] [CrossRef]
- Natsume, M.; Osakabe, N.; Yamagishi, M.; Takizawa, T.; Nakamura, T.; Miyatake, H.; Hatano, T.; Yoshida, T. Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci. Biotechnol. Biochem. 2000, 64, 2581–2587. [Google Scholar] [CrossRef]
- Gu, L.; House, S.E.; Wu, X.; Ou, B.; Prior, R.L. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J. Agric. Food Chem. 2006, 54, 4057–4061. [Google Scholar] [CrossRef] [PubMed]
- Tomas-Barberan, F.A.; Cienfuegos-Jovellanos, E.; Marin, A.; Muguerza, B.; Gil-Izquierdo, A.; Cerda, B.; Zafrilla, P.; Morillas, J.; Mulero, J.; Ibarra, A.; et al. A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J. Agric. Food Chem. 2007, 55, 3926–3935. [Google Scholar] [CrossRef]
- Lee, K.W.; Kim, Y.J.; Kim, D.O.; Lee, H.J.; Lee, C.Y. Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agric. Food Chem. 2003, 51, 6516–6520. [Google Scholar] [CrossRef] [PubMed]
- Vrhovsek, U.; Rigo, A.; Tonon, D.; Mattivi, F. Quantitation of polyphenols in different apple varieties. J. Agric. Food Chem. 2004, 52, 6532–6538. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.; Crozier, A. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem. 2000, 48, 2663–2669. [Google Scholar] [CrossRef] [PubMed]
- Lugasi, A.; Hovari, J. Flavonoid aglycons in foods of plant origin. II. Fresh and dried fruits. Acta Aliment. 2002, 31, 63–71. [Google Scholar] [CrossRef]
- Mullen, W.; Stewart, A.J.; Lean, M.E.J.; Gardner, P.; Duthie, G.G.; Crozier, A. Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. J. Agric. Food Chem. 2002, 50, 5197–5201. [Google Scholar] [CrossRef] [PubMed]
- Wada, L.; Boxin, O. Antioxidant activity and phenolic content of Oregon caneberries. J. Agric. Food Chem. 2002, 50, 3495–3500. [Google Scholar] [CrossRef]
- Maatta-Riihinen, K.R.; Kamal-Eldin, A.; Torronen, A.R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J. Agric. Food Chem. 2004, 52, 6178–6187. [Google Scholar] [CrossRef]
- Romani, A.; Mulinacci, N.; Pinelli, P.; Vincieri, F.F.; Cimato, A. Polyphenolic content in five Tuscany cultivars of Olea europaea L. J. Agric. Food Chem. 1999, 47, 964–967. [Google Scholar] [CrossRef]
- Maeda, T.; Kakuta, H.; Sonoda, T.; Motoki, S.; Ueno, R.; Suzuki, T.; Oosawa, K. Antioxidation capacities of extracts from green, purple, and white asparagus spears related to polyphenol concentration. HortScience 2005, 40, 1221–1224. [Google Scholar] [CrossRef]
- Carmona, M.; Sanchez, A.M.; Ferreres, F.; Zalacain, A.; Tomas-Barberan, F.; Alonso, G.L. Identification of the flavonoid fraction in saffron spice by LC/DAD/MS/MS: Comparative study of samples from different geographical origins. Food Chem. 2007, 100, 445–450. [Google Scholar] [CrossRef]
- Chang, S.; Tan, C.; Frankel, E.N.; Barrett, D.M. Low-density lipoprotein antioxidant activity of phenolic compounds and polyphenol oxidase activity in selected clingstone peach cultivars. J. Agric. Food Chem. 2000, 48, 147–151. [Google Scholar] [CrossRef]
- Tomas-Barberan, F.A.; Cienfuegos-Jovellanos, E.; Marin, A.; Muguerza, B.; Gil-Izquierdo, A.; Cerda, B.; Zafrilla, P.; Morillas, J.; Mulero, J.; Ibarra, A.; et al. HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J. Agric. Food Chem. 2001, 49, 4748–4760. [Google Scholar] [CrossRef]
- Harnly, J.M.; Doherty, R.F.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Bhagwat, S.; Gebhardt, S. Flavonoid content of U.S. fruits, vegetables, and nuts. J. Agric. Food Chem. 2006, 54, 9966–9977. [Google Scholar] [CrossRef]
- Milbury, P.E.; Chen, C.Y.; Dolnikowski, G.G.; Blumberg, J.B. Determination of flavonoids and phenolics and their distribution in almonds. J. Agric. Food Chem. 2006, 54, 5027–5033. [Google Scholar] [CrossRef]
- Kreft, S.; Knapp, M.; Kreft, I. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J. Agric. Food Chem. 1999, 47, 4649–4652. [Google Scholar] [CrossRef]
- Hertog, M.G.L.; Hollman, P.C.H.; Katan, M.B. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J. Agric. Food Chem. 1992, 40, 2379–2383. [Google Scholar] [CrossRef]
- Vlahov, G. Flavonoids in three olive (Olea europaea) fruit varieties during maturation. J. Sci. Food Agric. 1992, 58, 157–159. [Google Scholar] [CrossRef]
- Miyake, Y.; Shimoi, K.; Kumazawa, S.; Yamamoto, K.; Kinae, N.; Osawa, T. Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treatedrats. J. Agric. Food Chem. 2000, 48, 3217–3224. [Google Scholar] [CrossRef]
- Rousseff, R.L.; Martin, S.F.; Youtsey, C.O. Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. J. Agric. Food Chem. 1987, 35, 1027–1030. [Google Scholar] [CrossRef]
- Justesen, U.; Knuthsen, P.; Leth, T. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J. Chromatogr. A 1999, 799, 101–110. [Google Scholar] [CrossRef]
- Reinli, K.; Block, G. Phytoestrogen content of foods: A compendium of literature values. Nutr. Cancer 1996, 26, 123–148. [Google Scholar] [CrossRef]
- Wiseman, H.; Casey, K.; Clarke, D.B.; Barnes, K.A.; Bowey, E. Isoflavone aglycon and glucoconjugate content of high- and low-soy UK foods used in nutritional studies. J. Agric. Food Chem. 2002, 50, 1401–1410. [Google Scholar] [CrossRef]
- Chen, X.J.; Zhao, J.; Meng, Q.; Li, S.P.; Wang, Y.T. Simultaneous determination of five flavonoids in licorice using pressurized liquid extraction and capillary electrochromatography coupled with peak suppression diode array detection. J. Chromatogr. A 2009, 1216, 7329–7335. [Google Scholar] [CrossRef]
- Leuner, O.; Havlik, J.; Hummelova, J.; Prokudina, E.; Novy, P.; Kokoska, L. Distribution of isoflavones and coumestrol in neglected tropical and subtropical legumes. J. Sci. Food Agric. 2013, 93, 575–579. [Google Scholar] [CrossRef]
- Chukwumah, Y.C.; Walker, L.T.; Verghese, M.; Bokanga, M.; Ogutu, S.; Alphonse, K. Comparison of extraction methods for the quantification of selected phytochemicals in peanuts (Arachis hypogaea). J. Agric. Food Chem. 2007, 55, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.; Shaari, A.R.; Azimi, A. Effect of Drying Methods on Metabolites Composition of Misai Kucing (Orthosiphon stamineus) Leaves. APCBEE Procedia 2012, 2, 178. [Google Scholar] [CrossRef]
- Gupta, K.K.; Taneja, S.C.; Dhar, K.L.; Atal, C.K. Flavonoids of Andrographis paniculata. Phytochemistry 1983, 22, 314–315. [Google Scholar] [CrossRef]
- L’azaro, M.L. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. 2009, 9, 31–59. [Google Scholar] [CrossRef]
- Sankaranarayanan, S.; Bama, P.; Ramachandran, J.; Kalaichelvan, P.T.; Deccaraman, M.; Vijayalakshimi, M.; Dhamotharan, R.; Dananjeyan, B.; Bama, S.S. Ethnobotanical study of medicinal plants used by traditional users in Villupuram district of Tamil Nadu, India. J. Med. Plant Res. 2010, 4, 1089–1101. [Google Scholar]
- Lin, L.J.; Huang, X.B.; Lv, Z.C. Isolation and identification of flavonoids components from Pteris vittata L. SpringerPlus 2016, 5, 1649. [Google Scholar] [CrossRef]
- Tripoli, E.; Guardia, M.L.; Giammanco, S.; Majo, D.D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.Y.; Kim, K.N.; Kim, H.S. Quantitative analysis of two major flavonoid aglycones in acid hydrolyzed samples of Angelica keiskei by HPLC. Food Sci. Biotechnol. 2003, 12, 415–418. [Google Scholar]
- Murlidhar, A.; Babu, K.S.; Sankar, T.R.; Redenna, P.; Reddy, G.V.; Latha, J. Antiinflammatory activity of flavonoid fraction isolated from stem bark of Butea monosperma (Lam): A mechanism based study. Int. J. Phytopharm. 2010, 1, 124–132. [Google Scholar]
- Sannomiya, M.; Fonseca, V.B.; Silva, M.A.D.; Rocha, L.R.M.; Dos Santos, L.C.; Hiruma-Lima, C.A.; Souza Brito, A.R.M.; Vilegas, W. Flavonoids and antiulcerogenic activity from Byrsonima crassa leaves extracts. J. Ethnopharm. 2005, 97, 1–6. [Google Scholar] [CrossRef]
- Agarwal, M.; Kamal, R. Studies on flavonoid production using in-vitro cultures of Momordica charantia. Indian J. Biotechnol. 2007, 6, 277–279. [Google Scholar]
- Arora, S.; Itankar, P. Extraction, isolation and identification of flavonoid from Chenopodium album aerial parts. J. Tradit. Complement. Med. 2018, 8, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Janmeda, P. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arab. J. Chem. 2017, 10, 509–514. [Google Scholar] [CrossRef]
- Ghoulami, S.; Idrissi, A.I.; Fkih-Tetouani, S. Phytochemical study of Mentha longifolia of Morocco. Fitoterapia 2001, 72, 596–598. [Google Scholar] [CrossRef]
- Kogawa, K.; Kazuma, K.; Kato, N.; Noda, N.; Suzuki, M. Biosynthesis of malonylated flavonoid glycosides on basis of malonyl transferase activity in the petals of Clitoria ternatea. J. Plant Physiol. 2007, 164, 886–894. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Luis, J.C.; Johnson, C.B. Seasonal variations of rosmarinic and carnosic acids in rosemary extracts. Analysis of their in vitro antiradical activity. Span. J. Agric. Res. 2005, 3, 106–112. [Google Scholar] [CrossRef]
- Mueller, A.; Ganzera, M.; Stuppner, H. Analysis of the aerial parts of Verbena officinalis L. by micellar electrokinetic capillary chromatography. Chromatographia 2004, 60, 193–197. [Google Scholar]
- Zhang, Q.; Yu, J.; Wang, Y.; Su, W. Selective Extraction of Flavonoids from Sophora flavescens Ait by Mechanochemistry. Molecules 2016, 21, 989. [Google Scholar] [CrossRef] [PubMed]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69–75. [Google Scholar] [PubMed]
- Marston, A.; Hostettmann, K. Separation and quantification of flavonoids. In Flavonoids: Chemistry, Biochemistry and Applications; Andersen, O.M., Markham, K.R., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–32. [Google Scholar]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind. Crops Prod. 2013, 44, 566–571. [Google Scholar] [CrossRef]
- Tzanova, M.T.; Grozeva, N.H.; Gerdzhikova, M.A.; Argirova, M.D.; Pavlov, D.H.; Terzieva, S.R. Flavonoid content and antioxidant activity of Betonica bulgarica Degen et Neič. Bulg. Chem. Commun. 2018, 50, 90–97. [Google Scholar]
- Temidayo, A.R. Extraction and Isolation of Flavonoids Present in the Methanolic Extract of Leaves of Acanthospermum Hispidium Dc. Glob. J. Med. Plant Res. 2013, 1, 111–123. [Google Scholar]
- Mediani, F.A.; Khatib, A.; Tan, C.P. Cosmos Caudatus as a potential source of polyphenolic compounds: Optimisation of oven drying conditions and characterisation of its functional properties. Molecules 2013, 18, 10452–10464. [Google Scholar] [CrossRef]
- Borhan, M.Z.; Ahmad, R.; Rusop, M.M.; Abdullah, S. Impact of Nano powders on Extraction Yield of Centella asiatica. Adv. Mater. Res. 2013, 667, 246–250. [Google Scholar] [CrossRef]
- Hossain, M.A.; Rahman, S.M.M. Isolation and characterisation of flavonoids from the leaves of medicinal plant Orthosiphon stamineus. Arab. J. Chem. 2015, 8, 218–221. [Google Scholar] [CrossRef]
- Pk, M.U.; Talukder, R.I.; Sarkar, M.K.I.; Rahman, T.; Pervin, R.; Rahman, M.; Zenat, E.A.; Akther, L. Effect of Solvents on Phytochemicals Content and Antioxidant Activity of Ganoderma lucidum. Open Microbiol. J. 2019, 13, 10–15. [Google Scholar]
- Baber, R. Phytoestrogens and post reproductive health. Maturitas 2010, 66, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Damián-Reyna, A.A.; González-Hernández, J.C.; Chávez-Parga, M.C. Current procedures for extraction and purification of citrus flavonoids. Rev. Colomb. Biotecnol. 2016, 18, 135–147. [Google Scholar]
- Wallace, R.G.W.; Burong, G.W.B. Extraction of Flavonoids. DE Patent DE60114151T2, 20 July 2006. [Google Scholar]
- Li-Hsun, C.; Ya-Chuan, C.; Chieh-Ming, C. Extracting and purifying isoflavones from defatted soybean flakes using superheated water at elevated pressures. Food Chem. 2004, 84, 279–285. [Google Scholar] [CrossRef]
- Cosa, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Musa, Y.M. Isolation and Purification of Flavonoids from the Leaves of Mitracarpushirtus Plant. IOSR J. Appl. Chem. 2015, 8, 1–3. [Google Scholar]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Lu, H.; Yang, K.; Zhan, L.; Lu, T.; Chen, X.; Cai, X.; Zhou, C.; Li, H.; Qian, L.; Lv, G.; et al. Optimization of Flavonoid Extraction in Dendrobium officinale Leaves and Their Inhibitory Effects on Tyrosinase Activity. Int. J. Anal. Chem. 2019. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Sajak, A.A.B.; Ooi, K.L.; Seow, E.M.; Sulaiman, S.; Sajak, A.; Ooi, K.; Supriatno, K.; Seow, E. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Compos. Anal. 2011, 24, 506–515. [Google Scholar] [CrossRef]
- Laghari, A.Q.; Memon, S.; Nelofar, A.; Laghari, A.H. Extraction, identification and antioxidative properties of the flavonoid-rich fractions from leaves and flowers of Cassia angustifolia. Am. J. Anal. Chem. 2011, 2, 871–878. [Google Scholar] [CrossRef]
- Megías, C.; Cortés-Giraldo, I.; Alaiz, M.; Vioque, J.; Girón-Calle, J. Isoflavones in chickpea (Cicer arietinum) protein concentrates. J. Funct. Foods 2016, 21, 186–192. [Google Scholar] [CrossRef]
- Fotso, G.W.; Maher, F.A.; Ngnintedo, D.; Ango, P.Y.; Kapche, D.G.F.W.; Ngameni, B.; Ngwenya, B.; Yeboah, S.O.; Ngadjui, B.T.; Andrae-Marobela, K. Three new isoflavonoids with antioxidant properties from Ptycholobium contortum (N.E.Br.) Brummitt (Leguminosae). Phytochem. Lett. 2015, 14, 254–259. [Google Scholar] [CrossRef]
- Ma, F.-Y.; Luo, M.; Zhao, C.-J.; Li, C.-Y.; Wang, W.; Gu, C.-B.; Wei, Z.-F.; Zu, Y.-G.; Fu, Y.-J. Simple and efficient preparation of biochanin A and genistein from Dalbergia odorifera T. Chen leaves using macroporous resin followed by flash chromatography. Sep. Purif. Technol. 2013, 120, 310–318. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ryu, Y.B.; Curtis-Long, M.J.; Yuk, H.J.; Cho, J.K.; Kim, J.Y.; Kim, K.D.; Lee, W.S.; Park, K.H. Flavanones and carotenoids from the roots of Amorpha fruticosa L. that inhibit bacterial neuraminidase. Food Chem. Toxicol. 2011, 49, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, X.; He, C. An isoflavonoid-enriched extract from Pueraria lobata (kudzu) root protects human umbilical vein endothelial cells against oxidative stress induced apoptosis. J. Ethnopharm. 2016, 193, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, H.; Yang, H.; Nie, L.; Zang, H. Rapid determination of major bioactive isoflavonoid compounds during the extraction process of kudzu (Pueraria lobata) by near-infrared transmission spectroscopy. Spectrochim. Acta A 2015, 137, 1403–1408. [Google Scholar] [CrossRef]
- Xiao, B.-X.; Feng, L.; Cao, F.-R.; Pan, R.-L.; Liao, Y.-H.; Liu, X.-M.; Chang, Q. Pharmacokinetic profiles of the five isoflavonoids from Pueraria lobata roots in the CSF and plasma of rats. J. Ethnopharmacol. 2016, 184, 22–29. [Google Scholar] [CrossRef]
- Lutz, M.; Martínez, A.; Martínez, E.A. Daidzein and genistein contents in seeds of quinoa (Chenopodium quinoa Willd.) from local ecotypes grown in arid Chile. Ind. Crops Prod. 2013, 49, 117–121. [Google Scholar] [CrossRef]
- Mun, S.-C.; Mun, G.-S. Dynamics of phytoestrogen, isoflavonoids, and its isolation from stems of Pueraria lobata (Willd.) Ohwi growing in Democratic People’s Republic of Korea. J. Food Drug Anal. 2015, 23, 538–544. [Google Scholar] [CrossRef]
- Bimakr, M.; Rahman, R.A.; Taip, F.S.; Ganjloo, A.; Salleh, L.M.; Selamat, J.; Hamid, A.; Zaidul, I.S.M. Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod. Process. 2011, 89, 67–72. [Google Scholar] [CrossRef]
- Pluempanupat, S.; Kumrungsee, N.; Pluempanupat, W.; Ngamkitpinyo, K.; Chavasiri, W.; Bullangpoti, V.; Koul, O. Laboratory evaluation of Dalbergia oliveri (Fabaceae: Fabales) extracts and isolated isoflavonoids on Aedes aegypti (Diptera: Culicidae) mosquitoes. Ind. Crops Prod. 2013, 44, 653–658. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef]
- Vankar, P.S.; Srivastava, J. Evaluation of Anthocyanin Content in Red and Blue Flowers. Int. J. Food Eng. 2010, 6, 4. [Google Scholar] [CrossRef]
- Oancea, S.; Stoia, M.; Coman, D. Effects of extraction conditions on bioactive anthocyanin content of Vaccinium corymbosum in the perspective of food applications. Procedia Eng. 2012, 42, 489–495. [Google Scholar] [CrossRef]
- Amid, A.; Salim, R.J.; Adenan, M. The Factors Affecting the Extraction Conditions for Newroprotective Activity of Centella asiatica evaluated by Metal Chelating Activity Assay. J. Appl. Sci. 2010, 10, 837–842. [Google Scholar]
- Anuradha, M.; Pragyandip, P.D.; Richa, K.; Murthy, P.N. Evaluation of Neuropharmacological Effects of Ethanolic Extract of Clitorea Ternatea Flowers. Pharmacol. Online 2010, 1, 284–292. [Google Scholar]
- Kwon, M.C.; Choi, W.Y.; Seo, Y.C.; Kim, J.S.; Yoon, C.S.; Lim, H.W.; Kim, H.S.; Ahn, J.H.; Lee, H.Y. Enhancement of the Skin-Protective Activities of Centella asiatica L. Urban by a Nanoencapsulation Process. J. Biotechnol. 2012, 157, 100–106. [Google Scholar] [CrossRef]
- Huie, C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem. 2002, 373, 23–30. [Google Scholar] [CrossRef]
- Ebrahim, N.; Kershi, M.; Butnariub, M. Antioxidant Activity and Anthocyanin Content in Flower of Mirabilis jalab L. Collected from Yemen. World Appl. Sci. J. 2014, 29, 247–251. [Google Scholar]
- Lu, J.; Xu, Y.; Yang, M.; Fu, X.; Luo, F.; Li, Z. Optimization of ultrasound-assisted extraction of flavonoids from Cryptotaenia japonica Hassk, evaluation of antioxidant activity. J. Agric. Sci. 2015, 7, 138–146. [Google Scholar] [CrossRef][Green Version]
- Huaneng, X.U.; Zhang, Y.; Chaohong, H. Ultrasonically assisted extraction of isoflavones from stem of Pueraria lobata (Willd.) Ohwi and its mathematical model. Chin. J. Chem. Eng. 2007, 15, 861–867. [Google Scholar]
- Sun, B.-L.; Yang, Y.-F.; Hu, X.; Xie, X.-X.; Meucci, J.; Fang, M.; Zhao, L.-J. Purification of puerarin from Pueraria lobata by FCPC versus HSCCC using small-volume columns. Chin. Herb. Med. 2014, 6, 140–144. [Google Scholar] [CrossRef]
- Zeng, A.; Xing, J.; Wang, C.; Song, J.; Li, C.; Yang, X.; Yang, G. Simultaneous analysis and retention behavior of major isoflavonoids in Radix Puerariae lobatae and Radix Puerariae thomsonii by high performance liquid chromatography with cyclodextrins as a mobile phase modifier. Anal. Chim. Acta. 2012, 712, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Z.; Wang, J. Ultrasound-assisted extraction of five isoflavones from Iris tectorum Maxim. Sep. Purif. Technol. 2011, 78, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-Z.; Yiu, H.H.W.; Qiao, C.-F.; Han, Q.-B.; Xu, H.X. Chemical comparison and classification of Radix Astragali by determination of isoflavonoids and astragalosides. J. Pharm. Biomed. Anal. 2008, 47, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Londono-Londono, J.; de Lima, V.R.; Lara, O.; Gil, A.; Pasa, T.B.; Arango, G.J.; Pineda, J.R. Clean recovery of antioxidant flavonoids from citrus peel: Optimizing an aqueous ultrasound-assisted extraction method. Food Chem. 2010, 119, 81–87. [Google Scholar] [CrossRef]
- Carrera, C.; Ruiz-Rodriguez, A.; Palma, M.; Barroso, C.G. Ultrasound-assisted extraction of phenolic compounds from grapes. Anal. Chim. Acta 2012, 732, 100–104. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Plaza-Morales, M.; Giovagnoli-Vicuna, C.; Jamett, F. High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: Effects of extraction conditions and methods. LWT Food Sci. Technol. 2015, 60, 525–534. [Google Scholar] [CrossRef]
- Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Dangles, O.; Chemat, F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 2010, 119, 851–858. [Google Scholar] [CrossRef]
- Santos, D.T.; Veggi, P.C.; Meireles, M.A. Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. J. Food Eng. 2012, 108, 444–452. [Google Scholar] [CrossRef]
- Sahin, S.; Samli, R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef]
- Wang, J.; Sun, B.; Cao, Y.; Tian, Y.; Li, X. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 2008, 106, 804–810. [Google Scholar] [CrossRef]
- Pananun, T.; Montalbo-Lomboy, M.; Noomhorm, A.; Grewell, D.; Lamsal, B. High-power ultrasonication-assisted extraction of soybean isoflavones and effect of toasting. Food Sci. Technol. 2012, 47, 199–207. [Google Scholar] [CrossRef]
- Xiao, W.; Han, L.; Shi, B. Optimization of microwave-assisted extraction of flavonoid from Radix astragali using response surface methodology. Sep. Sci. Technol. 2008, 43, 671–681. [Google Scholar] [CrossRef]
- Perino-Issartier, S.; Abert-Vian, M.; Chemat, F. Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food Bioprocess Technol. 2011, 4, 1020–1028. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Palma, M.; Barroso, C.G. Microwave-assisted extraction of soy isoflavones. Anal. Chim. Acta 2007, 588, 274–282. [Google Scholar] [CrossRef]
- Zhou, T.; Xiao, X.; Li, G.; Cai, Z.W. Study of polyethylene glycol as a green solvent in the microwave-assisted extraction of flavone and coumarin compounds from medicinal plants. J. Chromatogr. A 2011, 1218, 3608–3615. [Google Scholar] [CrossRef]
- Bai, X.L.; Yue, T.L.; Yuan, Y.H.; Zhang, H.W. Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J. Sep. Sci. 2010, 33, 3751–3758. [Google Scholar] [CrossRef]
- Svarc-Gajic, J.; Stojanovic, Z.; Carretero, A.S.; Roman, D.A.; Borras, I.; Vasiljevic, I. Development of a microwave-assisted extraction for the analysis of phenolic compounds from Rosmarinus officinalis. J. Food Eng. 2013, 119, 525–532. [Google Scholar] [CrossRef]
- Du, F.Y.; Xiao, X.H.; Luo, X.J.; Li, G.K. Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta 2009, 78, 1177–1184. [Google Scholar] [CrossRef]
- Krishnan, R.Y.; Rajan, K.S. Influence of microwave irradiation on kinetics and thermodynamics of extraction of flavonoids from Phyllanthus emblica. Braz. J. Chem. Eng. 2017, 34, 885–899. [Google Scholar]
- Liu, Y.-K.; Yan, E.; Zhan, H.-Y.; Zhang, Z.-Q. Response surface optimization of microwave-assisted extraction for HPLC-fluorescence determination of puerarin and daidzein in Radix Puerariae thomsonii. J. Pharm. Anal. 2011, 1, 13–19. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, T.; Wang, M.; Han, S.; Wan, P.; Fan, M. Extraction of isoflavonoids from Pueraria by combining ultrasound with microwave vacuum. Chem. Eng. Process. 2008, 47, 2256–2261. [Google Scholar] [CrossRef]
- Ma, F.-Y.; Gu, C.-B.; Li, C.-Y.; Luo, M.; Wang, W.; Zu, Y.-G.; Li, J.; Fu, Y.-J. Microwave-assisted aqueous two-phase extraction of isoflavonoids from Dalbergia odorifera T. Chen leaves. Sep. Purif. Technol. 2013, 115, 136–144. [Google Scholar] [CrossRef]
- Cui, Q.; Peng, X.; Yao, X.-H.; Wei, Z.-F.; Luo, M.; Wang, W.; Zhao, C.-J.; Fu, Y.-J.; Zu, Y.-G. Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Sep. Purif. Technol. 2015, 150, 63–72. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Korta, E.; Barranco, A.; Berrueta, L.A.; Gallo, B.; Vicente, F. Pressurized liquid extraction for the determination of polyphenols in apple. J. Chromatogr. A 2001, 933, 37–43. [Google Scholar] [CrossRef]
- Luthria, D.L. Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chem. 2008, 107, 745–752. [Google Scholar] [CrossRef]
- Arapitsas, P.; Turner, C. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta 2008, 74, 1218–1223. [Google Scholar] [CrossRef]
- Cheigh, C.I.; Chung, E.Y.; Chung, M.S. Enhanced extraction of flavanones hesperidin and narirutin from Citrus unshiu peel using subcritical water. J. Food Eng. 2012, 110, 472–477. [Google Scholar] [CrossRef]
- Pineiro, Z.; Palma, M.; Barross, C.G. Determination of catechins by means of extraction with pressurized liquids. J. Chromatogr. A 2004, 1026, 19–23. [Google Scholar] [CrossRef]
- Gizir, A.M.; Turker, N.; Artuvan, E. Pressurized acidified water extraction of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) anthocyanins. Eur. Food Res. Technol. 2008, 226, 363–370. [Google Scholar] [CrossRef]
- Ju, Z.Y.; Howard, L.R. Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. J. Agric. Food Chem. 2003, 51, 5207–5213. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Ji, T.; Jiang, G.; Hu, F. Simultaneous identification and quantification of five flavonoids in the seeds of Rheum palmatum L. by using accelerated solvent extraction and HPLC-PDA-ESI/MSn. Arab. J. Chem. 2019, 12, 1345–1352. [Google Scholar] [CrossRef]
- Zgórka, G. Pressurized liquid extraction versus other extraction techniques in micropreparative isolation of pharmacologically active isoflavones from Trifolium L. species. Talanta 2009, 79, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.-C.; Chang, C.-M.J. Continuous hot pressurized fluids extraction of isoflavones and soyasaponins from defatted soybean flakes. J. Chin. Inst. Chem. Eng. 2007, 38, 313–319. [Google Scholar] [CrossRef]
- Rodríguez-Meizoso, I.; Marin, F.R.; Herrero, M.; Señorans, F.J.; Reglero, G.; Cifuentes, A.; Ibáñez, E. Subcritical Water Extraction of Nutraceuticals with Antioxidant Activity from Oregano. Chemical and Functional Characterization. J. Pharm. Biomed. Anal. 2006, 41, 1560–1565. [Google Scholar]
- Kumar, M.S.Y.; Dutta, R.; Prasad, D.; Misra, K. Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chem. 2011, 127, 1309–1316. [Google Scholar] [CrossRef]
- Prado, J.M.; Dalmolin, I.; Carareto, N.D.; Basso, R.C.; Meirelles, A.J.; Oliveira, J.V.; Batista, E.A.; Meireles, M.A. Supercritical fluid extraction of grape seed: Process scale-up, extract chemical composition and economic evaluation. J. Food Eng. 2012, 109, 249–257. [Google Scholar] [CrossRef]
- Braga, M.E.; Santos, R.M.; Seabra, I.J.; Facanali, R.; Marques, M.O.; de Sousa, H.C. Fractioned SFE of antioxidants from maritime pine bark. J. Supercrit. Fluid. 2008, 47, 37–48. [Google Scholar] [CrossRef]
- Farias-Campomanes, A.M.; Rostagno, M.A.; Meireles, M.A. Production of polyphenol extracts from grape bagasse using supercritical fluids: Yield, extract composition and economic evaluation. J. Supercrit. Fluids 2013, 77, 70–78. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Villares, A.; Guillamón, E.; García-Lafuente, A.; Martínez, J.A. Sample preparation for the analysis of isoflavones from soybeans and soy foods. J. Chromatogr. A 2009, 1216, 2–29. [Google Scholar] [CrossRef]
- Araújo, J.M.A.; Silva, M.V.; Chaves, J.B.P. Supercritical fluid extraction of daidzein and genistein isoflavones from soybean hypocotyl after hydrolysis with endogenous β-glucosidases. Food Chem. 2007, 105, 266–272. [Google Scholar] [CrossRef]
- Murga, R.; Ruiz, R.; Beltrán, S.; Cabezas, J.L. Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. J. Agric. Chem. 2000, 48, 3408–3412. [Google Scholar] [CrossRef] [PubMed]
- Vatai, T.; Škerget, M.; Knez, Ž. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. J. Food Eng. 2009, 90, 246–254. [Google Scholar] [CrossRef]
- Ghafoor, K.; Park, J.; Choi, Y.H. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innov. Food Sci. Emerg. Technol. 2010, 11, 485–490. [Google Scholar] [CrossRef]
- Maier, T.; Goppert, A.; Kammerer, D.R.; Schieber, A.; Carle, R. Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. Eur. Food Res. Technol. 2008, 227, 267–275. [Google Scholar] [CrossRef]
- Visnevschi-Necrasov, T.; Cunha, C.S.; Nunes, E.; Oliveira, M.B.P.P. Optimization of matrix solid-phase dispersion extraction method for the analysis of isoflavones in Trifolium pretense. J. Chromatogr. A 2009, 1216, 3720–3724. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Wang, Z.; Xu, T.; Li, C.; Li, W. Matrix solid-phase dispersion extraction followed by high performance liquid chromatography-diode array detection and ultra-performance liquid chromatography–quadrupole–time of flight–mass spectrometer method for the determination of the main compounds from Carthamus tinctorius L. (Hong-hua). J. Pharm. Biomed. Anal. 2015, 107, 464–472. [Google Scholar]
- Sun, T.; Li, X.; Yang, J.; Li, L.; Jin, Y.; Shi, X. Graphene-encapsulated silica as matrix solid-phase dispersion extraction sorbents for the analysis of poly-methoxylated flavonoids in the leaves of Murraya panaculata (L.) Jack. J. Sep. Sci. 2015, 38, 2132–2139. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Zu, Y.-G.; Fu, Y.-J.; Luo, M.; Gu, C.-B.; Wang, W.; Yao, X.-H. Negative pressure cavitation extraction and antioxidant activity of biochanin A and genistein from the leaves of Dalbergia odorifera T. Chen. Sep. Purif. Technol. 2011, 83, 91–99. [Google Scholar] [CrossRef]
- Liu, W.; Fu, Y.; Zu, Y.; Kong, Y.; Zhang, L.; Zu, B.; Efferth, T. Negative-pressure Cavitation Extraction for the Determination of Flavonoids in Pigeon Pea Leaves by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2009, 1216, 3841–3850. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.L.; Fu, J.Y.; Zu, Y.G.; Li, J.; Li, X.J.; Efferth, T. Negative pressure cavitation accelerated processing for extraction of main bioactive flavonoids from Radix Scutellariae. Chem. Eng. Process. 2011, 50, 780–789. [Google Scholar] [CrossRef]
- Zhao, B.-S.; Fu, Y.-J.; Wang, W.; Zu, Y.-G.; Gu, C.B.; Luo, M.; Efferth, T. Enhanced extraction of isoflavonoids from Radix Astragali by incubation pretreatment combined with negative pressure cavitation and its antioxidant activity. Innov. Food Sci. Emerg. Tech. 2011, 12, 577–585. [Google Scholar] [CrossRef]
- Wang, G.; Cui, Q.; Yin, L.J.; Li, Y.; Gao, M.Z.; Meng, Y.; Li, J.; Zhang, S.N.; Wang, W. Negative pressure cavitation based ultrasound-assisted extraction of main flavonoids from Flos Sophorae Immaturus and evaluation of its extraction kinetics. Sep. Purif. Technol. 2020, 244, 115805. [Google Scholar] [CrossRef]
- Kurepa, J.; Nakabayashi, R.; Paunesku, T.; Suzuki, M.; Saito, K.; Woloschak, G.E.; Smalle, J.A. Direct isolation of flavonoids from plants using ultra-small anatase TiO2 nanoparticles. Plant J. 2014, 77, 443–453. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. Trends Analyt. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Palma, M.; Barroso, C.G. Ultrasound-assisted extraction of soy isoflavones. J. Chromatogr. A 2003, 1012, 119–128. [Google Scholar] [CrossRef]
- Trusheva, B.; Trunkova, D.; Bankova, V. Different extraction methods of biologically active components from propolis: A preliminary study. Chem. Cent. J. 2007, 1, 13. [Google Scholar] [CrossRef]
- Hui, T.; Ghafoor, K.; Choi, Y.H. Optimization of microwave-assisted extraction of active components from Chinese quince using response surface methodology. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 694–701. [Google Scholar]
- Song, J.Z.; Mo, S.F.; Yip, Y.K.; Qiao, C.F.; Han, Q.B.; Xu, H.X. Development of microwave assisted extraction for the simultaneous determination of isoflavonoids and saponins in radix astragali by high performance liquid chromatography. J. Sep. Sci. 2007, 30, 819–824. [Google Scholar] [CrossRef]
- Benthin, B.; Danz, H.; Hamburger, M. Pressurized liquid extraction of medicinal plants. J. Chromatogr. A 1999, 837, 211–219. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Cuevas-Valenzuela, J.; Perez-Correa, J.R. Pressurized hot water extraction of polyphenols from plant material. In Biotechnology of Bioactive Compounds: Sources and Applications; Kumar, V.G., Tuohy, M.G., Lohani, M., O’Donovan, A., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2015; pp. 63–101. [Google Scholar]
- Ko, M.J.; Kwon, H.L.; Chung, M.S. Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel. Innov. Food Sci. Emerg. Technol. 2016, 38, 175–181. [Google Scholar] [CrossRef]
- Blicharski, T.; Oniszczuk, A. Extraction Methods for the Isolation of Isoflavonoids from Plant Material. Open Chem. 2017, 15, 34–45. [Google Scholar] [CrossRef]
- Jung, S.; Murphy, P.A.; Sala, I. Isoflavone profiles of soymilk as affected by high-pressure treatments of soymilk and soybeans. Food Chem. 2008, 111, 592–598. [Google Scholar] [CrossRef]
- Moras, B.; Rey, S.; Vilarem, G.; Pontalier, P.-V. Pressurized water extraction of isoflavones by experimental design from soybean flour and Soybean Protein Isolate. Food Chem. 2017, 214, 9–15. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Roohinejad, S.; Kouba, M.; Barba, F.J.; Greiner, R.; Orlien, V.; Lebovka, N.I. Negative pressure cavitation extraction: A novel method for extraction of food bioactive compounds from plant materials. Trends Food Sci. Technol. 2016, 52, 98–108. [Google Scholar] [CrossRef]
Flavonoid Group & Basic Structure | Flavonoids | Food | References |
---|---|---|---|
and | Kaempferol; quercetin; myrecitin; (−)-epicatechin | Black berries; wine | [21] [22] [23] |
Kaempferol; quercetin | Tomato | [24] [25] | |
(+)-Catechin; (−)-epicatechin; epigallocatechin; chrysin; apigenin; quercetin; kaempferol | Tea | [26] [27] [28] | |
(+)-Catechin; (−)-epicatechin; quercetin | Coffee; cocoa; apple | [22] [29] [30] [31] [32] [33] | |
Kaempferol; quercetin; myricetin; tamarixetin | Onion; red wine; olive oil; berries; grapefruit; orange | [34] [35] | |
(+)-Catechin; (−)-epicatechin; quercetin; kaempferol | Red berries; strawberries | [22] [36] [37] [38] | |
Quercetin | Lemon; olive; aspargus | [35] [39] [40] | |
Kaempferol | Saffron spice | [41] | |
Kaempferol; quercetin | Broccoli; brussel sprouts | [28] [35] | |
(+)-Catechin; (−)-epicatechin | Apricot; nectarine; peach; plum; fig; banana; kiwi; hazelnut | [23] [22] [42] [43] [44] | |
(+)-Catechin; (−)-epicatechin; quercetin; isorhamnetin; kaempferol | Almond | [44] [45] | |
Luteolin | Fruit skins; red wine; buckwheat; red pepper; tomato skin; lemon; watermelon; brussel sprouts; pumpkin | [46] [47] [34] [35] | |
Luteolin; apigenin; isorhoifolin | Olive | [39] [48] | |
Naringin; eriodictyol | Almond | [45] | |
Naringin; maringenin; taxifolin; hesperitin; eriodictyol | Citrus fruits; grapefruit; lemon; orange | [49] [50] [51] [35] | |
Daidzin; genistein; glycitin; sissotrin; ononin | Soya bean | [52] [53] [54] [55] | |
Genistin; daidzin; biochanin A | Peanut | [56] | |
Biochanin A; formononetin | Red clover | [55] | |
Apigenidin; cyanidin | Cherry; easberry; strawberry | [34] [47] [38] | |
Cyanidin | Olive | [39] [48] |
Flavonoid Group & Basic Structure | Flavonoids | Medicinal Plant (Family) | References |
---|---|---|---|
and | (+)-Catechin | Brysonima crassa (Compositae) | [57] |
Isorhamnetin | Calendula officinalis (Compositae) | [58] | |
Kaempferol | Acalypha indica (Euphorbiaceae); Clitoria ternatea (Fabaceae); Pteris vittata L (Pteridaceae) | [59] [60] [61] | |
Quercetin | Betula pendula (Betulaceae) Bauhinia monandra (Fabaceae); Pteris vittata L (Pteridaceae) Cannabis sativa (Compositae); Azadirachta indica (Meliaceae); Angelica L. (Apiaceae); | [58] [61] [62] [63] [64] | |
Hyperoside | Tilia cordata (Tiliaceae) | [58] | |
Isoquercetin | Mimosa pudica (Mimosoideae) | [65] | |
Pongaflavonol | Pongamia pinnata (Fabaceae) | [66] | |
2-(3, 4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one | Chenopodium album L. (Chenopodiaceae) | [67] | |
2-(3,4-dihydroxy-5-methoxy-phenyl)-3,5-dihydroxy-6,7-dimethoxychromen-4-one | Euphorbia neriifolia (Euphorbiaceae) | [68] | |
Pectolinarigenin | Clerodendrum phlomidis (Verbenaceae) | [62] | |
Luteolin | Aloe vera (Asphodelaceae); Momordica charantia (Curcurbitaceae); Bacopa moneirra (Scrophulariaceae); Angelica L. (Apiaceae); Mentha longifolia (Lamiaceae) | [59] [63] [69] [70] | |
Hispidulin; apigenin; cirsimaritin | Rosmarinus officinalis L. (Lamiaceae) | [71] [72] | |
Luteolin; hispidulin; apigenin; cirsimaritin | Salvia officinalis L. (Lamiaceae) | [71] | |
Luteolin; hispidulin | Thymus L. (Lamiaceae) | [71] [73] | |
Apigenin; hispidulin | Verbena officinalis L. (Verbenaceae) | [73] | |
5-hydroxy-7,8-dimethoxyflavone | Andrographis paniculata (Acanthaceae) | [58] | |
3,4-methlenedioxyflavone | Limnophila indica (Scrophulariaceae) | [65] | |
Chrysin | Oroxylum indicum (Bignoniaceaea) | [65] | |
Vitexin | Passiflora incarnate (Passifloraceae) | [58] | |
Narginin | Rosmarinus officinalis L. (Lamiaceae) | [71] [72] | |
Hesperidin | Citrus medica (Rutaceae) | [59] | |
Liquiritin | Glyccheriza glabra (Leguminosae) | [58] | |
Kurarinol; kurarinone | Sophora flavescens Ait. (Fabaceae) | [74] | |
Kushenol I; kushenol N | Sophora flavescens Ait. (Fabaceae) | [74] | |
Genistein | Calopogonium muconoides (Fabaceae) Butea monospermea (Fabaceae); Andira macrothyrsa (Fabaceae); | [55] [64] | |
Biochanin A | Cratylia argentea (Fabaceae); A. macrothyrsa (Melastomataceae) | [55] |
Flavonoids | Source | Solvent | Reference |
---|---|---|---|
Extraction technique: Maceration | |||
Flavonol | P. vittata L. | Methanol | [61] |
Total flavonoids | Moringa oliefera | 70% ethanol in water | [77] |
Total flavonoids | Acanthospermum hispidium | Methanol | [79] |
Total flavonoids | Ganoderma lucidum | 75% acetone in water | [83] |
Flavones and flavonones | Citrus fruits | Water + HCl; methanol; ethanol; acetone; ethyl acetate; n-hexane | [85] |
Total flavonoid | Mitracarpus hirtus | Methanol | [89] |
Total flavonoid | Dendrobium officinale | 78% ethanol in water | [91] |
Total flavonoids | Cosmos caudatus | 70% ethanol in water | [92] |
Total flavonoids | Cassia angustifolia | 70% ethanol in water | [93] |
Isoflavones | Chickpea | 80% methanol + HCl | [94] |
Isoflavones | Ptycholobium contortum | CH2Cl2 + methanol | [95] |
Isoflavones | Dalbergia odorifera T. Chen | 80% ethanol in water | [96] |
Isoflavones | Amorpha fruticosa L. | Acetone | [97] |
Isoflavones | Pueraria lobata (Willd.) Ohwi | Butanol + water | [98] |
Isoflavones | Pueraria lobata | 70% etahanol | [99] |
Isoflavones | P. lobata | Water | [100] |
Extraction technique: Reflux | |||
Isoflavones | Quinoa seeds | Methanol + 0.1% butylated hydroxytoluene + hydrochloric acid (4:1) | [101] |
Isoflavones | Pueraria lobata (Willd.) Ohwi root | Methanol | [102] |
Extraction technique: Soxhlet extraction | |||
Flavonols | Chenopodium album L. | Acetone | [67] |
Flavonols | Euphorbia neriifolia | 70% ethanol in water | [68] |
Total flavonoids | Moringa oliefera | 70% ethanol in water | [77] |
Flavones | Orthosiphon stamineus | Methanol | [82] |
Total flavonoids | Cassia angustifolia | 70% ethanol in water | [93] |
Flavonols and flavones | Mentha spicata L. leaves | 70% ethanol in water | [103] |
Isoflavones | D. oliveri | Hexane; dichloromethane; ethyl acetate; and methanol | [104] |
Flavonoids | Source | Solvent | Extraction Technique | Reference |
---|---|---|---|---|
Anthocyanins | Mirabilis jalab L. | Methanol/ethanol + 0.1% HCl aq | UAE | [112] |
Total flavonoids | Cryptotaenia japonica Hassk | Ethanol | UAE | [113] |
Isoflavones | Pueraria lobata (Wild.) Ohwi | 50% ethanol in water | UAE | [114] |
Isoflavones | Pueraria lobata (Wild.) Ohwi | 40% ethanol in water | UAE | [115] |
Isoflavones | P. lobatae; P. thomsonii | Ethanol + water | UAE | [116] |
Isoflavones | Iris tectorum | 70% methanol in water | UAE | [117] |
Isoflavones | Radix astragali | Methanol | UAE | [118] |
Total flavonoids | Citrus peels | Methanol | UAE | [119] |
Total flavonoids | Grapes | 50% methanol in water | UAE | [120] |
Isothiocyanates and flavanols | Chilean papaya | 80% methanol in water | UAE | [121] |
Total flavonoids | Orange peels | Ethanol:water (4:1) | UAE | [122] |
Anthocyanins | Jabuticaba | Ethanol | UAE | [123] |
Total flavonoids | Olive leaves | 50% ethanol in water | UAE | [124] |
Total flavonoids | Wheat | 65% methanol in water | UAE | [125] |
Isoflavones | Soya bean | Water + acetonitrile + HCl | High-power UAE | [126] |
Total flavonoids | Radix astragali | Ethanol | MAE | [127] |
Total flavonoids | Sea-buckthorn | None | MAE | [128] |
Isoflavones | Soya bean | 50% methanol in water | MAE | [129] |
Flavones | Cortex fraxini | Polyethylene glycol | MAE | [130] |
Total flavonoids | Apple | Ethanol | MAE | [131] |
Total flavonoids | Rosemary leaves | Methanol | MAE | [132] |
Total flavonoids | Guava (Psidium guajava) | Ionic liquids (1-Butyl-3-methylimidazolium chloride + 1-butyl-3-methylimidazolium tetrafluoroborate) | MAE | [133] |
Flavonols | Phyllanthus emblica | Water | MAE | [134] |
Isoflavones | Radix Puerariae thomsonii | 70% methanol in water | MAE | [135] |
Isoflavones | Pueraria lobata Ohwi | 70% ethanol in water | MA-UAE | [136] |
Isoflavones | Dalbergia odorifera T. Chen | Aqueous two-phase system (ATP) | MA-ATPE | [137] |
Isoflavones | Pigeon pea | 30% of water in 1,6-hexanediol/choline chloride (7:1) | DES-MAE | [138] |
Antocyanins and flavonol | Apples | Methanol | PLE | [139] |
Anthocyanins | Jabuticaba (Plinia cauliflora) | Ethanol | PLE | [123] |
Flavones | Parsley | Ethanol:water, 50:50, and/or acetone:water, 50:50 | PLE | [140] |
Anthocyanines | Cabbage (red) | Water/ethanol/formic acid (94:5:1) | PLE | [141] |
Flavonones | Citrus | Water | PLE | [142] |
Flavonols | Tea leaves; grape seeds | Methanol | PLE | [143] |
Anthocyanins | Black carrots | Water acidified with lactic acid | PLE | [144] |
Anthocyanins | Apples | Acidified methanol | PLE | [145] |
Flavonols and flavan-3 ols | Rheum palmatum L. | 80% methanol in water | PLE | [146] |
Isoflavones | Trifolium L. | 75% methanol in water | PLE | [147] |
Isoflavones | Licorice | Ethanol | PLE | [54] |
Isoflavones | Soybean | 80% ethanol in water | PLE | [148] |
Anthocyanins | Cabbage (red) | Water | PHWE | [141] |
Flavonones | Citrus | Water | PHWE | [142] |
Anthocyanins | Red grapes | Water | PHWE | [145] |
Flavonole and flavonones | Oregano | Water | PHWE | [149] |
Flavonols | Sea-buckthorn | Water | PHWE | [150] |
Total flavonoids | Wine grape seeds | CO2 | SFE | [151] |
Total flavonoids | Maritime pine | CO2 and 10% ethanol | SFE | [152] |
Antocyanins and Flavonol | Grape bagasse | CO2 and 10% ethanol | SFE | [153] |
Flavonols and Flavones | Mentha spicata L. leaves | CO2 | SFE | [103] |
Isoflavones | Soya bean | CO2 and 80% methanol | SFE | [154] |
Isoflavones | Soya bean | CO2 and 10% acetonitrile | SFE | [155] |
Flavan-3-ols | Grape seeds | CO2 and ethanol | SFE | [156] |
Anthocyanins | Grape berries | CO2 and ethanol | SFE | [157] |
Anthocyanins | Grapes | CO2 and ethanol | SFE | [158] |
Anthocyanins and non-anthocyanin flavonoids | Grape pomace | Water | EAE | [159] |
Isoflavones | Soya bean; chickpeas; Trifolium subterraneum L. leaves; Lupinus albus seeds; Mentha piperita leaves | Water | EAE | [86] |
Isoflavones | Trifolium pratense L. | Dichloromethane/methanol (25:75) | MSPD | [160] |
Flavonols | Carthamus Tinctorius L. | Methanol/water (1:3) | MSPD | [161] |
Flavones and flavanones | Murraya panaculata (L.) Jack. | Methanol | MSPD | [162] |
Isoflavones | Dalbergia odorifera T. | 66% ethanol | NPCE | [163] |
Flavones | Pigeon pea | 70% ethanol | NPCE | [164] |
Flavones | Radix Scutellariae | 75% ethanol | NPCE | [165] |
Isoflavones | Radix Astragali | 70% ethanol | NPC-EAE | [166] |
Flavonols | Flos Sophorae immaturus | 72% ethanol | NPC-UAE | [167] |
Flavonols and anthocyanin | Arabidopsis plants | Buffer | In situ extraction with TiO2 nanoparticles | [168] |
Flavonones and flavanonols | Sophora flavescens | Solid reagent (basic salt) | MPET | [74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes 2020, 8, 1222. https://doi.org/10.3390/pr8101222
Tzanova M, Atanasov V, Yaneva Z, Ivanova D, Dinev T. Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes. 2020; 8(10):1222. https://doi.org/10.3390/pr8101222
Chicago/Turabian StyleTzanova, Milena, Vasil Atanasov, Zvezdelina Yaneva, Donika Ivanova, and Toncho Dinev. 2020. "Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials" Processes 8, no. 10: 1222. https://doi.org/10.3390/pr8101222
APA StyleTzanova, M., Atanasov, V., Yaneva, Z., Ivanova, D., & Dinev, T. (2020). Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes, 8(10), 1222. https://doi.org/10.3390/pr8101222