Measuring Efficiency of Generating Electric Processes
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Data Collection
- ○
- Nonrenewable (input): Coal, natural gas, oil, and nuclear energy are nonrenewable [30] which take part in producing electricity process. The fuels were formed from the buried remains of plants and animals that lived millions of years ago; they cannot replenish in a short time. The equation of nonrenewable fuels is given as follows:
- ○
- Renewable (input): Renewable energy sources are available and virtually inexhaustible in duration, but the amount of energy is limited. The main kinds of renewable energy are biomass, hydropower, geothermal, wind, and solar [31]. The equation of renewable fuels is given as follows:
- ○
- Electricity generation (desirable output): The nonrenewable and renewable fuels are metabolized into electricity energy.
- ○
- CO2 emissions (undesirable output): The heat or combustion of fuels in electricity generation process produces CO2 emissions. These emissions are undesirable elements that cause bad effects such as environmental pollution and climate change.
3.2. Holt–Winters Model
3.3. Undesirable Model
4. Results
4.1. Data Analysis
4.2. Forecasting Valuations
4.3. Productivity Efficiency
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Indicator | Year | REL (Mtons) | NRL (Mtons) | CO2 (Mtons) | EGN (TWh) |
---|---|---|---|---|---|
Max | 2008 | 151.690 | 2181.400 | 7351.800 | 4390.100 |
Min | 1.150 | 25.200 | 57.400 | 77.900 | |
Average | 42.280 | 466.610 | 1342.850 | 913.870 | |
SD | 46.990 | 688.120 | 2166.050 | 1265.210 | |
Max | 2009 | 151.520 | 2179.300 | 7680.700 | 4206.500 |
Min | 1.360 | 24.300 | 53.900 | 72.500 | |
Average | 43.380 | 461.630 | 1329.730 | 909.810 | |
SD | 48.650 | 687.280 | 2184.110 | 1266.610 | |
Max | 2010 | 178.480 | 2314.400 | 8104.900 | 4394.300 |
Min | 1.810 | 26.400 | 57.000 | 81.100 | |
Average | 47.230 | 483.960 | 1393.680 | 976.610 | |
SD | 53.670 | 721.690 | 2295.140 | 1375.740 | |
Max | 2011 | 180.470 | 2511.700 | 8792.300 | 4713.000 |
Min | 1.910 | 23.900 | 53.500 | 73.700 | |
Average | 50.240 | 496.970 | 1439.470 | 1020.180 | |
SD | 57.070 | 752.410 | 2425.530 | 1457.840 | |
Max | 2012 | 226.700 | 2574.400 | 8966.300 | 4987.600 |
Min | 2.080 | 21.900 | 50.300 | 70.500 | |
Average | 54.030 | 500.420 | 1447.790 | 1045.390 | |
SD | 64.310 | 756.710 | 2440.610 | 1498.040 |
Indicator | Year | REL (Mtons) | NRL (Mtons) | CO2 (Mtons) | EGN (TWh) |
---|---|---|---|---|---|
Max | 2013 | 250.450 | 2659.000 | 9204.200 | 5431.600 |
Min | 2.520 | 22.300 | 49.000 | 71.400 | |
Average | 57.590 | 512.840 | 1483.610 | 1085.410 | |
SD | 69.370 | 780.740 | 2508.360 | 1585.880 | |
Max | 2014 | 291.510 | 2684.600 | 9206.500 | 5649.600 |
Min | 3.040 | 21.100 | 45.800 | 68.200 | |
Average | 61.840 | 516.860 | 1490.500 | 1109.860 | |
SD | 77.890 | 789.920 | 2519.750 | 1634.970 | |
Max | 2015 | 318.950 | 2693.500 | 9163.200 | 5814.600 |
Min | 3.590 | 20.600 | 44.300 | 68.800 | |
Average | 64.760 | 517.460 | 1480.660 | 1128.480 | |
SD | 83.800 | 788.820 | 2495.860 | 1664.680 | |
Max | 2016 | 344.510 | 2704.700 | 9113.600 | 6133.200 |
Min | 4.090 | 21.400 | 46.900 | 68.800 | |
Average | 68.740 | 520.460 | 1479.260 | 1158.490 | |
SD | 91.100 | 789.040 | 2477.970 | 1730.360 | |
Max | 2017 | 370.350 | 2763.900 | 9232.600 | 6495.100 |
Min | 4.710 | 20.500 | 45.000 | 67.900 | |
Average | 73.270 | 526.060 | 1493.240 | 1188.810 | |
SD | 98.260 | 799.380 | 2501.370 | 1796.990 |
Country | NRL (Mtons) | REL (Mtons) | EGN (TWh) | CO2 (Mtons) |
---|---|---|---|---|
Argentina | 81.26 | 13.21 | 153.8 | 198.26 |
Brazil | 213.19 | 125.39 | 633.56 | 530.81 |
Canada | 249.84 | 101.55 | 685.86 | 553.95 |
China | 2923.33 | 445.59 | 7154.89 | 9743.92 |
Finland | 19.89 | 7.78 | 66.96 | 42.19 |
France | 213.37 | 26.54 | 565.97 | 300.54 |
Germany | 280.23 | 57.41 | 662.76 | 761.88 |
India | 743.59 | 55.15 | 1617.32 | 2494.94 |
Mexico | 184.01 | 12.72 | 330.23 | 489.67 |
South Korea | 302.31 | 5.59 | 599.16 | 700.69 |
Spain | 108.87 | 26.85 | 271 | 275.28 |
Sweden | 32.91 | 22.38 | 167.7 | 46.05 |
United Kingdom | 165.18 | 27.44 | 326.33 | 396.08 |
United State | 2090.91 | 198.62 | 4367.92 | 5109.01 |
Country | NRL (Mtons) | REL (Mtons) | EGN (TWh) | CO2 (Mtons) |
---|---|---|---|---|
Argentina | 81.11 | 13.83 | 156.72 | 197.39 |
Brazil | 213.31 | 126.45 | 636.56 | 530.44 |
Canada | 250.09 | 104.66 | 701.89 | 552.9 |
China | 3000.26 | 469.16 | 7574.8 | 9936.29 |
Finland | 19.13 | 7.58 | 64.74 | 39.9 |
France | 210.48 | 25.49 | 558.64 | 296.26 |
Germany | 275.53 | 63.05 | 657.07 | 752.73 |
India | 777.14 | 59.5 | 1716.54 | 2615.76 |
Mexico | 183.97 | 11.54 | 333.37 | 487.96 |
South Korea | 305.1 | 6.36 | 606.48 | 708.29 |
Spain | 107.27 | 26.31 | 265 | 274.9 |
Sweden | 31.61 | 22.57 | 165.43 | 44.3 |
United Kingdom | 159.11 | 35.18 | 319.99 | 373.97 |
United State | 2067.36 | 216.23 | 4306.83 | 5006.32 |
Country | NRL (Mtons) | REL (Mtons) | EGN (TWh) | CO2 (Mtons) |
---|---|---|---|---|
Argentina | 84.12 | 13.77 | 160.67 | 204.89 |
Brazil | 221.04 | 128.21 | 657.96 | 550.18 |
Canada | 256.1 | 105.33 | 704.45 | 565.09 |
China | 3041.58 | 559.47 | 8031.01 | 9986.88 |
Finland | 18.95 | 8.42 | 65.04 | 39.05 |
France | 208.26 | 28.4 | 563.34 | 291.42 |
Germany | 277 | 68.5 | 674.34 | 758.73 |
India | 817.27 | 61.96 | 1846.08 | 2757.14 |
Mexico | 187.49 | 13.64 | 342.59 | 496.78 |
South Korea | 312.33 | 7.62 | 623.2 | 719.94 |
Spain | 106.97 | 27.48 | 264.55 | 272.97 |
Sweden | 32.91 | 23.01 | 171.55 | 44.46 |
United Kingdom | 156.47 | 38.77 | 315.46 | 364.17 |
United State | 2086.24 | 222.26 | 4361.02 | 5027.5 |
Country | NRL (Mtons) | REL (Mtons) | EGN (TWh) | CO2 (Mtons) |
---|---|---|---|---|
Argentina | 83.96 | 14.43 | 163.72 | 203.97 |
Brazil | 221.15 | 129.29 | 661.02 | 549.74 |
Canada | 256.34 | 108.58 | 720.94 | 564 |
China | 3121.72 | 587.73 | 8502.27 | 10184.25 |
Finland | 18.22 | 8.19 | 62.89 | 36.94 |
France | 205.45 | 27.23 | 556.05 | 287.27 |
Germany | 272.36 | 75.24 | 668.51 | 749.62 |
India | 854.1 | 66.87 | 1959.11 | 2890.56 |
Mexico | 187.45 | 12.33 | 345.83 | 495.04 |
South Korea | 315.21 | 8.63 | 630.78 | 727.73 |
Spain | 105.39 | 26.93 | 258.7 | 272.59 |
Sweden | 31.61 | 23.21 | 169.22 | 42.77 |
United Kingdom | 150.74 | 50.08 | 309.33 | 343.91 |
United State | 2062.74 | 242.11 | 4300.05 | 4926.57 |
Variable | Year | REL (Mtons) | NRL (Mtons) | CO2 (Mtons) | EGN (TWh) |
---|---|---|---|---|---|
REL (Mtons) | 2008 | 1 | 0.75768 | 0.77861 | 0.75977 |
NRL (Mtons) | 0.75768 | 1 | 0.98410 | 0.99290 | |
CO2 (Mtons) | 0.77861 | 0.98410 | 1 | 0.9579 | |
EGN (TWh) | 0.75977 | 0.99290 | 0.95790 | 1 | |
REL (Mtons) | 2009 | 1 | 0.77524 | 0.77863 | 0.78978 |
NRL (Mtons) | 0.77524 | 1 | 0.98345 | 0.99295 | |
CO2 (Mtons) | 0.77863 | 0.98345 | 1 | 0.95714 | |
EGN (TWh) | 0.78978 | 0.99295 | 0.95714 | 1 | |
REL (Mtons) | 2010 | 1 | 0.80595 | 0.81691 | 0.81697 |
NRL (Mtons) | 0.80595 | 1 | 0.98469 | 0.99615 | |
CO2 (Mtons) | 0.81691 | 0.98469 | 1 | 0.96781 | |
EGN (TWh) | 0.81697 | 0.99615 | 0.96781 | 1 | |
REL (Mtons) | 2011 | 1 | 0.82944 | 0.81951 | 0.84875 |
NRL (Mtons) | 0.82944 | 1 | 0.98535 | 0.99717 | |
CO2 (Mtons) | 0.81951 | 0.98535 | 1 | 0.97215 | |
EGN (TWh) | 0.84875 | 0.99717 | 0.97215 | 1 |
Variable | Year | REL (Mtons) | NRL (Mtons) | CO2 (Mtons) | EGN (TWh) |
---|---|---|---|---|---|
REL (Mtons | 2012 | 1 | 0.85974 | 0.86648 | 0.87249 |
NRL (Mtons) | 0.85974 | 1 | 0.98524 | 0.99775 | |
CO2 (Mtons) | 0.86648 | 0.98524 | 1 | 0.97446 | |
EGN (TWh) | 0.87249 | 0.99775 | 0.97446 | 1 | |
REL (Mtons) | 2013 | 1 | 0.87951 | 0.88855 | 0.89565 |
NRL (Mtons) | 0.87951 | 1 | 0.98592 | 0.99895 | |
CO2 (Mtons) | 0.88855 | 0.98592 | 1 | 0.98336 | |
EGN (TWh) | 0.89565 | 0.99895 | 0.98336 | 1 | |
REL (Mtons) | 2014 | 1 | 0.89626 | 0.91316 | 0.91220 |
NRL (Mtons) | 0.89626 | 1 | 0.98655 | 0.99903 | |
CO2 (Mtons) | 0.91316 | 0.98655 | 1 | 0.98699 | |
EGN (TWh) | 0.91220 | 0.99903 | 0.98699 | 1 | |
REL (Mtons) | 2015 | 1 | 0.89945 | 0.92038 | 0.91707 |
NRL (Mtons) | 0.89945 | 1 | 0.98594 | 0.99885 | |
CO2 (Mtons) | 0.92038 | 0.98594 | 1 | 0.98795 | |
EGN (TWh) | 0.91707 | 0.99885 | 0.98795 | 1 | |
REL (Mtons) | 2016 | 1 | 0.90685 | 0.92432 | 0.92826 |
NRL (Mtons) | 0.90685 | 1 | 0.98612 | 0.99802 | |
CO2 (Mtons) | 0.92432 | 0.98612 | 1 | 0.99105 | |
EGN (TWh) | 0.92826 | 0.99802 | 0.99105 | 1 | |
REL (Mtons) | 2017 | 1 | 0.92175 | 0.93392 | 0.94388 |
NRL (Mtons) | 0.92175 | 1 | 0.98692 | 0.99664 | |
CO2 (Mtons) | 0.93392 | 0.98692 | 1 | 0.99385 | |
EGN (TWh) | 0.94388 | 0.99664 | 0.99385 | 1 | |
REL (Mtons) | 2018 | 1 | 0.92470 | 0.94471 | 0.95030 |
NRL (Mtons) | 0.92470 | 1 | 0.98739 | 0.99573 | |
CO2 (Mtons) | 0.94471 | 0.98739 | 1 | 0.99514 | |
EGN (TWh) | 0.95030 | 0.99573 | 0.99514 | 1 | |
REL (Mtons) | 2019 | 1 | 0.93467 | 0.94914 | 0.95893 |
NRL (Mtons) | 0.93467 | 1 | 0.98769 | 0.99438 | |
CO2 (Mtons) | 0.94914 | 0.98769 | 1 | 0.99611 | |
EGN (TWh) | 0.95893 | 0.99438 | 0.99611 | 1 | |
REL (Mtons) | 2020 | 1 | 0.93012 | 0.95159 | 0.96158 |
NRL (Mtons) | 0.93012 | 1 | 0.98791 | 0.99233 | |
CO2 (Mtons) | 0.95159 | 0.98791 | 1 | 0.99681 | |
EGN (TWh) | 0.96158 | 0.99233 | 0.99681 | 1 | |
REL (Mtons) | 2021 | 1 | 0.93875 | 0.95468 | 0.96768 |
NRL (Mtons) | 0.93875 | 1 | 0.9882 | 0.99076 | |
CO2 (Mtons) | 0.95468 | 0.98820 | 1 | 0.99699 | |
EGN (TWh) | 0.96768 | 0.99076 | 0.99699 | 1 |
References
- Hui, Z.; Danxiang, A. Environment, energy and sustainable economic growth. Proced. Eng. 2011, 21, 513–519. [Google Scholar] [CrossRef]
- Timothy, G.W.; Michael, R.W.W.; Petar, S.V.; Jiři, J.K. Energy ratio analysis and accounting for renewable and non-renewable electricity generation: A review. Renew. Sustain. Energy Rev. 2018, 98, 328–345. [Google Scholar]
- Bob, E.; Godfrey, B.; Stephen, P.; Janet, R. Energy Systems and Sustainability; Oxford University: New York, NY, USA, 2003. [Google Scholar]
- Murillo, V.B.; Cassiano, M.P.; Sntonio, C.D.F. Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period. Energies 2018, 11, 1412. [Google Scholar] [CrossRef]
- Jiang, L.; Gang, H.; Alexandria, Y. Economic rebalancing and electricity demand in China. Electr. J. 2016, 29, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.L. Air Pollution Caused by Coal-fired Power Plant in Middle Taiwan. Int. J. Energy Power Eng. 2017, 6, 121–124. [Google Scholar] [CrossRef]
- Time Series and Forecasting Methods in NCSS. Available online: https://www.ncss.com (accessed on 29 September 2018).
- Seyed Esmaeili, F.; Rostamy-Malkhalifed, M. Data Envelopment Analysis with Fixed Inputs, Undesirable Outputs and Negative Data. J. Data Envel. Anal. Decis. Sci. 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Joe, Z. Modeling Undesirable Factors in Efficiency Evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Ekundayo, G. Review of Sustainable Energy and Electricity Generation from Non—Rewneable Energy Sources. J. Energy Technol. Policy 2015, 5, 53–57. [Google Scholar]
- Thomas, A.A.; Leila, H.; Pranav, B.M.; Ikenna, J.O. Comparison of CO2 Capture Approaches for Fossil-Based Power Generation: Review and Meta-Study. Processes 2017, 5, 44. [Google Scholar] [CrossRef]
- Benjamin, D.N.; Su, L.; Jinfeng, L. Improving Flexibility and Energy Efficiency of Post-Combustion CO2 Capture Plants Using Economic Model Predictive Control. Processes 2018, 6, 135. [Google Scholar] [CrossRef]
- Raghuvanshi, S.P.; Chandra, A.; Raghav, A.K. Carbon dioxide emissions from coal based power generation in India. Energy Convers. Manag. 2006, 47, 427–441. [Google Scholar] [CrossRef]
- Lamiaa, A.; Tarek, E.S. Reducing Carbon Dioxide Emissions from Electricity Sector Using Smart Electric Grid Applications. J. Eng. 2013, 2013, 845051. [Google Scholar] [CrossRef]
- Ostertagová, E.; Qstertag, O. The Simple Exponential Smoothing Model. In Proceedings of the Modelling of Mechanical and Mechatronic Systems 2011, Herlany, Slovak Republic, 20–22 September 2011. [Google Scholar]
- Taylor, J.W. Exponential Smoothing with a Damped Multiplicative Trend. Int. J. Forecast. 2003, 19, 715–725. [Google Scholar] [CrossRef]
- Taylor, J.W. Short-Term Electricity Demand Forecasting Using Double Seasonal Exponential Smoothing. J. Oper. Res. Soc. 2003, 54, 799–805. [Google Scholar] [CrossRef]
- Berm’udez, J.D.; Segura, J.V.; Vercher, E. Bayesian forecasting with the Holt–Winters model. J. Oper. Res. Soc. 2010, 61, 164–171. [Google Scholar] [CrossRef]
- Puah, Y.J.; Huang, Y.F.; Chua, K.C.; Lee, T.S. River catchment rainfall series analysis using additive Holt–Winters method. J. Earth Syst. Sci. 2016, 125, 269–283. [Google Scholar] [CrossRef]
- Rahman, M.H.; Salma, U.; Hossain, M.M.; Khan, M.T.F. Revenue Forecasting using Holt–Winters Exponential Smoothing. Res. Rev. J. Stat. 2017, 5, 19–25. [Google Scholar]
- Ashraf, A.S. Using Multiple Seasonal Holt-Winters Exponential Smoothing to Predict Cloud Resource Provisioning. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 91–96. [Google Scholar] [CrossRef]
- Medy, W.P.; Ema, U. Analysis of Moving Average and Holt-Winters Optimaization by Using Golden Section for Ritase Forecasting. J. Theor. Appl. Inf. Technol. 2017, 95, 6575–6584. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slack-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 34–41. [Google Scholar] [CrossRef]
- Tone, K. Dealing with Undesirable Outputs in DEA: A Slacks-Based Measure (SBM) Approach; National Graduate Institute for Policy Studies: Tokyo, Japan, 2003. [Google Scholar]
- Kuo, H.F.; Chen, H.L.; Tsou, K.W. Analysis of Farming Environmental Efficiency Using a DEA Model with Undesirable Outputs. APCBEE Procedia 2014, 10, 154–158. [Google Scholar] [CrossRef]
- Goto, M.; Takahashi, T. Operational and Environmental Efficiencies of Japanese Electric Power Companies from 2003 to 2015: Influence of Market Reform and Fukushima Nuclear Power Accident. Math. Probl. Eng. 2017, 2017, 4936595. [Google Scholar] [CrossRef]
- Ozkan, N.F.; Ulutas, B.H. Efficiency analysis of cement manufacturing facilities in Turkey considering undesirable outputs. J. Clean. Prod. 2017, 156, 932–938. [Google Scholar] [CrossRef]
- BP Statistical Review of World Energy. Available online: https://www.bp.com (accessed on 30 September 2018).
- Nonrenewable Sources. Available online: https://www.eia.gov (accessed on 28 September 2018).
- Renewable Sources. Available online: https://www.eia.gov (accessed on 28 September 2018).
- Beverton, R.J.H.; Sidney, J.H. On the Dynamics of Exploited Fish Populations; Great Britain Fishery Investment: London, UK, 1957. [Google Scholar]
- Winter, P.R. Forecasting Sale by Exponentially Weighted Moving Averages. Manag. Sci. 1960, 6, 324–342. [Google Scholar] [CrossRef]
- Lewis, C.D. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting; Butterworth Scientific: London, UK, 1982. [Google Scholar]
- López, F.J.; Ho, J.C.; Ruiz-Torres, A.J. A computational analysis of the impact of correlation and data translation on DEA efficiency score. J. Ind. Prod. Eng. 2016, 33, 192–204. [Google Scholar] [CrossRef]
- Robert, J.P. Cutting carbon emissions from electricity generation. Electr. J. 2017, 30, 41–61. [Google Scholar] [CrossRef]
- Badunenko, O.; Tauchmann, H. Simar and Wilson Two-Stage Efficiency Analysis for Stata; FriedrichAlexander-Universität Erlangen-Nürnberg, Institute for Economics: Erlangen, German, 2018. [Google Scholar]
No. | Country | No. | Country |
---|---|---|---|
1 | Argentina | 8 | India |
2 | Brazil | 9 | Mexico |
3 | Canada | 10 | South Korea |
4 | China | 11 | Spain |
5 | Finland | 12 | Sweden |
6 | France | 13 | United Kingdom |
7 | Germany | 14 | United State |
Country | NRL (Mtons) | REL (Mtons) | EGN (TWh) | CO2 (Mtons) |
---|---|---|---|---|
Argentina | 2.61% | 4.40% | 1.57% | 2.82% |
Brazil | 6.58% | 3.31% | 3.69% | 7.60% |
Canada | 2.17% | 2.36% | 2.06% | 2.48% |
China | 3.95% | 5.33% | 4.57% | 4.36% |
Finland | 3.90% | 7.00% | 3.23% | 6.55% |
France | 1.39% | 6.04% | 2.13% | 3.17% |
Germany | 2.45% | 3.73% | 1.98% | 1.96% |
India | 1.23% | 4.82% | 1.52% | 1.26% |
Mexico | 2.21% | 9.95% | 1.34% | 2.30% |
South Korea | 2.45% | 4.31% | 3.26% | 3.36% |
Spain | 5.01% | 13.88% | 1.49% | 5.68% |
Sweden | 3.43% | 5.68% | 4.08% | 3.35% |
United Kingdom | 1.88% | 9.31% | 1.53% | 3.90% |
United State | 1.51% | 4.01% | 1.22% | 1.95% |
Average | 3.74% |
Country | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
---|---|---|---|---|---|---|---|
Argentina | 0.484 | 0.499 | 0.464 | 0.428 | 0.479 | 0.485 | 0.455 |
Brazil | 0.503 | 0.524 | 0.508 | 0.488 | 0.476 | 0.476 | 0.487 |
Canada | 0.603 | 0.627 | 0.593 | 0.582 | 0.571 | 0.566 | 0.569 |
China | 0.405 | 0.409 | 0.439 | 0.463 | 0.469 | 0.533 | 0.552 |
Finland | 0.852 | 1.000 | 1.000 | 0.833 | 0.798 | 0.831 | 0.806 |
France | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Germany | 0.646 | 0.627 | 0.629 | 0.574 | 0.607 | 0.602 | 0.595 |
India | 0.481 | 0.458 | 0.466 | 0.505 | 0.492 | 0.505 | 0.561 |
Mexico | 0.442 | 0.441 | 0.436 | 0.447 | 0.446 | 0.452 | 0.469 |
Korea | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Spain | 0.685 | 0.678 | 0.625 | 0.568 | 0.63 | 0.632 | 0.591 |
Sweden | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
United Kingdom | 0.553 | 0.565 | 0.562 | 0.559 | 0.521 | 0.510 | 0.521 |
United State | 0.720 | 0.711 | 0.691 | 0.637 | 0.684 | 0.647 | 0.637 |
Country | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|
Argentina | 0.472 | 0.498 | 0.479 | 0.487 | 0.483 | 0.499 | 0.494 |
Brazil | 0.471 | 0.481 | 0.479 | 0.471 | 0.469 | 0.468 | 0.467 |
Canada | 0.576 | 0.555 | 0.555 | 0.541 | 0.546 | 0.532 | 0.536 |
China | 0.568 | 0.618 | 0.630 | 0.642 | 0.650 | 0.658 | 0.671 |
Finland | 0.774 | 0.770 | 0.757 | 0.718 | 0.719 | 0.665 | 0.669 |
France | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Germany | 0.576 | 0.597 | 0.562 | 0.565 | 0.542 | 0.550 | 0.528 |
India | 0.596 | 0.657 | 0.656 | 0.696 | 0.711 | 0.774 | 0.785 |
Mexico | 0.514 | 0.498 | 0.510 | 0.519 | 0.552 | 0.555 | 0.595 |
Korea | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Spain | 0.587 | 0.585 | 0.581 | 0.570 | 0.559 | 0.560 | 0.549 |
Sweden | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
United Kingdom | 0.536 | 0.564 | 0.550 | 0.508 | 0.461 | 0.453 | 0.418 |
United State | 0.656 | 0.666 | 0.631 | 0.650 | 0.638 | 0.654 | 0.643 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-N.; Luu, Q.-C.; Nguyen, T.-K.-L. Measuring Efficiency of Generating Electric Processes. Processes 2019, 7, 6. https://doi.org/10.3390/pr7010006
Wang C-N, Luu Q-C, Nguyen T-K-L. Measuring Efficiency of Generating Electric Processes. Processes. 2019; 7(1):6. https://doi.org/10.3390/pr7010006
Chicago/Turabian StyleWang, Chia-Nan, Quoc-Chien Luu, and Thi-Kim-Lien Nguyen. 2019. "Measuring Efficiency of Generating Electric Processes" Processes 7, no. 1: 6. https://doi.org/10.3390/pr7010006
APA StyleWang, C.-N., Luu, Q.-C., & Nguyen, T.-K.-L. (2019). Measuring Efficiency of Generating Electric Processes. Processes, 7(1), 6. https://doi.org/10.3390/pr7010006