Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials
Abstract
:1. Introduction
2. Flavonoids—Classification and Natural Sources
3. Sample Preparation
4. Extraction Techniques
4.1. Conventional Extraction Techniques
4.1.1. Maceration
4.1.2. Reflux and Soxhlet Extraction
4.2. Green Extraction Techniques
4.2.1. Ultrasound-Assisted Extraction (UAE)
4.2.2. Microwave-Assisted Extraction (MAE)
4.2.3. Pressurized Liquid Extraction (PLE)
4.2.4. Supercritical Fluid Extraction (SFE)
4.2.5. Enzyme-Assisted Extraction (EAE)
4.2.6. Matrix Solid-Phase Dispersion (MSPD)
4.2.7. Negative Pressure Cavitation Extraction (NPCE)
4.3. Other
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
UAE | Ultra sonic-assisted extraction |
MAE | Microwave-assisted extraction |
MA-ATPE | Microwave-assisted aqueous two-phase extraction |
DES-MAE | Deep eutectic solvent-based microwave-assisted extraction |
PLE | Pressurized liquid extraction |
PHWE | Pressurized hot water extraction |
SFE | Supercritical fluid extraction |
SC-CO2 | Supercritical-CO2 |
EAE | Enzyme-assisted extraction |
NPCE | Negative pressure cavitation extraction |
LDL | Low-density lipoprotein |
SPE | Solid phase extraction |
HPLC | High performance liquid extraction |
References
- Doughari, J.H. Phytochemicals: Extraction Methods, Basic Structures and Mode of Action as Potential Chemotherapeutic Agents. In Phytochemical—A Global Perspective of Their Role in Nutrition and Health; Rao, V., Ed.; InTechOpen: Rijeka, Croatia, 2012; pp. 1–33. [Google Scholar]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, A.C.; Gulliya, B. Chemistry and Pharmacology of Flavonoids—A Review. Indian J. Pharm. Educ. Res. 2019, 53, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Sawa, K.; Kawasaki, M.; Arisawa, M.; Shimizu, M.; Morita, N. Inhibition of cow’s milk xanthine oxidase by flavonoids. J. Nat. Prod. 1988, 51, 345–348. [Google Scholar] [CrossRef]
- Walker, E.; Pacold, M.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinations of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 2000, 6, 909–919. [Google Scholar] [CrossRef]
- Korkina, L.; Afanasev, I. Antioxidant and chelating properties of flavonoids. Adv. Pharmacol. 1997, 38, 151–163. [Google Scholar]
- Kerry, N.; Abbey, M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis 1997, 135, 93–102. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Chiodo, S.; Toscano, M. Iron chelation by the powerful antioxidant flavonoid quercetin. J. Agric. Food Chem. 2006, 54, 6343–6351. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Azwanida, N.N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4, 196. [Google Scholar]
- Stobiecki, M.; Kachlicki, P. Isolation and Identification of Flavonoids. In The Science of flavonoids; Grotewold, E., Ed.; Springer Science & Business Media, Inc.: New York, NY, USA, 2006; pp. 47–71. [Google Scholar]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Selvamuthukumaran, M.; Shi, J. Recent advances in extraction of antioxidants from plant by-products processing industries. Food Qual. Saf. 2017, 1, 61–81. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raks, V.; Al-Suod, H.; Buszewski, B. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques. Chromatographia 2018, 81, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Smith, R. Before the inject ion-modern methods of sample preparation for separation techniques. J. Chromatogr. A 2003, 1000, 3–27. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Havsteen, B. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Alzand, K.I.; Mohamed, M.A. Flavonoids: Chemistry, Biochemistry and Antioxidant activity. J. Pharm. Res. 2012, 5, 4013–4020. [Google Scholar]
- Ollanketo, M.; Riekkola, M.L. Column-switching technique for selective determination of flavonoids in Finnish berry wines by high-performance liquid chromatography with diode array detection. J. Liq. Chromatogr. Relat. Technol. 2000, 23, 1339–1351. [Google Scholar] [CrossRef]
- Arts, I.C.W.; van de Putte, B.; Hollman, P.C.H. Catechin Contents of Foods Commonly Consumed in The Netherlands. 1. Fruits, Vegetables, Staple Foods, and Processed Foods. J. Agric. Food Chem. 2000, 48, 1746–1751. [Google Scholar] [CrossRef]
- De Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J. Agric. Food Chem. 2000, 48, 5331–5337. [Google Scholar] [CrossRef] [PubMed]
- Crozier, A.; Lean, M.E.J.; McDonald, M.S.; Black, C. Quantitative analysis of the flavonoids content of commercial tomatoes, onions, lettuce and celery. J. Agric. Food Chem. 1997, 45, 590–595. [Google Scholar] [CrossRef]
- Raffo, A.; la Malfa, G.; Fogliano, V.; Maiani, G.; Quaglia, G. Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). J. Food Compost. Anal. 2006, 19, 11–19. [Google Scholar] [CrossRef]
- Hara, Y.; Luo, S.J.; Wickremasinghe, R.L.; Yamanishi, T. Special issue on tea. Food Rev. Int. 1995, 11, 371–542. [Google Scholar]
- Xu, J.Z.; Leung, L.K.; Huang, Y.; Chen, Z.Y. Epimerisation of tea polyphenols in tea drinks. J. Sci. Food Agric. 2003, 83, 1617–1621. [Google Scholar] [CrossRef]
- Price, K.R.; Rhodes, M.J.C.; Barnes, K.A. Flavonol glycoside content and composition of tea infusions made from commercially available teas and tea products. J. Agric. Food Chem. 1998, 46, 2517–2522. [Google Scholar] [CrossRef]
- Natsume, M.; Osakabe, N.; Yamagishi, M.; Takizawa, T.; Nakamura, T.; Miyatake, H.; Hatano, T.; Yoshida, T. Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci. Biotechnol. Biochem. 2000, 64, 2581–2587. [Google Scholar] [CrossRef]
- Gu, L.; House, S.E.; Wu, X.; Ou, B.; Prior, R.L. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J. Agric. Food Chem. 2006, 54, 4057–4061. [Google Scholar] [CrossRef] [PubMed]
- Tomas-Barberan, F.A.; Cienfuegos-Jovellanos, E.; Marin, A.; Muguerza, B.; Gil-Izquierdo, A.; Cerda, B.; Zafrilla, P.; Morillas, J.; Mulero, J.; Ibarra, A.; et al. A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J. Agric. Food Chem. 2007, 55, 3926–3935. [Google Scholar] [CrossRef]
- Lee, K.W.; Kim, Y.J.; Kim, D.O.; Lee, H.J.; Lee, C.Y. Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agric. Food Chem. 2003, 51, 6516–6520. [Google Scholar] [CrossRef] [PubMed]
- Vrhovsek, U.; Rigo, A.; Tonon, D.; Mattivi, F. Quantitation of polyphenols in different apple varieties. J. Agric. Food Chem. 2004, 52, 6532–6538. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.; Crozier, A. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem. 2000, 48, 2663–2669. [Google Scholar] [CrossRef] [PubMed]
- Lugasi, A.; Hovari, J. Flavonoid aglycons in foods of plant origin. II. Fresh and dried fruits. Acta Aliment. 2002, 31, 63–71. [Google Scholar] [CrossRef]
- Mullen, W.; Stewart, A.J.; Lean, M.E.J.; Gardner, P.; Duthie, G.G.; Crozier, A. Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. J. Agric. Food Chem. 2002, 50, 5197–5201. [Google Scholar] [CrossRef] [PubMed]
- Wada, L.; Boxin, O. Antioxidant activity and phenolic content of Oregon caneberries. J. Agric. Food Chem. 2002, 50, 3495–3500. [Google Scholar] [CrossRef]
- Maatta-Riihinen, K.R.; Kamal-Eldin, A.; Torronen, A.R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J. Agric. Food Chem. 2004, 52, 6178–6187. [Google Scholar] [CrossRef]
- Romani, A.; Mulinacci, N.; Pinelli, P.; Vincieri, F.F.; Cimato, A. Polyphenolic content in five Tuscany cultivars of Olea europaea L. J. Agric. Food Chem. 1999, 47, 964–967. [Google Scholar] [CrossRef]
- Maeda, T.; Kakuta, H.; Sonoda, T.; Motoki, S.; Ueno, R.; Suzuki, T.; Oosawa, K. Antioxidation capacities of extracts from green, purple, and white asparagus spears related to polyphenol concentration. HortScience 2005, 40, 1221–1224. [Google Scholar] [CrossRef] [Green Version]
- Carmona, M.; Sanchez, A.M.; Ferreres, F.; Zalacain, A.; Tomas-Barberan, F.; Alonso, G.L. Identification of the flavonoid fraction in saffron spice by LC/DAD/MS/MS: Comparative study of samples from different geographical origins. Food Chem. 2007, 100, 445–450. [Google Scholar] [CrossRef]
- Chang, S.; Tan, C.; Frankel, E.N.; Barrett, D.M. Low-density lipoprotein antioxidant activity of phenolic compounds and polyphenol oxidase activity in selected clingstone peach cultivars. J. Agric. Food Chem. 2000, 48, 147–151. [Google Scholar] [CrossRef]
- Tomas-Barberan, F.A.; Cienfuegos-Jovellanos, E.; Marin, A.; Muguerza, B.; Gil-Izquierdo, A.; Cerda, B.; Zafrilla, P.; Morillas, J.; Mulero, J.; Ibarra, A.; et al. HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J. Agric. Food Chem. 2001, 49, 4748–4760. [Google Scholar] [CrossRef]
- Harnly, J.M.; Doherty, R.F.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Bhagwat, S.; Gebhardt, S. Flavonoid content of U.S. fruits, vegetables, and nuts. J. Agric. Food Chem. 2006, 54, 9966–9977. [Google Scholar] [CrossRef]
- Milbury, P.E.; Chen, C.Y.; Dolnikowski, G.G.; Blumberg, J.B. Determination of flavonoids and phenolics and their distribution in almonds. J. Agric. Food Chem. 2006, 54, 5027–5033. [Google Scholar] [CrossRef]
- Kreft, S.; Knapp, M.; Kreft, I. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J. Agric. Food Chem. 1999, 47, 4649–4652. [Google Scholar] [CrossRef]
- Hertog, M.G.L.; Hollman, P.C.H.; Katan, M.B. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J. Agric. Food Chem. 1992, 40, 2379–2383. [Google Scholar] [CrossRef]
- Vlahov, G. Flavonoids in three olive (Olea europaea) fruit varieties during maturation. J. Sci. Food Agric. 1992, 58, 157–159. [Google Scholar] [CrossRef]
- Miyake, Y.; Shimoi, K.; Kumazawa, S.; Yamamoto, K.; Kinae, N.; Osawa, T. Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treatedrats. J. Agric. Food Chem. 2000, 48, 3217–3224. [Google Scholar] [CrossRef]
- Rousseff, R.L.; Martin, S.F.; Youtsey, C.O. Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. J. Agric. Food Chem. 1987, 35, 1027–1030. [Google Scholar] [CrossRef]
- Justesen, U.; Knuthsen, P.; Leth, T. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J. Chromatogr. A 1999, 799, 101–110. [Google Scholar] [CrossRef]
- Reinli, K.; Block, G. Phytoestrogen content of foods: A compendium of literature values. Nutr. Cancer 1996, 26, 123–148. [Google Scholar] [CrossRef]
- Wiseman, H.; Casey, K.; Clarke, D.B.; Barnes, K.A.; Bowey, E. Isoflavone aglycon and glucoconjugate content of high- and low-soy UK foods used in nutritional studies. J. Agric. Food Chem. 2002, 50, 1401–1410. [Google Scholar] [CrossRef]
- Chen, X.J.; Zhao, J.; Meng, Q.; Li, S.P.; Wang, Y.T. Simultaneous determination of five flavonoids in licorice using pressurized liquid extraction and capillary electrochromatography coupled with peak suppression diode array detection. J. Chromatogr. A 2009, 1216, 7329–7335. [Google Scholar] [CrossRef]
- Leuner, O.; Havlik, J.; Hummelova, J.; Prokudina, E.; Novy, P.; Kokoska, L. Distribution of isoflavones and coumestrol in neglected tropical and subtropical legumes. J. Sci. Food Agric. 2013, 93, 575–579. [Google Scholar] [CrossRef]
- Chukwumah, Y.C.; Walker, L.T.; Verghese, M.; Bokanga, M.; Ogutu, S.; Alphonse, K. Comparison of extraction methods for the quantification of selected phytochemicals in peanuts (Arachis hypogaea). J. Agric. Food Chem. 2007, 55, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.; Shaari, A.R.; Azimi, A. Effect of Drying Methods on Metabolites Composition of Misai Kucing (Orthosiphon stamineus) Leaves. APCBEE Procedia 2012, 2, 178. [Google Scholar] [CrossRef] [Green Version]
- Gupta, K.K.; Taneja, S.C.; Dhar, K.L.; Atal, C.K. Flavonoids of Andrographis paniculata. Phytochemistry 1983, 22, 314–315. [Google Scholar] [CrossRef]
- L’azaro, M.L. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. 2009, 9, 31–59. [Google Scholar] [CrossRef]
- Sankaranarayanan, S.; Bama, P.; Ramachandran, J.; Kalaichelvan, P.T.; Deccaraman, M.; Vijayalakshimi, M.; Dhamotharan, R.; Dananjeyan, B.; Bama, S.S. Ethnobotanical study of medicinal plants used by traditional users in Villupuram district of Tamil Nadu, India. J. Med. Plant Res. 2010, 4, 1089–1101. [Google Scholar]
- Lin, L.J.; Huang, X.B.; Lv, Z.C. Isolation and identification of flavonoids components from Pteris vittata L. SpringerPlus 2016, 5, 1649. [Google Scholar] [CrossRef] [Green Version]
- Tripoli, E.; Guardia, M.L.; Giammanco, S.; Majo, D.D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.Y.; Kim, K.N.; Kim, H.S. Quantitative analysis of two major flavonoid aglycones in acid hydrolyzed samples of Angelica keiskei by HPLC. Food Sci. Biotechnol. 2003, 12, 415–418. [Google Scholar]
- Murlidhar, A.; Babu, K.S.; Sankar, T.R.; Redenna, P.; Reddy, G.V.; Latha, J. Antiinflammatory activity of flavonoid fraction isolated from stem bark of Butea monosperma (Lam): A mechanism based study. Int. J. Phytopharm. 2010, 1, 124–132. [Google Scholar]
- Sannomiya, M.; Fonseca, V.B.; Silva, M.A.D.; Rocha, L.R.M.; Dos Santos, L.C.; Hiruma-Lima, C.A.; Souza Brito, A.R.M.; Vilegas, W. Flavonoids and antiulcerogenic activity from Byrsonima crassa leaves extracts. J. Ethnopharm. 2005, 97, 1–6. [Google Scholar] [CrossRef]
- Agarwal, M.; Kamal, R. Studies on flavonoid production using in-vitro cultures of Momordica charantia. Indian J. Biotechnol. 2007, 6, 277–279. [Google Scholar]
- Arora, S.; Itankar, P. Extraction, isolation and identification of flavonoid from Chenopodium album aerial parts. J. Tradit. Complement. Med. 2018, 8, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Janmeda, P. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arab. J. Chem. 2017, 10, 509–514. [Google Scholar] [CrossRef]
- Ghoulami, S.; Idrissi, A.I.; Fkih-Tetouani, S. Phytochemical study of Mentha longifolia of Morocco. Fitoterapia 2001, 72, 596–598. [Google Scholar] [CrossRef]
- Kogawa, K.; Kazuma, K.; Kato, N.; Noda, N.; Suzuki, M. Biosynthesis of malonylated flavonoid glycosides on basis of malonyl transferase activity in the petals of Clitoria ternatea. J. Plant Physiol. 2007, 164, 886–894. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Luis, J.C.; Johnson, C.B. Seasonal variations of rosmarinic and carnosic acids in rosemary extracts. Analysis of their in vitro antiradical activity. Span. J. Agric. Res. 2005, 3, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Mueller, A.; Ganzera, M.; Stuppner, H. Analysis of the aerial parts of Verbena officinalis L. by micellar electrokinetic capillary chromatography. Chromatographia 2004, 60, 193–197. [Google Scholar]
- Zhang, Q.; Yu, J.; Wang, Y.; Su, W. Selective Extraction of Flavonoids from Sophora flavescens Ait by Mechanochemistry. Molecules 2016, 21, 989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69–75. [Google Scholar] [PubMed]
- Marston, A.; Hostettmann, K. Separation and quantification of flavonoids. In Flavonoids: Chemistry, Biochemistry and Applications; Andersen, O.M., Markham, K.R., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–32. [Google Scholar]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind. Crops Prod. 2013, 44, 566–571. [Google Scholar] [CrossRef]
- Tzanova, M.T.; Grozeva, N.H.; Gerdzhikova, M.A.; Argirova, M.D.; Pavlov, D.H.; Terzieva, S.R. Flavonoid content and antioxidant activity of Betonica bulgarica Degen et Neič. Bulg. Chem. Commun. 2018, 50, 90–97. [Google Scholar]
- Temidayo, A.R. Extraction and Isolation of Flavonoids Present in the Methanolic Extract of Leaves of Acanthospermum Hispidium Dc. Glob. J. Med. Plant Res. 2013, 1, 111–123. [Google Scholar]
- Mediani, F.A.; Khatib, A.; Tan, C.P. Cosmos Caudatus as a potential source of polyphenolic compounds: Optimisation of oven drying conditions and characterisation of its functional properties. Molecules 2013, 18, 10452–10464. [Google Scholar] [CrossRef]
- Borhan, M.Z.; Ahmad, R.; Rusop, M.M.; Abdullah, S. Impact of Nano powders on Extraction Yield of Centella asiatica. Adv. Mater. Res. 2013, 667, 246–250. [Google Scholar] [CrossRef]
- Hossain, M.A.; Rahman, S.M.M. Isolation and characterisation of flavonoids from the leaves of medicinal plant Orthosiphon stamineus. Arab. J. Chem. 2015, 8, 218–221. [Google Scholar] [CrossRef]
- Pk, M.U.; Talukder, R.I.; Sarkar, M.K.I.; Rahman, T.; Pervin, R.; Rahman, M.; Zenat, E.A.; Akther, L. Effect of Solvents on Phytochemicals Content and Antioxidant Activity of Ganoderma lucidum. Open Microbiol. J. 2019, 13, 10–15. [Google Scholar]
- Baber, R. Phytoestrogens and post reproductive health. Maturitas 2010, 66, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Damián-Reyna, A.A.; González-Hernández, J.C.; Chávez-Parga, M.C. Current procedures for extraction and purification of citrus flavonoids. Rev. Colomb. Biotecnol. 2016, 18, 135–147. [Google Scholar]
- Wallace, R.G.W.; Burong, G.W.B. Extraction of Flavonoids. DE Patent DE60114151T2, 20 July 2006. [Google Scholar]
- Li-Hsun, C.; Ya-Chuan, C.; Chieh-Ming, C. Extracting and purifying isoflavones from defatted soybean flakes using superheated water at elevated pressures. Food Chem. 2004, 84, 279–285. [Google Scholar] [CrossRef]
- Cosa, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Musa, Y.M. Isolation and Purification of Flavonoids from the Leaves of Mitracarpushirtus Plant. IOSR J. Appl. Chem. 2015, 8, 1–3. [Google Scholar]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Lu, H.; Yang, K.; Zhan, L.; Lu, T.; Chen, X.; Cai, X.; Zhou, C.; Li, H.; Qian, L.; Lv, G.; et al. Optimization of Flavonoid Extraction in Dendrobium officinale Leaves and Their Inhibitory Effects on Tyrosinase Activity. Int. J. Anal. Chem. 2019. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, S.F.; Sajak, A.A.B.; Ooi, K.L.; Seow, E.M.; Sulaiman, S.; Sajak, A.; Ooi, K.; Supriatno, K.; Seow, E. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Compos. Anal. 2011, 24, 506–515. [Google Scholar] [CrossRef]
- Laghari, A.Q.; Memon, S.; Nelofar, A.; Laghari, A.H. Extraction, identification and antioxidative properties of the flavonoid-rich fractions from leaves and flowers of Cassia angustifolia. Am. J. Anal. Chem. 2011, 2, 871–878. [Google Scholar] [CrossRef] [Green Version]
- Megías, C.; Cortés-Giraldo, I.; Alaiz, M.; Vioque, J.; Girón-Calle, J. Isoflavones in chickpea (Cicer arietinum) protein concentrates. J. Funct. Foods 2016, 21, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Fotso, G.W.; Maher, F.A.; Ngnintedo, D.; Ango, P.Y.; Kapche, D.G.F.W.; Ngameni, B.; Ngwenya, B.; Yeboah, S.O.; Ngadjui, B.T.; Andrae-Marobela, K. Three new isoflavonoids with antioxidant properties from Ptycholobium contortum (N.E.Br.) Brummitt (Leguminosae). Phytochem. Lett. 2015, 14, 254–259. [Google Scholar] [CrossRef]
- Ma, F.-Y.; Luo, M.; Zhao, C.-J.; Li, C.-Y.; Wang, W.; Gu, C.-B.; Wei, Z.-F.; Zu, Y.-G.; Fu, Y.-J. Simple and efficient preparation of biochanin A and genistein from Dalbergia odorifera T. Chen leaves using macroporous resin followed by flash chromatography. Sep. Purif. Technol. 2013, 120, 310–318. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ryu, Y.B.; Curtis-Long, M.J.; Yuk, H.J.; Cho, J.K.; Kim, J.Y.; Kim, K.D.; Lee, W.S.; Park, K.H. Flavanones and carotenoids from the roots of Amorpha fruticosa L. that inhibit bacterial neuraminidase. Food Chem. Toxicol. 2011, 49, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, X.; He, C. An isoflavonoid-enriched extract from Pueraria lobata (kudzu) root protects human umbilical vein endothelial cells against oxidative stress induced apoptosis. J. Ethnopharm. 2016, 193, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, H.; Yang, H.; Nie, L.; Zang, H. Rapid determination of major bioactive isoflavonoid compounds during the extraction process of kudzu (Pueraria lobata) by near-infrared transmission spectroscopy. Spectrochim. Acta A 2015, 137, 1403–1408. [Google Scholar] [CrossRef]
- Xiao, B.-X.; Feng, L.; Cao, F.-R.; Pan, R.-L.; Liao, Y.-H.; Liu, X.-M.; Chang, Q. Pharmacokinetic profiles of the five isoflavonoids from Pueraria lobata roots in the CSF and plasma of rats. J. Ethnopharmacol. 2016, 184, 22–29. [Google Scholar] [CrossRef]
- Lutz, M.; Martínez, A.; Martínez, E.A. Daidzein and genistein contents in seeds of quinoa (Chenopodium quinoa Willd.) from local ecotypes grown in arid Chile. Ind. Crops Prod. 2013, 49, 117–121. [Google Scholar] [CrossRef]
- Mun, S.-C.; Mun, G.-S. Dynamics of phytoestrogen, isoflavonoids, and its isolation from stems of Pueraria lobata (Willd.) Ohwi growing in Democratic People’s Republic of Korea. J. Food Drug Anal. 2015, 23, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Bimakr, M.; Rahman, R.A.; Taip, F.S.; Ganjloo, A.; Salleh, L.M.; Selamat, J.; Hamid, A.; Zaidul, I.S.M. Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod. Process. 2011, 89, 67–72. [Google Scholar] [CrossRef]
- Pluempanupat, S.; Kumrungsee, N.; Pluempanupat, W.; Ngamkitpinyo, K.; Chavasiri, W.; Bullangpoti, V.; Koul, O. Laboratory evaluation of Dalbergia oliveri (Fabaceae: Fabales) extracts and isolated isoflavonoids on Aedes aegypti (Diptera: Culicidae) mosquitoes. Ind. Crops Prod. 2013, 44, 653–658. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Vankar, P.S.; Srivastava, J. Evaluation of Anthocyanin Content in Red and Blue Flowers. Int. J. Food Eng. 2010, 6, 4. [Google Scholar] [CrossRef]
- Oancea, S.; Stoia, M.; Coman, D. Effects of extraction conditions on bioactive anthocyanin content of Vaccinium corymbosum in the perspective of food applications. Procedia Eng. 2012, 42, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Amid, A.; Salim, R.J.; Adenan, M. The Factors Affecting the Extraction Conditions for Newroprotective Activity of Centella asiatica evaluated by Metal Chelating Activity Assay. J. Appl. Sci. 2010, 10, 837–842. [Google Scholar]
- Anuradha, M.; Pragyandip, P.D.; Richa, K.; Murthy, P.N. Evaluation of Neuropharmacological Effects of Ethanolic Extract of Clitorea Ternatea Flowers. Pharmacol. Online 2010, 1, 284–292. [Google Scholar]
- Kwon, M.C.; Choi, W.Y.; Seo, Y.C.; Kim, J.S.; Yoon, C.S.; Lim, H.W.; Kim, H.S.; Ahn, J.H.; Lee, H.Y. Enhancement of the Skin-Protective Activities of Centella asiatica L. Urban by a Nanoencapsulation Process. J. Biotechnol. 2012, 157, 100–106. [Google Scholar] [CrossRef]
- Huie, C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem. 2002, 373, 23–30. [Google Scholar] [CrossRef]
- Ebrahim, N.; Kershi, M.; Butnariub, M. Antioxidant Activity and Anthocyanin Content in Flower of Mirabilis jalab L. Collected from Yemen. World Appl. Sci. J. 2014, 29, 247–251. [Google Scholar]
- Lu, J.; Xu, Y.; Yang, M.; Fu, X.; Luo, F.; Li, Z. Optimization of ultrasound-assisted extraction of flavonoids from Cryptotaenia japonica Hassk, evaluation of antioxidant activity. J. Agric. Sci. 2015, 7, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Huaneng, X.U.; Zhang, Y.; Chaohong, H. Ultrasonically assisted extraction of isoflavones from stem of Pueraria lobata (Willd.) Ohwi and its mathematical model. Chin. J. Chem. Eng. 2007, 15, 861–867. [Google Scholar]
- Sun, B.-L.; Yang, Y.-F.; Hu, X.; Xie, X.-X.; Meucci, J.; Fang, M.; Zhao, L.-J. Purification of puerarin from Pueraria lobata by FCPC versus HSCCC using small-volume columns. Chin. Herb. Med. 2014, 6, 140–144. [Google Scholar] [CrossRef]
- Zeng, A.; Xing, J.; Wang, C.; Song, J.; Li, C.; Yang, X.; Yang, G. Simultaneous analysis and retention behavior of major isoflavonoids in Radix Puerariae lobatae and Radix Puerariae thomsonii by high performance liquid chromatography with cyclodextrins as a mobile phase modifier. Anal. Chim. Acta. 2012, 712, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Z.; Wang, J. Ultrasound-assisted extraction of five isoflavones from Iris tectorum Maxim. Sep. Purif. Technol. 2011, 78, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-Z.; Yiu, H.H.W.; Qiao, C.-F.; Han, Q.-B.; Xu, H.X. Chemical comparison and classification of Radix Astragali by determination of isoflavonoids and astragalosides. J. Pharm. Biomed. Anal. 2008, 47, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Londono-Londono, J.; de Lima, V.R.; Lara, O.; Gil, A.; Pasa, T.B.; Arango, G.J.; Pineda, J.R. Clean recovery of antioxidant flavonoids from citrus peel: Optimizing an aqueous ultrasound-assisted extraction method. Food Chem. 2010, 119, 81–87. [Google Scholar] [CrossRef]
- Carrera, C.; Ruiz-Rodriguez, A.; Palma, M.; Barroso, C.G. Ultrasound-assisted extraction of phenolic compounds from grapes. Anal. Chim. Acta 2012, 732, 100–104. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Plaza-Morales, M.; Giovagnoli-Vicuna, C.; Jamett, F. High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: Effects of extraction conditions and methods. LWT Food Sci. Technol. 2015, 60, 525–534. [Google Scholar] [CrossRef]
- Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Dangles, O.; Chemat, F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 2010, 119, 851–858. [Google Scholar] [CrossRef]
- Santos, D.T.; Veggi, P.C.; Meireles, M.A. Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. J. Food Eng. 2012, 108, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Sahin, S.; Samli, R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef]
- Wang, J.; Sun, B.; Cao, Y.; Tian, Y.; Li, X. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 2008, 106, 804–810. [Google Scholar] [CrossRef]
- Pananun, T.; Montalbo-Lomboy, M.; Noomhorm, A.; Grewell, D.; Lamsal, B. High-power ultrasonication-assisted extraction of soybean isoflavones and effect of toasting. Food Sci. Technol. 2012, 47, 199–207. [Google Scholar] [CrossRef]
- Xiao, W.; Han, L.; Shi, B. Optimization of microwave-assisted extraction of flavonoid from Radix astragali using response surface methodology. Sep. Sci. Technol. 2008, 43, 671–681. [Google Scholar] [CrossRef]
- Perino-Issartier, S.; Abert-Vian, M.; Chemat, F. Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food Bioprocess Technol. 2011, 4, 1020–1028. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Palma, M.; Barroso, C.G. Microwave-assisted extraction of soy isoflavones. Anal. Chim. Acta 2007, 588, 274–282. [Google Scholar] [CrossRef]
- Zhou, T.; Xiao, X.; Li, G.; Cai, Z.W. Study of polyethylene glycol as a green solvent in the microwave-assisted extraction of flavone and coumarin compounds from medicinal plants. J. Chromatogr. A 2011, 1218, 3608–3615. [Google Scholar] [CrossRef]
- Bai, X.L.; Yue, T.L.; Yuan, Y.H.; Zhang, H.W. Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J. Sep. Sci. 2010, 33, 3751–3758. [Google Scholar] [CrossRef]
- Svarc-Gajic, J.; Stojanovic, Z.; Carretero, A.S.; Roman, D.A.; Borras, I.; Vasiljevic, I. Development of a microwave-assisted extraction for the analysis of phenolic compounds from Rosmarinus officinalis. J. Food Eng. 2013, 119, 525–532. [Google Scholar] [CrossRef]
- Du, F.Y.; Xiao, X.H.; Luo, X.J.; Li, G.K. Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta 2009, 78, 1177–1184. [Google Scholar] [CrossRef]
- Krishnan, R.Y.; Rajan, K.S. Influence of microwave irradiation on kinetics and thermodynamics of extraction of flavonoids from Phyllanthus emblica. Braz. J. Chem. Eng. 2017, 34, 885–899. [Google Scholar]
- Liu, Y.-K.; Yan, E.; Zhan, H.-Y.; Zhang, Z.-Q. Response surface optimization of microwave-assisted extraction for HPLC-fluorescence determination of puerarin and daidzein in Radix Puerariae thomsonii. J. Pharm. Anal. 2011, 1, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Wang, T.; Wang, M.; Han, S.; Wan, P.; Fan, M. Extraction of isoflavonoids from Pueraria by combining ultrasound with microwave vacuum. Chem. Eng. Process. 2008, 47, 2256–2261. [Google Scholar] [CrossRef]
- Ma, F.-Y.; Gu, C.-B.; Li, C.-Y.; Luo, M.; Wang, W.; Zu, Y.-G.; Li, J.; Fu, Y.-J. Microwave-assisted aqueous two-phase extraction of isoflavonoids from Dalbergia odorifera T. Chen leaves. Sep. Purif. Technol. 2013, 115, 136–144. [Google Scholar] [CrossRef]
- Cui, Q.; Peng, X.; Yao, X.-H.; Wei, Z.-F.; Luo, M.; Wang, W.; Zhao, C.-J.; Fu, Y.-J.; Zu, Y.-G. Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Sep. Purif. Technol. 2015, 150, 63–72. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Korta, E.; Barranco, A.; Berrueta, L.A.; Gallo, B.; Vicente, F. Pressurized liquid extraction for the determination of polyphenols in apple. J. Chromatogr. A 2001, 933, 37–43. [Google Scholar] [CrossRef]
- Luthria, D.L. Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chem. 2008, 107, 745–752. [Google Scholar] [CrossRef]
- Arapitsas, P.; Turner, C. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta 2008, 74, 1218–1223. [Google Scholar] [CrossRef]
- Cheigh, C.I.; Chung, E.Y.; Chung, M.S. Enhanced extraction of flavanones hesperidin and narirutin from Citrus unshiu peel using subcritical water. J. Food Eng. 2012, 110, 472–477. [Google Scholar] [CrossRef]
- Pineiro, Z.; Palma, M.; Barross, C.G. Determination of catechins by means of extraction with pressurized liquids. J. Chromatogr. A 2004, 1026, 19–23. [Google Scholar] [CrossRef]
- Gizir, A.M.; Turker, N.; Artuvan, E. Pressurized acidified water extraction of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) anthocyanins. Eur. Food Res. Technol. 2008, 226, 363–370. [Google Scholar] [CrossRef]
- Ju, Z.Y.; Howard, L.R. Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. J. Agric. Food Chem. 2003, 51, 5207–5213. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Ji, T.; Jiang, G.; Hu, F. Simultaneous identification and quantification of five flavonoids in the seeds of Rheum palmatum L. by using accelerated solvent extraction and HPLC-PDA-ESI/MSn. Arab. J. Chem. 2019, 12, 1345–1352. [Google Scholar] [CrossRef] [Green Version]
- Zgórka, G. Pressurized liquid extraction versus other extraction techniques in micropreparative isolation of pharmacologically active isoflavones from Trifolium L. species. Talanta 2009, 79, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.-C.; Chang, C.-M.J. Continuous hot pressurized fluids extraction of isoflavones and soyasaponins from defatted soybean flakes. J. Chin. Inst. Chem. Eng. 2007, 38, 313–319. [Google Scholar] [CrossRef]
- Rodríguez-Meizoso, I.; Marin, F.R.; Herrero, M.; Señorans, F.J.; Reglero, G.; Cifuentes, A.; Ibáñez, E. Subcritical Water Extraction of Nutraceuticals with Antioxidant Activity from Oregano. Chemical and Functional Characterization. J. Pharm. Biomed. Anal. 2006, 41, 1560–1565. [Google Scholar]
- Kumar, M.S.Y.; Dutta, R.; Prasad, D.; Misra, K. Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chem. 2011, 127, 1309–1316. [Google Scholar] [CrossRef]
- Prado, J.M.; Dalmolin, I.; Carareto, N.D.; Basso, R.C.; Meirelles, A.J.; Oliveira, J.V.; Batista, E.A.; Meireles, M.A. Supercritical fluid extraction of grape seed: Process scale-up, extract chemical composition and economic evaluation. J. Food Eng. 2012, 109, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Braga, M.E.; Santos, R.M.; Seabra, I.J.; Facanali, R.; Marques, M.O.; de Sousa, H.C. Fractioned SFE of antioxidants from maritime pine bark. J. Supercrit. Fluid. 2008, 47, 37–48. [Google Scholar] [CrossRef]
- Farias-Campomanes, A.M.; Rostagno, M.A.; Meireles, M.A. Production of polyphenol extracts from grape bagasse using supercritical fluids: Yield, extract composition and economic evaluation. J. Supercrit. Fluids 2013, 77, 70–78. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Villares, A.; Guillamón, E.; García-Lafuente, A.; Martínez, J.A. Sample preparation for the analysis of isoflavones from soybeans and soy foods. J. Chromatogr. A 2009, 1216, 2–29. [Google Scholar] [CrossRef]
- Araújo, J.M.A.; Silva, M.V.; Chaves, J.B.P. Supercritical fluid extraction of daidzein and genistein isoflavones from soybean hypocotyl after hydrolysis with endogenous β-glucosidases. Food Chem. 2007, 105, 266–272. [Google Scholar] [CrossRef]
- Murga, R.; Ruiz, R.; Beltrán, S.; Cabezas, J.L. Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. J. Agric. Chem. 2000, 48, 3408–3412. [Google Scholar] [CrossRef] [PubMed]
- Vatai, T.; Škerget, M.; Knez, Ž. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. J. Food Eng. 2009, 90, 246–254. [Google Scholar] [CrossRef]
- Ghafoor, K.; Park, J.; Choi, Y.H. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innov. Food Sci. Emerg. Technol. 2010, 11, 485–490. [Google Scholar] [CrossRef]
- Maier, T.; Goppert, A.; Kammerer, D.R.; Schieber, A.; Carle, R. Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. Eur. Food Res. Technol. 2008, 227, 267–275. [Google Scholar] [CrossRef]
- Visnevschi-Necrasov, T.; Cunha, C.S.; Nunes, E.; Oliveira, M.B.P.P. Optimization of matrix solid-phase dispersion extraction method for the analysis of isoflavones in Trifolium pretense. J. Chromatogr. A 2009, 1216, 3720–3724. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Wang, Z.; Xu, T.; Li, C.; Li, W. Matrix solid-phase dispersion extraction followed by high performance liquid chromatography-diode array detection and ultra-performance liquid chromatography–quadrupole–time of flight–mass spectrometer method for the determination of the main compounds from Carthamus tinctorius L. (Hong-hua). J. Pharm. Biomed. Anal. 2015, 107, 464–472. [Google Scholar]
- Sun, T.; Li, X.; Yang, J.; Li, L.; Jin, Y.; Shi, X. Graphene-encapsulated silica as matrix solid-phase dispersion extraction sorbents for the analysis of poly-methoxylated flavonoids in the leaves of Murraya panaculata (L.) Jack. J. Sep. Sci. 2015, 38, 2132–2139. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Zu, Y.-G.; Fu, Y.-J.; Luo, M.; Gu, C.-B.; Wang, W.; Yao, X.-H. Negative pressure cavitation extraction and antioxidant activity of biochanin A and genistein from the leaves of Dalbergia odorifera T. Chen. Sep. Purif. Technol. 2011, 83, 91–99. [Google Scholar] [CrossRef]
- Liu, W.; Fu, Y.; Zu, Y.; Kong, Y.; Zhang, L.; Zu, B.; Efferth, T. Negative-pressure Cavitation Extraction for the Determination of Flavonoids in Pigeon Pea Leaves by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2009, 1216, 3841–3850. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.L.; Fu, J.Y.; Zu, Y.G.; Li, J.; Li, X.J.; Efferth, T. Negative pressure cavitation accelerated processing for extraction of main bioactive flavonoids from Radix Scutellariae. Chem. Eng. Process. 2011, 50, 780–789. [Google Scholar] [CrossRef]
- Zhao, B.-S.; Fu, Y.-J.; Wang, W.; Zu, Y.-G.; Gu, C.B.; Luo, M.; Efferth, T. Enhanced extraction of isoflavonoids from Radix Astragali by incubation pretreatment combined with negative pressure cavitation and its antioxidant activity. Innov. Food Sci. Emerg. Tech. 2011, 12, 577–585. [Google Scholar] [CrossRef]
- Wang, G.; Cui, Q.; Yin, L.J.; Li, Y.; Gao, M.Z.; Meng, Y.; Li, J.; Zhang, S.N.; Wang, W. Negative pressure cavitation based ultrasound-assisted extraction of main flavonoids from Flos Sophorae Immaturus and evaluation of its extraction kinetics. Sep. Purif. Technol. 2020, 244, 115805. [Google Scholar] [CrossRef]
- Kurepa, J.; Nakabayashi, R.; Paunesku, T.; Suzuki, M.; Saito, K.; Woloschak, G.E.; Smalle, J.A. Direct isolation of flavonoids from plants using ultra-small anatase TiO2 nanoparticles. Plant J. 2014, 77, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. Trends Analyt. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Palma, M.; Barroso, C.G. Ultrasound-assisted extraction of soy isoflavones. J. Chromatogr. A 2003, 1012, 119–128. [Google Scholar] [CrossRef]
- Trusheva, B.; Trunkova, D.; Bankova, V. Different extraction methods of biologically active components from propolis: A preliminary study. Chem. Cent. J. 2007, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Hui, T.; Ghafoor, K.; Choi, Y.H. Optimization of microwave-assisted extraction of active components from Chinese quince using response surface methodology. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 694–701. [Google Scholar]
- Song, J.Z.; Mo, S.F.; Yip, Y.K.; Qiao, C.F.; Han, Q.B.; Xu, H.X. Development of microwave assisted extraction for the simultaneous determination of isoflavonoids and saponins in radix astragali by high performance liquid chromatography. J. Sep. Sci. 2007, 30, 819–824. [Google Scholar] [CrossRef]
- Benthin, B.; Danz, H.; Hamburger, M. Pressurized liquid extraction of medicinal plants. J. Chromatogr. A 1999, 837, 211–219. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Cuevas-Valenzuela, J.; Perez-Correa, J.R. Pressurized hot water extraction of polyphenols from plant material. In Biotechnology of Bioactive Compounds: Sources and Applications; Kumar, V.G., Tuohy, M.G., Lohani, M., O’Donovan, A., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2015; pp. 63–101. [Google Scholar]
- Ko, M.J.; Kwon, H.L.; Chung, M.S. Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel. Innov. Food Sci. Emerg. Technol. 2016, 38, 175–181. [Google Scholar] [CrossRef]
- Blicharski, T.; Oniszczuk, A. Extraction Methods for the Isolation of Isoflavonoids from Plant Material. Open Chem. 2017, 15, 34–45. [Google Scholar] [CrossRef]
- Jung, S.; Murphy, P.A.; Sala, I. Isoflavone profiles of soymilk as affected by high-pressure treatments of soymilk and soybeans. Food Chem. 2008, 111, 592–598. [Google Scholar] [CrossRef]
- Moras, B.; Rey, S.; Vilarem, G.; Pontalier, P.-V. Pressurized water extraction of isoflavones by experimental design from soybean flour and Soybean Protein Isolate. Food Chem. 2017, 214, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Roohinejad, S.; Kouba, M.; Barba, F.J.; Greiner, R.; Orlien, V.; Lebovka, N.I. Negative pressure cavitation extraction: A novel method for extraction of food bioactive compounds from plant materials. Trends Food Sci. Technol. 2016, 52, 98–108. [Google Scholar] [CrossRef]
Flavonoid Group & Basic Structure | Flavonoids | Food | References |
---|---|---|---|
and | Kaempferol; quercetin; myrecitin; (−)-epicatechin | Black berries; wine | [21] [22] [23] |
Kaempferol; quercetin | Tomato | [24] [25] | |
(+)-Catechin; (−)-epicatechin; epigallocatechin; chrysin; apigenin; quercetin; kaempferol | Tea | [26] [27] [28] | |
(+)-Catechin; (−)-epicatechin; quercetin | Coffee; cocoa; apple | [22] [29] [30] [31] [32] [33] | |
Kaempferol; quercetin; myricetin; tamarixetin | Onion; red wine; olive oil; berries; grapefruit; orange | [34] [35] | |
(+)-Catechin; (−)-epicatechin; quercetin; kaempferol | Red berries; strawberries | [22] [36] [37] [38] | |
Quercetin | Lemon; olive; aspargus | [35] [39] [40] | |
Kaempferol | Saffron spice | [41] | |
Kaempferol; quercetin | Broccoli; brussel sprouts | [28] [35] | |
(+)-Catechin; (−)-epicatechin | Apricot; nectarine; peach; plum; fig; banana; kiwi; hazelnut | [23] [22] [42] [43] [44] | |
(+)-Catechin; (−)-epicatechin; quercetin; isorhamnetin; kaempferol | Almond | [44] [45] | |
| Luteolin | Fruit skins; red wine; buckwheat; red pepper; tomato skin; lemon; watermelon; brussel sprouts; pumpkin | [46] [47] [34] [35] |
Luteolin; apigenin; isorhoifolin | Olive | [39] [48] | |
| Naringin; eriodictyol | Almond | [45] |
Naringin; maringenin; taxifolin; hesperitin; eriodictyol | Citrus fruits; grapefruit; lemon; orange | [49] [50] [51] [35] | |
| Daidzin; genistein; glycitin; sissotrin; ononin | Soya bean | [52] [53] [54] [55] |
Genistin; daidzin; biochanin A | Peanut | [56] | |
Biochanin A; formononetin | Red clover | [55] | |
| Apigenidin; cyanidin | Cherry; easberry; strawberry | [34] [47] [38] |
Cyanidin | Olive | [39] [48] |
Flavonoid Group & Basic Structure | Flavonoids | Medicinal Plant (Family) | References |
---|---|---|---|
and | (+)-Catechin | Brysonima crassa (Compositae) | [57] |
Isorhamnetin | Calendula officinalis (Compositae) | [58] | |
Kaempferol | Acalypha indica (Euphorbiaceae); Clitoria ternatea (Fabaceae); Pteris vittata L (Pteridaceae) | [59] [60] [61] | |
Quercetin | Betula pendula (Betulaceae) Bauhinia monandra (Fabaceae); Pteris vittata L (Pteridaceae) Cannabis sativa (Compositae); Azadirachta indica (Meliaceae); Angelica L. (Apiaceae); | [58] [61] [62] [63] [64] | |
Hyperoside | Tilia cordata (Tiliaceae) | [58] | |
Isoquercetin | Mimosa pudica (Mimosoideae) | [65] | |
Pongaflavonol | Pongamia pinnata (Fabaceae) | [66] | |
2-(3, 4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one | Chenopodium album L. (Chenopodiaceae) | [67] | |
2-(3,4-dihydroxy-5-methoxy-phenyl)-3,5-dihydroxy-6,7-dimethoxychromen-4-one | Euphorbia neriifolia (Euphorbiaceae) | [68] | |
| Pectolinarigenin | Clerodendrum phlomidis (Verbenaceae) | [62] |
Luteolin | Aloe vera (Asphodelaceae); Momordica charantia (Curcurbitaceae); Bacopa moneirra (Scrophulariaceae); Angelica L. (Apiaceae); Mentha longifolia (Lamiaceae) | [59] [63] [69] [70] | |
Hispidulin; apigenin; cirsimaritin | Rosmarinus officinalis L. (Lamiaceae) | [71] [72] | |
Luteolin; hispidulin; apigenin; cirsimaritin | Salvia officinalis L. (Lamiaceae) | [71] | |
Luteolin; hispidulin | Thymus L. (Lamiaceae) | [71] [73] | |
Apigenin; hispidulin | Verbena officinalis L. (Verbenaceae) | [73] | |
5-hydroxy-7,8-dimethoxyflavone | Andrographis paniculata (Acanthaceae) | [58] | |
3,4-methlenedioxyflavone | Limnophila indica (Scrophulariaceae) | [65] | |
Chrysin | Oroxylum indicum (Bignoniaceaea) | [65] | |
Vitexin | Passiflora incarnate (Passifloraceae) | [58] | |
| Narginin | Rosmarinus officinalis L. (Lamiaceae) | [71] [72] |
Hesperidin | Citrus medica (Rutaceae) | [59] | |
Liquiritin | Glyccheriza glabra (Leguminosae) | [58] | |
Kurarinol; kurarinone | Sophora flavescens Ait. (Fabaceae) | [74] | |
| Kushenol I; kushenol N | Sophora flavescens Ait. (Fabaceae) | [74] |
| Genistein | Calopogonium muconoides (Fabaceae) Butea monospermea (Fabaceae); Andira macrothyrsa (Fabaceae); | [55] [64] |
Biochanin A | Cratylia argentea (Fabaceae); A. macrothyrsa (Melastomataceae) | [55] |
Flavonoids | Source | Solvent | Reference |
---|---|---|---|
Extraction technique: Maceration | |||
Flavonol | P. vittata L. | Methanol | [61] |
Total flavonoids | Moringa oliefera | 70% ethanol in water | [77] |
Total flavonoids | Acanthospermum hispidium | Methanol | [79] |
Total flavonoids | Ganoderma lucidum | 75% acetone in water | [83] |
Flavones and flavonones | Citrus fruits | Water + HCl; methanol; ethanol; acetone; ethyl acetate; n-hexane | [85] |
Total flavonoid | Mitracarpus hirtus | Methanol | [89] |
Total flavonoid | Dendrobium officinale | 78% ethanol in water | [91] |
Total flavonoids | Cosmos caudatus | 70% ethanol in water | [92] |
Total flavonoids | Cassia angustifolia | 70% ethanol in water | [93] |
Isoflavones | Chickpea | 80% methanol + HCl | [94] |
Isoflavones | Ptycholobium contortum | CH2Cl2 + methanol | [95] |
Isoflavones | Dalbergia odorifera T. Chen | 80% ethanol in water | [96] |
Isoflavones | Amorpha fruticosa L. | Acetone | [97] |
Isoflavones | Pueraria lobata (Willd.) Ohwi | Butanol + water | [98] |
Isoflavones | Pueraria lobata | 70% etahanol | [99] |
Isoflavones | P. lobata | Water | [100] |
Extraction technique: Reflux | |||
Isoflavones | Quinoa seeds | Methanol + 0.1% butylated hydroxytoluene + hydrochloric acid (4:1) | [101] |
Isoflavones | Pueraria lobata (Willd.) Ohwi root | Methanol | [102] |
Extraction technique: Soxhlet extraction | |||
Flavonols | Chenopodium album L. | Acetone | [67] |
Flavonols | Euphorbia neriifolia | 70% ethanol in water | [68] |
Total flavonoids | Moringa oliefera | 70% ethanol in water | [77] |
Flavones | Orthosiphon stamineus | Methanol | [82] |
Total flavonoids | Cassia angustifolia | 70% ethanol in water | [93] |
Flavonols and flavones | Mentha spicata L. leaves | 70% ethanol in water | [103] |
Isoflavones | D. oliveri | Hexane; dichloromethane; ethyl acetate; and methanol | [104] |
Flavonoids | Source | Solvent | Extraction Technique | Reference |
---|---|---|---|---|
Anthocyanins | Mirabilis jalab L. | Methanol/ethanol + 0.1% HCl aq | UAE | [112] |
Total flavonoids | Cryptotaenia japonica Hassk | Ethanol | UAE | [113] |
Isoflavones | Pueraria lobata (Wild.) Ohwi | 50% ethanol in water | UAE | [114] |
Isoflavones | Pueraria lobata (Wild.) Ohwi | 40% ethanol in water | UAE | [115] |
Isoflavones | P. lobatae; P. thomsonii | Ethanol + water | UAE | [116] |
Isoflavones | Iris tectorum | 70% methanol in water | UAE | [117] |
Isoflavones | Radix astragali | Methanol | UAE | [118] |
Total flavonoids | Citrus peels | Methanol | UAE | [119] |
Total flavonoids | Grapes | 50% methanol in water | UAE | [120] |
Isothiocyanates and flavanols | Chilean papaya | 80% methanol in water | UAE | [121] |
Total flavonoids | Orange peels | Ethanol:water (4:1) | UAE | [122] |
Anthocyanins | Jabuticaba | Ethanol | UAE | [123] |
Total flavonoids | Olive leaves | 50% ethanol in water | UAE | [124] |
Total flavonoids | Wheat | 65% methanol in water | UAE | [125] |
Isoflavones | Soya bean | Water + acetonitrile + HCl | High-power UAE | [126] |
Total flavonoids | Radix astragali | Ethanol | MAE | [127] |
Total flavonoids | Sea-buckthorn | None | MAE | [128] |
Isoflavones | Soya bean | 50% methanol in water | MAE | [129] |
Flavones | Cortex fraxini | Polyethylene glycol | MAE | [130] |
Total flavonoids | Apple | Ethanol | MAE | [131] |
Total flavonoids | Rosemary leaves | Methanol | MAE | [132] |
Total flavonoids | Guava (Psidium guajava) | Ionic liquids (1-Butyl-3-methylimidazolium chloride + 1-butyl-3-methylimidazolium tetrafluoroborate) | MAE | [133] |
Flavonols | Phyllanthus emblica | Water | MAE | [134] |
Isoflavones | Radix Puerariae thomsonii | 70% methanol in water | MAE | [135] |
Isoflavones | Pueraria lobata Ohwi | 70% ethanol in water | MA-UAE | [136] |
Isoflavones | Dalbergia odorifera T. Chen | Aqueous two-phase system (ATP) | MA-ATPE | [137] |
Isoflavones | Pigeon pea | 30% of water in 1,6-hexanediol/choline chloride (7:1) | DES-MAE | [138] |
Antocyanins and flavonol | Apples | Methanol | PLE | [139] |
Anthocyanins | Jabuticaba (Plinia cauliflora) | Ethanol | PLE | [123] |
Flavones | Parsley | Ethanol:water, 50:50, and/or acetone:water, 50:50 | PLE | [140] |
Anthocyanines | Cabbage (red) | Water/ethanol/formic acid (94:5:1) | PLE | [141] |
Flavonones | Citrus | Water | PLE | [142] |
Flavonols | Tea leaves; grape seeds | Methanol | PLE | [143] |
Anthocyanins | Black carrots | Water acidified with lactic acid | PLE | [144] |
Anthocyanins | Apples | Acidified methanol | PLE | [145] |
Flavonols and flavan-3 ols | Rheum palmatum L. | 80% methanol in water | PLE | [146] |
Isoflavones | Trifolium L. | 75% methanol in water | PLE | [147] |
Isoflavones | Licorice | Ethanol | PLE | [54] |
Isoflavones | Soybean | 80% ethanol in water | PLE | [148] |
Anthocyanins | Cabbage (red) | Water | PHWE | [141] |
Flavonones | Citrus | Water | PHWE | [142] |
Anthocyanins | Red grapes | Water | PHWE | [145] |
Flavonole and flavonones | Oregano | Water | PHWE | [149] |
Flavonols | Sea-buckthorn | Water | PHWE | [150] |
Total flavonoids | Wine grape seeds | CO2 | SFE | [151] |
Total flavonoids | Maritime pine | CO2 and 10% ethanol | SFE | [152] |
Antocyanins and Flavonol | Grape bagasse | CO2 and 10% ethanol | SFE | [153] |
Flavonols and Flavones | Mentha spicata L. leaves | CO2 | SFE | [103] |
Isoflavones | Soya bean | CO2 and 80% methanol | SFE | [154] |
Isoflavones | Soya bean | CO2 and 10% acetonitrile | SFE | [155] |
Flavan-3-ols | Grape seeds | CO2 and ethanol | SFE | [156] |
Anthocyanins | Grape berries | CO2 and ethanol | SFE | [157] |
Anthocyanins | Grapes | CO2 and ethanol | SFE | [158] |
Anthocyanins and non-anthocyanin flavonoids | Grape pomace | Water | EAE | [159] |
Isoflavones | Soya bean; chickpeas; Trifolium subterraneum L. leaves; Lupinus albus seeds; Mentha piperita leaves | Water | EAE | [86] |
Isoflavones | Trifolium pratense L. | Dichloromethane/methanol (25:75) | MSPD | [160] |
Flavonols | Carthamus Tinctorius L. | Methanol/water (1:3) | MSPD | [161] |
Flavones and flavanones | Murraya panaculata (L.) Jack. | Methanol | MSPD | [162] |
Isoflavones | Dalbergia odorifera T. | 66% ethanol | NPCE | [163] |
Flavones | Pigeon pea | 70% ethanol | NPCE | [164] |
Flavones | Radix Scutellariae | 75% ethanol | NPCE | [165] |
Isoflavones | Radix Astragali | 70% ethanol | NPC-EAE | [166] |
Flavonols | Flos Sophorae immaturus | 72% ethanol | NPC-UAE | [167] |
Flavonols and anthocyanin | Arabidopsis plants | Buffer | In situ extraction with TiO2 nanoparticles | [168] |
Flavonones and flavanonols | Sophora flavescens | Solid reagent (basic salt) | MPET | [74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes 2020, 8, 1222. https://doi.org/10.3390/pr8101222
Tzanova M, Atanasov V, Yaneva Z, Ivanova D, Dinev T. Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes. 2020; 8(10):1222. https://doi.org/10.3390/pr8101222
Chicago/Turabian StyleTzanova, Milena, Vasil Atanasov, Zvezdelina Yaneva, Donika Ivanova, and Toncho Dinev. 2020. "Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials" Processes 8, no. 10: 1222. https://doi.org/10.3390/pr8101222
APA StyleTzanova, M., Atanasov, V., Yaneva, Z., Ivanova, D., & Dinev, T. (2020). Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes, 8(10), 1222. https://doi.org/10.3390/pr8101222