Highly Selective CO2 Capture on Waste Polyurethane Foam-Based Activated Carbon
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Pyrolysis of Wasted PUF and Morphologies of Activated Carbons
3.2. Surface Oxygen and Nitrogen Species Analyses
3.3. Effect of Physical and Chemical Activation on the Textural Properties of PUF-Based Porous Carbon Materials
3.4. CO2 Adsorption Performances
3.5. CO2 Adsorption Recyclability and Selectivity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J.; Heerwig, A.; Lohe, M.R.; Oschatz, M.; Borchardt, L.; Kaskel, S. Fungi-based porous carbons for CO2 adsorption and separation. J. Mater. Chem. 2012, 22, 13911–13913. [Google Scholar] [CrossRef]
- Schrag, D.P. Preparing to capture carbon. Science 2007, 315, 812–813. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.; Paltsev, S.; Ku, A.Y. Impacts of China’s emissions trading schemes on deployment of power generation with carbon capture and storage. Energy Econ. 2019, 81, 848–858. [Google Scholar] [CrossRef]
- Wilberforce, T.; Baroutaji, A.; Soudan, B.; Al-Alami, A.H.; Olabi, A.G. Outlook of carbon capture technology and challenges. Sci. Total Environ. 2019, 657, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, W.C.; Zhang, L.; Jin, Z.Y.; Lu, A.H. Polybenzoxazine-based monodisperse carbon spheres with low-thermal shrinkage and their CO2 adsorption properties. J. Mater. Chem. A 2014, 2, 4406–4412. [Google Scholar] [CrossRef]
- Li, P.; Wang, Z.; Li, W.; Liu, Y.; Wang, J.; Wang, S. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation. ACS Appl. Mater. Interfaces 2015, 7, 15481–15493. [Google Scholar] [CrossRef] [PubMed]
- Du, N.; Park, H.B.; Robertson, G.P.; Dal-Cin, M.M.; Visser, T.; Scoles, L.; Guiver, M.D. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 2011, 10, 372–375. [Google Scholar] [CrossRef]
- Bae, Y.S.; Snurr, R.Q. Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture. Angew. Chem. Int. Ed. 2011, 50, 11586–11596. [Google Scholar] [CrossRef]
- Su, F.; Lu, C. CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption. Energy Environ. Sci. 2012, 5, 9021–9027. [Google Scholar] [CrossRef]
- Khan, I.U.; Othman, M.H.D.; Ismail, A.; Ismail, N.; Jaafar, J.; Hashim, H.; Rahman, M.A.; Jilani, A. Structural transition from two-dimensional ZIF-L to three-dimensional ZIF-8 nanoparticles in aqueous room temperature synthesis with improved CO2 adsorption. Mater. Charact. 2018, 136, 407–416. [Google Scholar] [CrossRef]
- Yu, H.; Wang, X.; Shu, Z.; Fujii, M.; Song, C. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures. Front. Chem. Sci. Eng. 2018, 12, 83–93. [Google Scholar] [CrossRef]
- Chandra, V.; Yu, S.U.; Kim, S.H.; Yoon, Y.; Kim, D.Y.; Kwon, A.H.; Meyyappan, M.; Kim, K.S. Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem. Commun. 2012, 48, 735–737. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.M.; Kim, W.S.; Hwang, Y.K.; Huh, S. Template-free synthesis of N-doped porous carbons and their gas sorption properties. Carbon 2013, 56, 208–217. [Google Scholar] [CrossRef]
- Song, J.; Shen, W.; Wang, J.; Fan, W. Superior carbon-based CO2 adsorbents prepared from poplar anthers. Carbon 2014, 69, 255–263. [Google Scholar] [CrossRef]
- Ge, C.; Song, J.; Qin, Z.; Wang, J.; Fan, W. Polyurethane Foam-Based Ultramicroporous Carbons for CO2 Capture. ACS Appl. Mater. Interfaces 2016, 8, 18849–18859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, J.; Xing, W.; Xue, Q.; Yan, Z.; Zhuo, S.; Qiao, S.Z. Critical role of small micropores in high CO2 uptake. Phys. Chem. Chem. Phys. 2013, 15, 2523–2529. [Google Scholar] [CrossRef]
- Ello, A.S.; De Souza, L.K.; Trokourey, A.; Jaroniec, M. Coconut shell-based microporous carbons for CO2 capture. Microporous Mesoporous Mater. 2013, 180, 280–283. [Google Scholar] [CrossRef]
- Heo, Y.J.; Park, S.J. H2O2/steam activation as an eco-friendly and efficient top-down approach to enhancing porosity on carbonaceous materials: The effect of inevitable oxygen functionalities on CO2 capture. Green Chem. 2018, 20, 5224–5234. [Google Scholar] [CrossRef]
- Prauchner, M.J.; Rodríguez-Reinoso, F. Chemical versus physical activation of coconut shell: A comparative study. Microporous Mesoporous Mater. 2012, 152, 163–171. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B.; Solis, M.S.; Valle-Vigón, P. N-Doped Polypyrrole-Based Porous Carbons for CO2 Capture. Adv. Funct. Mater. 2011, 21, 2781–2787. [Google Scholar] [CrossRef]
- Nandi, M.; Okada, K.; Dutta, A.; Bhaumik, A.; Maruyama, J.; Derks, D.; Uyama, H. Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem. Commun. 2012, 48, 10283–10285. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.Z.; Gong, Z.Q.; Wang, Z.B.; Fang, P.W.; Li, X.Y. Study on a nitrogen-doped porous carbon from oil sludge for CO2 adsorption. Fuel 2019, 251, 562–571. [Google Scholar] [CrossRef]
- Agrawal, A.; Kaur, R.; Walia, R. PU foam derived from renewable sources: Perspective on properties enhancement: An overview. Eur. Polym. J. 2017, 95, 255–274. [Google Scholar] [CrossRef]
- Shinko, A. Introduction to Mechanical Recycling and Chemical Depolymerization. Recycl. Polyurethane Foam. 2018, 4, 45–55. [Google Scholar]
- Sheel, A.; Pant, D. Chemical Depolymerization of Polyurethane Foams via Glycolysis and Hydrolysis. Recycl. Polyurethane Foam. 2018, 6, 67–75. [Google Scholar]
- Padhan, R.K. Chemical Depolymerization of Polyurethane Foams via Combined Chemolysis Methods. Recycl. Polyurethane Foam. 2018, 8, 89–96. [Google Scholar]
- Quadrini, F.; Bellisario, D.; Santo, L. Recycling of thermoset polyurethane foams. Polym. Eng. Sci. 2013, 53, 1357–1363. [Google Scholar] [CrossRef]
- Ferdan, T.; Pavlas, M.; Nevrlý, V.; Šomplák, R.; Stehlík, P. Greenhouse gas emissions from thermal treatment of non-recyclable municipal waste. Front. Chem. Sci. Eng. 2018, 12, 815–831. [Google Scholar] [CrossRef]
- Singh, G.; Kim, I.Y.; Lakhi, K.S.; Srivastava, P.; Naidu, R.; Vinu, A. Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon 2017, 116, 448–455. [Google Scholar] [CrossRef]
- Pevida, C.; Drage, T.; Snape, C.; Drage, T.; Snape, C. Silica-templated melamine–formaldehyde resin derived adsorbents for CO2 capture. Carbon 2008, 46, 1464–1474. [Google Scholar] [CrossRef]
- Su, F.; Poh, C.K.; Chen, J.S.; Xu, G.; Wang, D.; Li, Q.; Lin, J.; Lou, X.W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4, 717–724. [Google Scholar] [CrossRef]
- Hao, G.P.; Li, W.C.; Qian, D.; Lu, A.H. Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2Capture. Adv. Mater. 2010, 22, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Martín, C.; Plaza, M.; Pis, J.; Rubiera, F.; Pevida, C.; Centeno, T.A. On the limits of CO2 capture capacity of carbons. Sep. Purif. Technol. 2010, 74, 225–229. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kumari, S.; Kumar, R.; Teotia, S.; Singh, B.P.; Singh, A.P.; Dhawan, S.K.; Dhakate, S.R. Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl. Mater. Interface 2016, 8, 10600–10608. [Google Scholar] [CrossRef] [PubMed]
- Lillo-Ródenas, M.A.; Cazorla-Amorós, D.; Linares-Solano, A. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon 2003, 41, 267–275. [Google Scholar] [CrossRef]
- Dıaz-Terán, J.; Nevskaia, D.; Fierro, J.; Lopez-Peinado, A.J.; Jerez, A. Study of chemical activation process of a lignocellulosic material with KOH by XPS and XRD. Microporous Mesoporous Mater. 2003, 60, 173–181. [Google Scholar]
- Rodriguez-Reinoso, F.; Molina-Sabio, M. Activated carbons from lignocellulosic materials by chemical and/or physical activation: An overview. Carbon 1992, 30, 1111–1118. [Google Scholar] [CrossRef]
- Singh, G.; Lakhi, K.S.; Ramadass, K.; Sathish, C.I.; Vinu, A. High-performance biomass-derived activated porous biocarbons for combined pre- and post-combustion CO2 capture. ACS Sustain. Chem. Eng. 2019, 7, 7412–7420. [Google Scholar] [CrossRef]
- Plaza, M.; Gonzalez, A.; Pevida, C.; Pis, J.; Rubiera, F. Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl. Energy 2012, 99, 272–279. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci. 2011, 4, 1765–1771. [Google Scholar] [CrossRef]
- Rodríguez, E.; García, R. Low-cost hierarchical micro/macroporous carbon foams as efficient sorbents for CO2 capture. Fuel Process. Technol. 2017, 156, 235–245. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, K.; Atkinson, J.D.; Yan, X.; Li, X.; Rood, M.J.; Yan, Z. Sustainable and hierarchical porous Enteromorpha prolifera based carbon for CO2 capture. J. Hazard. Mater. 2012, 229, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Singh, R.; Xiao, P.; Webley, P.A.; Zhai, Y. Zeolite synthesis from waste fly ash and its application in CO2 capture from flue gas streams. Adsorption 2011, 17, 795–800. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, T.; Wang, Y.; Jia, Z.; Cai, J. A highly pyridinic N-doped carbon from macroalgae with multifunctional use toward CO2 capture and electrochemical applications. J. Mater. Sci. 2018, 54, 1606–1615. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Cao, M. Three-dimensional porous carbon frameworks derived from mangosteen peel waste as promising materials for CO2 capture and supercapacitors. J. CO2 Util. 2018, 27, 204–216. [Google Scholar] [CrossRef]
- Zhai, Q.G.; Bai, N.; Li, S.; Bu, X.; Feng, P. Design of Pore Size and Functionality in Pillar-Layered Zn-Triazolate-Dicarboxylate Frameworks and Their High CO2/CH4 and C2 Hydrocarbons/CH4 Selectivity. Inorg. Chem. 2015, 54, 9862–9868. [Google Scholar] [CrossRef] [PubMed]
Samples | Content (wt.%) | ||||
---|---|---|---|---|---|
Total N 1 | N-6 2 | N-5 2 | N-Q 2 | N-X 2 | |
PUF/C-CO2-1073 | 8.78 | 35 | 24 | 27 | 14 |
PUF/C-CO2-1173 | 6.84 | 28 | 22 | 34 | 15 |
PUF/C-CO2-1273 | 3.77 | 18 | 21 | 38 | 23 |
PUF/C-Ca(OH)2-973 | 7.70 | 28 | 72 | - | - |
PUF/C-NaOH-973 | 7.51 | 20 | 60 | - | 20 |
PUF/C-KOH-973 | 6.92 | 21 | 41 | 22 | 16 |
Sample | Yield (%) | Textural Properties | ||||
---|---|---|---|---|---|---|
N2 Adsorption at 77 K | CO2 Adsorption at 273 K | |||||
SBET (m2·g−1) | Vt 1 (cm3·g−1) | Vmicro 2 (cm3·g−1) | Vultra-micro 3 (cm3·g−1) (≤1 nm) | D 4 (nm) | ||
PUF/C-CO2-1073 | 16.0 | 15 | 0.04 | 0.03 | 0.085 | 0.58 |
PUF/C-CO2-1173 | 14.0 | 206.7 | 0.10 | 0.08 | 0.122 | 0.64 |
PUF/C-CO2-1273 | 9.3 | 865 | 0.42 | 0.11 | 0.119 | 0.87 |
PUF/C-Ca(OH)2-973 | 25.5 | 39 | 0.04 | 0.01 | - | - |
PUF/C-NaOH-973 | 22.2 | 710 | 0.41 | 0.20 | 0.171 | - |
PUF/C-KOH-973 | 12.3 | 1360 | 0.59 | 0.52 | 0.212 | 0.91 |
Sample | CO2 Adsorption Capacity (mmol·g−1) at 273 K | Reference | |
---|---|---|---|
Physical Activation | Chemical Activation | ||
Spent coffee grounds activated carbons | 3.5 | 4.8 | [39] |
Sawdust-based porous carbons | - | 5.8 | [40] |
Coal-based carbon foams activated by ZnCl2 | - | 3.4 | [41] |
CO2 adsorbents based on ocean pollutant | - | 2.4 | [42] |
Coal fly ash based materials | - | 5 | [43] |
Macroalgae based N-doped carbons | - | 3.06 | [44] |
Arundo donax-based activated bio-carbons | - | 6.3 | [29] |
Biomass-derived activated porous bio-carbons | - | 6.8 | [38] |
Polyurethane foam-based activated carbons | 3.37 | 5.85 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, C.; Lian, D.; Cui, S.; Gao, J.; Lu, J. Highly Selective CO2 Capture on Waste Polyurethane Foam-Based Activated Carbon. Processes 2019, 7, 592. https://doi.org/10.3390/pr7090592
Ge C, Lian D, Cui S, Gao J, Lu J. Highly Selective CO2 Capture on Waste Polyurethane Foam-Based Activated Carbon. Processes. 2019; 7(9):592. https://doi.org/10.3390/pr7090592
Chicago/Turabian StyleGe, Chao, Dandan Lian, Shaopeng Cui, Jie Gao, and Jianjun Lu. 2019. "Highly Selective CO2 Capture on Waste Polyurethane Foam-Based Activated Carbon" Processes 7, no. 9: 592. https://doi.org/10.3390/pr7090592
APA StyleGe, C., Lian, D., Cui, S., Gao, J., & Lu, J. (2019). Highly Selective CO2 Capture on Waste Polyurethane Foam-Based Activated Carbon. Processes, 7(9), 592. https://doi.org/10.3390/pr7090592