Abstract
Rolling bearing fault diagnosis is critical for the reliable operation of rotating machinery. However, many existing deep learning-based methods rely on complex signal preprocessing and lack interpretability. This paper proposes an adversarial autoencoder (AAE)-based framework that integrates adaptive, data-driven signal decomposition directly into a neural network. A convolutional autoencoder is employed to extract latent representations while preserving temporal resolution, enabling encoder channels to be interpreted as nonlinear signal components. A channel attention mechanism adaptively reweights these components, and a classifier acts as a discriminator to enhance class separability. The model is trained in an end-to-end manner by jointly optimizing reconstruction and classification objectives. Experiments on three benchmark datasets demonstrate that the proposed method achieves high diagnostic accuracy (99.64 ± 0.29%) without additional signal preprocessing and outperforms several representative deep learning-based methods. Moreover, the learned representations exhibit interpretable characteristics analogous to classical envelope demodulation, confirming the effectiveness and interpretability of the proposed approach.