Evaluation of Lipid and Protein Oxidative Stability of Meat from Growing Rabbits Fed Avocado Waste
Abstract
1. Introduction
2. Materials and Methods
2.1. Rabbits and Housing
2.2. Ingredient and Experimental Diets
2.3. Sample Collection
2.4. Total Fatty Acid Profile
2.5. Color Measurement
2.6. Substance Reactive to Thiobarbituric Acid (TBARS)
2.7. Quantification of the Carbonyl Group of Proteins
2.8. Statistical Analyses
3. Results
3.1. Total Fatty Acid Profile
3.2. Color Measurements
3.3. Substance Reactivity to Thiobarbituric Acid (TBARS)
3.4. Quantification of the Carbonyl Group of Proteins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalle Zotte, A.; Szendrő, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef]
- Traore, S.; Aubry, L.; Gatellier, P.; Prybylski, W.; Jaworska, D.; Kajak, S.K.; Santé, L.V. Higher drip loss is associated with protein oxidation. Meat Sci. 2012, 90, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Ahn, D.U. Mechanism of lipid peroxidation in meat and meat products—A review. Food Sci. Biotechnol. 2005, 14, 152–163. Available online: https://www.researchgate.net/publication/228577245_Mechanism_of_lipid_peroxidaon_in_meat_and_meat_products_-A_review (accessed on 7 July 2020).
- Cullere, M.; Dalle Zotte, A. Rabbit meat production and consumption: State of knowledge and future perspectives. Meat Sci. 2018, 143, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, C.D.; Pérez, L.l.F.; López, J.J.Á.; González, S.D.; Frutos, M.J.; Zamora, S. Caracterización y valor nutritivo de un alimento artesanal: El pastel de carne de Murcia. Nutr. Hosp. 2013, 28, 1300–1305. [Google Scholar]
- Monahan, F.J.; Skibsted, L.H.; Andersen, M.L. Mechanism of oxymyoglobin oxidation in the presence of oxidizing lipids in bovine muscle. J. Agric. Food Chem. 2005, 53, 5734−5738. [Google Scholar] [CrossRef]
- Hernández, P. Carne de conejo, ideal para dietas bajas en ácido úrico. Revista científica de nutrición. Boletín Cunicult. 2007, 154, 33–36. [Google Scholar]
- Grageola, F.; Sanginés, L.; Díaz, C.; Gómez, A.; Cervantes, M.; Lemus, C.L.J. The effect of breed and dietary level of avocado fat on the N and energy balance in young pigs. J. Anim. Feed Sci. 2010, 19, 37–49. [Google Scholar] [CrossRef][Green Version]
- Wang, M.; Zheng, Y.; Khuong, T.; Lovatt, C.J. Effect of harvest date on the nutritional quality and antio xidant capacity in ‘Hass’ avocado during storage. Food Chem. 2012, 135, 694–698. [Google Scholar] [CrossRef]
- Hernández, L.S.H.; Rodríguez, C.J.G.; Lemus, F.C.; Grageola, N.F.; Estévez, M. Avocado waste for finishing pigs: Impact on muscle composition and oxidative stability during chilled storage. Meat Sci. 2016, 116, 186–192. [Google Scholar] [CrossRef]
- Skenjana, A.; Van Ryssen, J.B.J.; Van Niekerk, W.A. In vitro digestibility and in situ degradability of avocado meals and macadamia waste products in sheep. S. Afr. J. Anim. Sci. 2006, 36, 78–81. [Google Scholar]
- NRC. Nutrient Requirements of Rabbits. Nutrient Requirements of Domestic Animals; National Academy of Sciences: Washington, DC, USA, 1977. [Google Scholar]
- Lebas, F. Reflections on rabbit nutrition with a special emphasis on feed ingredients utilization. In Proceedings of the 8th World Rabbit Congress, Puebla, Mexico, 7–10 September 2004; Volume 736. Available online: https://www.researchgate.net/publication/287407223_Reflections_on_rabbit_nutrition_with_a_special_emphasis_on_feed_ingredients_utilization (accessed on 7 July 2020).
- NOM-033-SAG/ZOO-2014. Métodos Para dar Muerte a Los Animales Domésticos y Silvestres. Available online: https://www.gob.mx/cms/uploads/attachment/file/133499/4.-_NORMA_OFICIAL_MEXICANA_NOM-033-SAG-ZOO-2014.pdf (accessed on 7 July 2020).
- Blasco, A.; Ouhayoun, J. Harmonization of criteria and terminology in rabbit meat research. Revised proposal. World Rabbit Sci. 1996, 4, 93–99. [Google Scholar] [CrossRef]
- Rodríguez-Maya, M.A.; Domínguez, V.; Trujillo, G.; Morales, A.; Sánchez, T.; Borquez, G.; Acosta, D.; Grageola, N.; Rodríguez, C. Growth performance parameters, carcass traits, and meat quality of lambs supplemented with zinc methionine and (or) zinc oxide in feedlot system. Can. J. Anim. Sci. 2019, 99, 585–595. [Google Scholar] [CrossRef]
- Ganhão, R.; Estévez, M.; Morcuende, D. Suitability of the TBA method for assessing lipid oxidation in meat system with added phenolic-rich material. Food Chem. 2011, 126, 772–778. [Google Scholar] [CrossRef]
- Ganhão, R.; Morcuende, D.; Estévez, M. Protein oxidation in emulsified cooked burger patties with added fruit extracts: Influence on color and texture deterioration during chill storage. Meat Sci. 2010, 85, 402–409. [Google Scholar] [CrossRef]
- SAS Institute (Ed.) SAS User’s Guide: Statistics, Version 9.0; SAS Institute: Cary, NC, USA, 2002. [Google Scholar]
- Steel, R.; Torrie, J.; Dickey, D. Bioestadistica: Principios y Procedimientos, 2nd ed.; McGraw-Hill: Mexico City, México, 1977. [Google Scholar]
- Wang, Z.; He, Z.; Zhang, D.; Li, H. Antioxidant activity of purslane extract and its inhibitory effect on the lipid and protein oxidation of rabbit meat patties during chilled storage. J. Sci. Food Agric. 2020, 101, 1953–1962. [Google Scholar] [CrossRef]
- Selim, S.; Seleiman, M.F.; Hassan, M.M.; Saleh, A.A.; Mousa, M.A. Impact of Dietary Supplementation with Moringa oleifera Leaves on Performance, Meat Characteristics, Oxidative Stability, and Fatty Acid Profile in Growing Rabbits. Animals 2021, 11, 248. [Google Scholar] [CrossRef]
- Mancini, S.; Mattioli, S.; Nuvoloni, R.; Pedonese, F.; Dal Bosco, A.; Paci, G. Effects of garlic powder and salt additions on fatty acids profile, oxidative status, antioxidant potential and sensory properties of raw and cooked rabbit meat burgers. Meat Sci. 2020, 169, 108226. [Google Scholar] [CrossRef]
- Duran Montgé, P.; Realini, C.E.; Barroeta, A.C.; Lizardo, R.; Esteve Garcia, E. Tissue fatty acid composition of pigs fed different fat sources. Animal 2008, 2, 1753–1762. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Review: Fat deposition, fatty acid composition and meat quality. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Ozdemir, F.; Topuz, A. Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chem. 2004, 86, 79–83. [Google Scholar] [CrossRef]
- Qin, X.; Zhong, J. A review of extraction techniques for avocado oil. J. Oleo Sci. 2016, 65, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Avila, O.; Gallegos-Corona, M.A.; Sánchez-Briones, L.A.; Calderón-Cortés, E.; Montoya-Pérez, R.; Rodriguez-Orozco, A.R.; Campos-García, J.; Saavedra-Molina, A.; Mejía-Zepeda, R.; Cortés-Rojo, C. Protective effects of dietary avocado oil on impaired electron transport chain function and exacerbated oxidative stress in liver mitochondria from diabetic rats. J. Bioenerg. Biomembr. 2015, 47, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Avila, O.; Figueroa-García, M.D.; García-Berumen, C.I.; Calderón-Cortés, E.; Mejía-Barajas, J.A.; Rodriguez-Orozco, A.R.; Mejía-Zepeda, R.; Saavedra-Molina, A.; Cortés-Rojo, C. Avocado oil induces long-term alleviation of oxidative damage in kidney mitochondria from type diabetic rats by improving glutathione status. J. Bioenerg. Biomembr. 2017, 49, 205–214. [Google Scholar] [CrossRef]
- Algarra, M.; Sánchez, C.; Esteves da Silva, J.; Jiménez-Jiménez, J. Fatty acid and cholesterol content of manchego type cheese prepared with incorporated avocado oil. Int. J. Food Prop. 2012, 15, 796–808. [Google Scholar] [CrossRef]
- Pahua-Ramos, M.E.; Ortiz-Moreno, A.; Chamorro-Cevallos, G.; Hernández-Navarro, M.D.; Garduño-Siciliano, L.; Necoechea-Mondragón, H.; Hernández-Ortega, M. Hypolipidemic effect of avocado (Persea americana Mill) seed in a hypercholesterolemic mouse model. Plant Foods Hum. Nutr. 2012, 67, 10–16. [Google Scholar] [CrossRef]
- Del Toro-Equihua, M.; Velasco-Rodríguez, R.; López-Ascencio, R.; Vásquez, C. Effect of an avocado oil-enhanced diet (Persea americana) on sucrose-induced insulin resistance in Wistar rats. J. Food Drug Anal. 2016, 24, 350–357. [Google Scholar] [CrossRef]
- Ezejiofor, A.N.; Okorie, A.; Orisakwe, O.E. Hypoglycaemic and tissue-protective effects of the aqueous extract of Persea americana seeds on alloxan-induced albino rats. Malays. J. Med. Sci. MJMS 2013, 20, 31. [Google Scholar]
- Luna-Castañeda, M.E.; Rodríguez-Carpena, J.G.; Grageola-Núñez, F.; Lemus-Flores, C.; Jiménez-Ruíz, E.I.; Bugarín-Prado, B. Uso de harina de aguacate en dietas de corderos sobre la estabilidad oxidativa de la carne. Rev. Mex. Agroecosistemas 2020, 8, 11–13. [Google Scholar]
- Eckl, P.M.; Bresgen, N. Genotoxicity of lipid oxidation compounds. Free Radic. Biol. Med. 2017, 111, 244–252. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Zhang, D.; Chen, X.; Hongjum, L. Effect of pepper (Zanthoxylum bungeanum Maxim.) essential oil on quality changes in rabbit meat patty during chilled storage. J. Food Sci. Techmol. 2021, 59, 179–191. [Google Scholar] [CrossRef]
- Wang, W.; Terrell, R.B.; Liwei, G. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- de Alcântara Salim, A.P.A.; da Silva Ferreira, M.; Monteiro, M.L.G.; de Lima, L.C.S.; Magalhães, I.T.M.; Conte-Júnior, C.A.; Mano, S.B. Production system influences color stability and lipid oxidation in gluteus medius muscle. Anim. Biosci. 2022, 36, 785. [Google Scholar] [CrossRef] [PubMed]
- Faustman, C.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zarate, D.; Avila-Magaña, V.; Li, J. Comparative transcriptomics revealed parallel evolution and innovation of photosymbiosis molecular mechanisms in a marine bivalve. Proc. B 2024, 291, 20232408. [Google Scholar] [CrossRef]
- Li, R.; Leiva, C.; Lemer, S.; Kirkendale, L.; Li, J. Photosymbiosis shaped animal genome architecture and gene evolution as revealed in giant clams. Commun. Biol. 2025, 8, 7. [Google Scholar] [CrossRef]
- Estévez, M.; Morcuende, D.; Cava, R. Oxidative and colour changes in meat from three lines of free-range reared Iberian pigs slaughtered at 90 kg live weight and from industrial pig during refrigerated storage. Meat Sci. 2003, 65, 1139–1146. [Google Scholar] [CrossRef]
- Haak, L.; Raes, K.; Smet, K.; Claeys, E.; Paelinck, H.; De Smet, S. Effect of dietary antioxidant and fatty acid supply on the oxidative stability of fresh and cooked pork. Meat Sci. 2006, 74, 476–486. [Google Scholar] [CrossRef]
- Chelh, I.; Gatellier, P.; Sante Lhoutellier, V. Characterisation of fluorescent Schiff bases formed during oxidation of pig myofibrils. Meat Sci. 2007, 76, 210–215. [Google Scholar] [CrossRef]
| Ingredients | Avocado Waste (% as Feed) | |||
|---|---|---|---|---|
| 0 | 4.32 | 8.39 | 12.25 | |
| Soybean meal | 0.00 | 4.89 | 4.75 | 4.62 |
| Canola meal | 20.82 | 11.91 | 11.19 | 10.32 |
| Wheat bran | 22.55 | 21.87 | 21.24 | 20.67 |
| Sorghum | 22.96 | 21.76 | 20.18 | 22.46 |
| Alfalfa hay | 4.87 | 6.61 | 6.42 | 6.25 |
| Oats hay | 27.14 | 27.03 | 26.26 | 21.90 |
| Premix 1 | 0.76 | 0.74 | 0.72 | 0.70 |
| CaCO3 2 | 0.90 | 0.87 | 0.85 | 0.83 |
| Total | 100.00 | 100.00 | 100.00 | 100.00 |
| Chemical composition | ||||
| DM 3 (%) | 82.71 | 85.42 | 84.93 | 80.12 |
| DE 4 (MJ/kg DM) | 10.75 | 11.79 | 12.80 | 13.97 |
| CP 5 (%) | 16.25 | 16.61 | 16.29 | 16.52 |
| EE 6 (%) | 1.39 | 1.47 | 1.57 | 2.23 |
| CF 7 (%) | 14.00 | 15.00 | 15.83 | 15.49 |
| Ash | 6.61 | 6.44 | 6.36 | 6.51 |
| Ca 8 (%) | 0.80 | 0.79 | 0.79 | 0.78 |
| P 9 (%) | 0.64 | 0.59 | 0.59 | 0.60 |
| Total of fatty acids (%) | ||||
| SFA 10 | 18.8 | 21.74 | 25.27 | 25.82 |
| MUFA 11 | 37.65 | 37.67 | 39.84 | 40.27 |
| PUFA 12 | 43.56 | 40.59 | 34.9 | 33.91 |
| Nutrient | Content |
|---|---|
| Dry matter, % | 30.17 |
| Crude protein, % | 5.50 |
| Ether extract, % | 46.95 |
| Ash, % | 3.27 |
| Crude fiber, % | 17.94 |
| Total energy, Kcal/Kg | 6203 |
| Saturated fatty acid (%) | 32.26 |
| Monounsaturated fatty acid (%) | 51.9 |
| Polyunsaturated fatty acid (%) | 15.6 |
| Item | Avocado Waste (% as Feed) | SEM 1 | p-Value | |||
|---|---|---|---|---|---|---|
| 0.00 | 4.32 | 8.39 | 12.25 | |||
| SFA 2 | 41.89 a | 42.10 a | 41.40 a | 40.49 b | 0.436 | 0.043 |
| MUFA 3 | 34.02 b | 35.58 ab | 36.68 ab | 37.23 a | 0.710 | 0.020 |
| PUFA 4 | 22.49 | 20.83 | 20.56 | 20.49 | 0.862 | 0.333 |
| PUFA n-3 5 | 0.73 b | 0.90 ab | 1.05 a | 1.11 a | 0.078 | 0.009 |
| PUFA n-6 6 | 21.98 | 20.18 | 19.81 | 19.70 | 0.849 | 0.227 |
| Item | Avocado Waste (% as Feed) | SEM 1 | p-Value | |||
|---|---|---|---|---|---|---|
| 0.00 | 4.32 | 8.39 | 12.25 | |||
| Luminosity L* | ||||||
| Day 0 | 50.43 ab,x | 50.79 ab,x | 50.19 b,x | 51.77 a,x | 0.426 | 0.055 |
| Day 4 | 48.59 y | 48.93 xy | 47.81 y | 49.75 y | 0.610 | 0.174 |
| Day 8 | 48.54 y | 48.65 y | 47.64 y | 48.84 y | 0.937 | 0.817 |
| Redness a* | ||||||
| Day 0 | 16.94 x | 16.30 x | 16.56 x | 15.72 x | 0.343 | 0.074 |
| Day 4 | 14.38 x | 15.20 x | 15.84 x | 14.63 x | 0.617 | 0.331 |
| Day 8 | 11.47 z | 11.57 y | 13.16 y | 11.15 y | 0.900 | 0.431 |
| Yellowness b* | ||||||
| Day 0 | 9.31 a,y | 9.16 ab,y | 8.92 ab,y | 8.74 b,y | 0.154 | 0.042 |
| Day 4 | 10.16 x | 10.49 x | 10.22 x | 10.28 x | 0.169 | 0.539 |
| Day 8 | 10.27 x | 10.55 x | 10.05 x | 10.15 x | 0.285 | 0.640 |
| Chrome C* | ||||||
| Day 0 | 19.35 a,x | 18.7 b,x | 18.83 ab,x | 17.99 b,x | 0.346 | 0.046 |
| Day 4 | 17.66 y | 18.52 x | 18.88 x | 17.89 x | 0.539 | 0.340 |
| Day 8 | 15.47 z | 15.85 y | 16.59 y | 15.09 y | 0.609 | 0.402 |
| Hue H° | ||||||
| Day 0 | 28.53 z | 29.35 z | 28.41 z | 29.12 z | 0.510 | 0.493 |
| Day 4 | 35.47 y | 35.08 y | 33.04 y | 34.87 y | 1.097 | 0.402 |
| Day 8 | 42.12 x | 42.96 x | 37.58 x | 42.32 x | 2.589 | 0.460 |
| Item | Avocado Waste (% as Feed) | SEM 1 | p-Value | ||||
|---|---|---|---|---|---|---|---|
| 0.00 | 4.32 | 8.39 | 12.25 | ||||
| TBARS (mg MDA/Kg fresh loin) | |||||||
| Day 0 | 0.34 a,z | 0.28 a,z | 0.16 b,z | 0.14 b,z | 0.022 | 0.001 | |
| Day 4 | 1.09 a,y | 0.69 ab,y | 0.66 b,y | 0.67 b,y | 0.105 | 0.017 | |
| Day 8 | 1.74 a,x | 1.37 ab,x | 1.15 b,x | 1.37 ab,x | 0.138 | 0.036 | |
| Item | Avocado Waste (% as Feed) | SEM 1 | p-Value | |||
|---|---|---|---|---|---|---|
| 0.00 | 4.32 | 8.39 | 12.25 | |||
| DNPH (nmol carbonyls/mg protein) | ||||||
| Day 0 | 1.93 a,y | 1.18 c,y | 1.35 bc,y | 1.80 ab,y | 0.124 | 0.008 |
| Day 4 | 2.07 a,y | 2.35 a,x | 1.40 b,y | 2.52 a,x | 0.169 | 0.004 |
| Day 8 | 2.43 x | 2.44 x | 2.15 x | 2.78 x | 0.236 | 0.290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Galeano-Díaz, J.P.; Sánchez-Torres, J.E.; Domínguez-Vara, I.A.; Morales-Almaraz, E.; Rodríguez-Carpena, J.G.; Grageola-Nuñez, F.; Cervantes-Ramírez, M.; Dávila-Ramos, H.; Nieto-Martínez, G. Evaluation of Lipid and Protein Oxidative Stability of Meat from Growing Rabbits Fed Avocado Waste. Processes 2026, 14, 288. https://doi.org/10.3390/pr14020288
Galeano-Díaz JP, Sánchez-Torres JE, Domínguez-Vara IA, Morales-Almaraz E, Rodríguez-Carpena JG, Grageola-Nuñez F, Cervantes-Ramírez M, Dávila-Ramos H, Nieto-Martínez G. Evaluation of Lipid and Protein Oxidative Stability of Meat from Growing Rabbits Fed Avocado Waste. Processes. 2026; 14(2):288. https://doi.org/10.3390/pr14020288
Chicago/Turabian StyleGaleano-Díaz, Johana Paola, Juan Edrei Sánchez-Torres, Ignacio Arturo Domínguez-Vara, Ernesto Morales-Almaraz, J. German Rodríguez-Carpena, Fernando Grageola-Nuñez, Miguel Cervantes-Ramírez, Horacio Dávila-Ramos, and Gema Nieto-Martínez. 2026. "Evaluation of Lipid and Protein Oxidative Stability of Meat from Growing Rabbits Fed Avocado Waste" Processes 14, no. 2: 288. https://doi.org/10.3390/pr14020288
APA StyleGaleano-Díaz, J. P., Sánchez-Torres, J. E., Domínguez-Vara, I. A., Morales-Almaraz, E., Rodríguez-Carpena, J. G., Grageola-Nuñez, F., Cervantes-Ramírez, M., Dávila-Ramos, H., & Nieto-Martínez, G. (2026). Evaluation of Lipid and Protein Oxidative Stability of Meat from Growing Rabbits Fed Avocado Waste. Processes, 14(2), 288. https://doi.org/10.3390/pr14020288

