# Investigation of Deep Mine Shaft Stability in Alternating Hard and Soft Rock Strata Using Three-Dimensional Numerical Modeling

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Engineering Properties of Deep Shaft-Surrounding Rock

#### 2.1. The Engineering Status

#### 2.2. Rock Mass Properties

#### 2.3. Mechanics Model of Shaft Lining Stability through Soft–Hard Rock Contact Zone

## 3. Numerical Model Establishment

#### 3.1. The Determination of Parameters in 3DEC-Trigon

#### 3.2. Numerical Mode and Simulation Schemes of Shaft

## 4. Simulation Result Analysis

#### 4.1. Displacement Analysis

#### 4.2. Stress Analysis

#### 4.3. Plastic Zone Analysis

#### 4.4. Mechanism Analysis of the Shaft Deformation in Soft–Hard Rock Strata

## 5. Case Study

#### 5.1. Control Principle of the Surrounding Rock

#### 5.2. Construction Technique of Deep Shaft Advance Grouting

#### 5.3. Pressure Unloading of Surrounding Rock

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- He, M.C.; Xie, H.P.; Peng, S.P.; Jiang, Y.D. Study on rock mechanics in deep mining engineering. Chin. J. Rock Mech. Eng.
**2005**, 24, 2803–2813. [Google Scholar] - Wang, J.; Luo, N.; Bai, Z. On the relation between interlayer glide caused by coal extraction and the shaft rupture occurring in coal mines in huanghuai area. Chin. J. Rock Mech. Eng.
**2003**, 22, 1072–1077. [Google Scholar] - Zhang, W.Q.; Lu, Y.-H.; Gong, H.Y.; Meng, X.J.; Guan, Y.Z. Causes analysis of shaft wall damage inYan-Teng Mining District and its prevention and contyolling method. Rock Soil Mech.
**2004**, 25, 1977–1980. [Google Scholar] - Jing, L.; Liu, F.; Gao, Q.; Yang, R. Rupture stress of shaft wall in mine due to ground subsidence. Chin. J. Rock Mech. Eng.
**2004**, 23, 3274–3280. [Google Scholar] - Liu, J.L.; Chen, L.W.; Wang, J.L. Characteristic analysis of temperature stresses of shaft wall. Rock Soil Mech.
**2011**, 32, 2386–2390. [Google Scholar] - Yassaghi, A.; Salari-Rad, H. Squeezing rock conditions at an igneous contact zone in the Taloun tunnels, Tehran-Shomal freeway, Iran: A case study. Int. J. Rock Mech. Min. Sci.
**2005**, 42, 95–108. [Google Scholar] [CrossRef] - Feng, W.; Huang, R.; Li, T. Deformation analysis of a soft–hard rock contact zone surrounding a tunnel. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res.
**2012**, 32, 190–197. [Google Scholar] [CrossRef] - Wang, L.; Cheng, Y.P.; Ge, C.G.; Chen, J.X.; Li, W.; Zhou, H.X.; Wang, H.F. Safety technologies for the excavation of coal and gas outburst-prone coal seams in deep shafts. Int. J. Rock Mech. Min. Sci.
**2013**, 57, 24–33. [Google Scholar] [CrossRef] - Walton, G.; Kim, E.; Sinha, S.; Sturgis, G.; Berberick, D. Investigation of shaft stability and anisotropic deformation in a deep shaft in Idaho, United States. Int. J. Rock Mech. Min. Sci.
**2018**, 105, 160–171. [Google Scholar] [CrossRef] - Bai, Q.S.; Tu, S.H.; Zhang, C.; Zhu, D. Discrete element modeling of progressive failure in a wide coal roadway from water-rich roofs. Int. J. Coal Geol.
**2016**, 167, 215–229. [Google Scholar] [CrossRef] - Gao, F.; Stead, D. Discrete element modelling of cutter roof failure in coal mine roadways. Int. J. Coal Geol.
**2013**, 116–117, 158–171. [Google Scholar] [CrossRef] - Chen, W.; Konietzky, H.; Abbas, S.M. Numerical simulation of time-independent and -dependent fracturing in sandstone. In Proceedings of the ACM/IEEE International Conference on Software Engineering, Florence, Italy, 16–24 May 2015; pp. 129–138. [Google Scholar]
- Gao, F.Q.; Stead, D. The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int. J. Rock Mech. Min. Sci.
**2014**, 68, 1–14. [Google Scholar] [CrossRef] - Yang, S.Q.; Chen, M.; Jing, H.W.; Chen, K.F.; Meng, B. A case study on large deformation failure mechanism of deep soft rock roadway in Xin’An coal mine, China. Eng. Geol.
**2017**, 217, 89–101. [Google Scholar] [CrossRef] - Lu, S.; Xu, M. Determination and application of modulus of deformation of rock masses based on GSI system. Chin. J. Rock Mech. Eng.
**2009**, 28, 2736–2742. [Google Scholar] - Hoek, E.; Diederichs, M.S. Empirical estimation of rock mass modulus. Int. J. Rock Mech. Min. Sci.
**2006**, 43, 203–215. [Google Scholar] [CrossRef] - Hoek, E.; Carranza-Torres, C.; Curkum, B. Hoek-Brown failure criterion—2002 Edition. In Proceedings of the Fifth North American Rock Mechanics Symposium, Toronto, ON, Canada, 7–10 July 2002; Volume 1, pp. 267–273. [Google Scholar]
- Itasca Consulting Group, Inc. 3DEC User Manual; Itasca Consulting Group, Inc.: Minneapolis, MN, USA, 2016. [Google Scholar]
- Kulatilake, P.H.S.W.; Panda, B.B. Effect of Block Size and Joint Geometry on Jointed Rock Hydraulics and REV. J. Eng. Mech.
**2000**, 126, 850–858. [Google Scholar] [CrossRef] - Wu, L.; Adoko, A.C.; Li, B. An Illustration of Determining Quantitatively the Rock Mass Quality Parameters of the Hoek–Brown Failure Criterion. Rock Mech. Rock Eng.
**2018**, 51, 1063–1076. [Google Scholar] [CrossRef]

**Figure 10.**Simulated displacement map of the surrounding rock under unsupported conditions and under concrete supporting (C40) conditions.

**Figure 11.**Simulated distribution characteristics of max shear stress under unsupported and concrete supporting conditions.

Aquifers | Shaft Depth | Lithology | Joint Distribution |
---|---|---|---|

I | 355–505 m | Jurassic sandstone | Fracture density and openness lower |

II | 639–759 m | Sandstone | Dense vertical joints |

III | 736–871 m | Sandstone | High degree of openness, more filler |

IV | 850–1005 m | Sandstone/mudstone | High degree of openness, strong connectivity |

Lithology | σ_{c}/MPa | σ_{c}/MPa(Average) | E/GPa | E/GPa (Average) | u |
---|---|---|---|---|---|

Mudstone (8%) | 2.25 | 3.25 | 0.8 | 0.84 | 0.34 |

3.96 | 0.86 | ||||

3.47 | 0.86 | ||||

Mudstone (natural) | 12.38 | 12.12 | 2.99 | 2.94 | 0.29 |

12.19 | 2.94 | ||||

11.80 | 2.89 | ||||

Sandstone (saturated) | 28.720 | 28.51 | 7.72 | 7.5 | 0.27 |

26.734 | 7.91 | ||||

30.101 | 7.10 | ||||

Sandstone (natural) | 64.149 | 61.33 | 12.22 | 12.59 | 0.21 |

60.505 | 12.74 | ||||

59.350 | 12.82 |

Lithology | Intact Rock | GSI | Constant | Rock Mass | |||||
---|---|---|---|---|---|---|---|---|---|

${\mathit{\sigma}}_{\mathit{c}\mathit{i}}$ (MPa) | ${\mathit{E}}_{\mathit{i}}$ (GPa) | ${\mathit{m}}_{\mathit{i}}$ | ${\mathit{m}}_{\mathit{b}}$ | $\mathit{s}$ | $\mathit{a}$ | ${\mathit{\sigma}}_{\mathrm{cmass}}$ (MPa) | ${\mathit{E}}_{\mathrm{rm}}$ (GPa) | ||

Mudstone (8%) | 3.25 | 0.84 | 37 | 5 | 0.249 | 0.000225 | 0.514 | 0.84 | 0.055 |

Mudstone (natural) | 12.12 | 2.94 | 37 | 5 | 0.249 | 0.000225 | 0.514 | 3.14 | 0.189 |

Sandstone (saturated) | 28.51 | 7.59 | 40 | 19 | 1.091 | 0.000335 | 0.511 | 7.39 | 0.58 |

Sandstone (natural) | 61.33 | 12.59 | 40 | 19 | 1.091 | 0.000335 | 0.511 | 15.89 | 0.96 |

Lithology | Block Properties | Contact Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|

Density (kg/m ^{3}) | K (GPa) | G (GPa) | C^{b}(MPa) | φ^{b} | σ^{b}_{t}(MPa) | K^{n}(GPa) | K^{s}(GPa) | C^{j}(MPa) | φ^{j} | σ^{j}_{t}(MPa) | |

Mudstone (8%) | 2320 | 0.08 | 0.02 | 0.6 | 15 | 0.16 | 8.38 | 3.28 | 0.5 | 15 | 0.09 |

Mudstone (natural) | 1900 | 0.15 | 0.073 | 0.9 | 21 | 0.4 | 20.50 | 8.21 | 2.94 | 21 | 0.69 |

Sandstone (saturated) | 2730 | 0.42 | 0.230 | 1.6 | 21 | 0.5 | 59.17 | 23.67 | 3.15 | 25 | 3.07 |

Sandstone (natural) | 2550 | 0.55 | 0.400 | 2.2 | 32 | 1.0 | 85.21 | 34 | 6.63 | 32 | 6.32 |

Concrete (C40) | 2500 | 0.53 | 0.42 | 2.1 | 31 | 1.2 | 87.23 | 33 | 6.75 | 31 | 6.43 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sun, X.; Li, G.; Zhao, C.; Liu, Y.; Miao, C.
Investigation of Deep Mine Shaft Stability in Alternating Hard and Soft Rock Strata Using Three-Dimensional Numerical Modeling. *Processes* **2019**, *7*, 2.
https://doi.org/10.3390/pr7010002

**AMA Style**

Sun X, Li G, Zhao C, Liu Y, Miao C.
Investigation of Deep Mine Shaft Stability in Alternating Hard and Soft Rock Strata Using Three-Dimensional Numerical Modeling. *Processes*. 2019; 7(1):2.
https://doi.org/10.3390/pr7010002

**Chicago/Turabian Style**

Sun, Xiaoming, Gan Li, Chengwei Zhao, Yangyang Liu, and Chengyu Miao.
2019. "Investigation of Deep Mine Shaft Stability in Alternating Hard and Soft Rock Strata Using Three-Dimensional Numerical Modeling" *Processes* 7, no. 1: 2.
https://doi.org/10.3390/pr7010002