Removal of Cu and Pb in Contaminated Loess by Electrokinetic Remediation Using Novel Hydrogel Electrodes Coupled with Focusing Position Adjustment and Exchange Electrode
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Specimen Preparation
2.2. Materials
2.3. NH Electrode Preparation
2.4. Electrokinetic Reactor and Experimental Design
2.5. Analytical Procedure
3. Results and Discussion
3.1. Effect of Electrode Tapes
3.2. Effect of Regulation Strategies
3.3. Disscussion
4. Underlying Mechanisms
4.1. Atomic Force Microscopy (AFM) Characterization
4.2. Cyclic Voltammetry (CV) Characterization
4.3. Electrochemical Impedance Spectroscopy (EIS) Analysis
5. Conclusions
- (a)
- The NH electrode exhibited highly ordered layered graphene structures, abundant oxygen-containing functional groups, negligible electrochemical polarization, low internal resistance, and high conductivity. These properties enhanced ion transport and adsorption, enabling higher Cu2+ and Pb2+ removal efficiencies compared to conventional Gr and EKG electrodes.
- (b)
- Focusing position adjustment (EK4) effectively mitigated alkalization and ion accumulation in the mid-section (S3–S4), improving Cu2+ removal in that zone. Electrode exchange (EK5) alternated acidic and alkaline conditions at the soil ends, reducing metal precipitation in cathodic zones (S5–S6) and enhancing removal there. However, each single strategy improved only specific regions, leaving other zones suboptimal.
- (c)
- The EK6 strategy integrated focusing position adjustment with electrode exchange, maintaining a stable acidic environment in the mid-section while lowering cathodic pH and sustaining high current and electro-osmotic flow. This approach eliminated localized Cu2+ and Pb2+ accumulation, improved removal uniformity, and achieved the highest overall efficiencies (47.25% for Cu2+ and 16.93% for Pb2+), outperforming both single-strategy groups and the literature-reported benchmarks under comparable conditions.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, W.L.; Cheng, W.C.; Wen, S.J.; Rahman, M.M. Effects of chemical contamination on microscale structural characteristics of intact loess and resultant macroscale mechanical properties. Catena 2021, 203, 105361. [Google Scholar] [CrossRef]
- Hu, W.L.; Cheng, W.C.; Wang, L.; Xue, Z.F. Micro-structural characteristics deterioration of intact loess under acid and saline solutions and resultant macro-mechanical properties. Soil Tillage Res. 2022, 220, 105382. [Google Scholar] [CrossRef]
- Valenzuela, J.; Romero, L.; Acuña, C.; Cánovas, M. Electroosmotic drainage, a pilot application for extracting trapped capillary liquid in copper leaching. Hydrometallurgy 2016, 163, 148–155. [Google Scholar] [CrossRef]
- Cánovas, M.; Valenzuela, J.; Romero, L.; González, P. Characterization of electroosmotic drainage application to mine tailings and solid residues from leaching. J. Mater. Res. Technol. 2020, 9, 2960–2968. [Google Scholar] [CrossRef]
- Xu, P.P.; Zhang, Q.Y.; Qian, H.; Hou, K. Investigation into microscopic mechanisms of anisotropic saturated permeability of undisturbed Q2 loess. Environ. Earth Sci. 2020, 79, 412. [Google Scholar] [CrossRef]
- Xu, P.P.; Zhang, Q.Y.; Qian, H.; Li, M.N.; Yang, F.X. An investigation into the relationship between saturated permeability and microstructure of remolded loess: A case study from Chinese Loess Plateau. Geoderma 2021, 382, 114774. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, L.; Wei, Y.Q.; Zhu, W.B.; Cao, H.L.; Zhang, H. Status and prospect of standard systems for agricultural soil 499 heavy metal contamination prevention and control in China. Res. Environ. Sci. 2024, 37, 169–180. [Google Scholar] [CrossRef]
- Wang, L.Q.; Shao, S.J.; She, F.T. A new method for evaluating loess collapsibility and its application. Eng. Geol. 2020, 264, 105376. [Google Scholar] [CrossRef]
- Caparrós, P.G.; Ozturk, M.; Gul, A.; Batool, T.S.; Anosheh, H.P.; Unal, B.T.I.; Altay, V.; Toderich, K.N. Halophytes have potential as heavy metal phytoremediators: A comprehensive review. Environ. Exp. Bot. 2022, 193, 104666. [Google Scholar] [CrossRef]
- Liu, K.H.; Guan, X.J.; Li, C.M.; Zhao, K.Y.; Yang, X.H.; Fu, R.X.; Li, Y.; Yu, F.M. Global perspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: A knowledge mapping analysis from 2001 to 2020. Front. Environ. Sci. Eng. 2022, 16, 73. [Google Scholar] [CrossRef]
- Wu, Y.J.; Santos, S.S.; Vestergård, M.; González, A.M.M.; Ma, L.Y.; Feng, Y.; Yang, X. A field study reveals links between hyperaccumulating Sedum plants-associated bacterial communities and Cd/Zn uptake and translocation. Sci. Total Environ. 2022, 805, 150400. [Google Scholar] [CrossRef]
- He, T.; Xu, Z.J.; Wang, J.F.; Wang, F.P.; Zhou, X.F.; Wang, L.L.; Li, Q.S. Improving cadmium accumulation by Solanum nigrum L. via regulating rhizobacterial community and metabolic function with phosphate-solubilizing bacteria colonization. Chemosphere 2022, 287, 132209. [Google Scholar] [CrossRef]
- Ding, D.; Song, X.; Wei, C.; La, C.J. A review on the sustainability of thermal treatment for contaminated soils. Environ. Pollut. 2019, 253, 449–463. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.B.; Zhao, M.; Li, Y.B.; Chen, Y.M. Remediation of oil-based drill cuttings using low-temperature thermal desorption: Performance and kinetics modelling. Chemosphere 2019, 235, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yuan, X.X.; Zhang, G.; Hu, J.; An, J.; Chen, T. Stir bar sorptive extraction and automatic two-stage thermal desorption-gas chromatography-mass spectrometry for trace analysis of the byproducts from diphenyl carbonate synthesis. Microchem. J. 2020, 153, 104341. [Google Scholar] [CrossRef]
- Du, Y.J.; Jin, F.; Liu, S.Y.; Chen, L.; Zhang, F. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands. Rock Soil Mech. 2011, 32, 116–124. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, X.C.; Luo, L.; Zhou, Y.Y.; Wei, J.H.; Chen, A.W.; Tang, L.; Wu, H.P.; Deng, Y.C.; Zhang, F.F. Remediation of Cu, Pb, Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment. Int. Biodeterior. Biodegrad. 2017, 118, 73–81. [Google Scholar] [CrossRef]
- Kalantari, B.; Prasad, A. A study of the effect of various curing techniques on the strength of stabilized peat. Transp. Geotech. 2014, 1, 119–128. [Google Scholar] [CrossRef]
- Wang, F.; Shen, Z.T.; Liu, R.Q.; Zhang, Y.H.; Xu, J.; AL-Tabbaa, A. GMCs stabilized/solidified Pb/Zn contaminated soil under different curing temperature: Physical and microstructural properties. Chemosphere 2019, 239, 124738. [Google Scholar] [CrossRef]
- Muddanna, M.H.; Baral, S.S. A comparative study of the extraction of metals from the spent fluid catalytic cracking catalyst using chemical leaching and bioleaching by Aspergillus niger. J. Environ. Chem. Eng. 2019, 7, 103335. [Google Scholar] [CrossRef]
- Lu, Y.S.; Wang, W.B.; Wang, Q.; Xu, J.; Wang, A.Q. Effect of oxalic acid-leaching levels on structure, color and physico-chemical features of palygorskite. Appl. Clay Sci. 2019, 183, 105301. [Google Scholar] [CrossRef]
- Garcia-Sanchez, M.; Kosnar, Z.; Mercl, F.; Aranda, E.; Tlustos, P. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicol. Environ. Saf. 2018, 147, 165–174. [Google Scholar] [CrossRef]
- Lu, C.; Hong, Y.; Liu, J.; Gao, Y.Z.; Ma, Z.; Yang, B.; Ling, W.T.; Waigi, M.G. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation. Environ. Pollut. 2019, 251, 773–782. [Google Scholar] [CrossRef]
- Zhou, H.D.; Liu, Z.Y.; Li, X.; Xu, J.H. Remediation of lead (II)-contaminated soil using electrokinetics assisted by permeable reactive barrier with different filling materials. J. Hazard. Mater. 2021, 408, 124885. [Google Scholar] [CrossRef]
- Hu, W.L.; Cheng, W.C.; Wang, Y.H.; Wen, S.J. Feasibility study of applying a graphene oxide-alginate composite hydrogel to electrokinetic remediation of Cu(II)-contaminated loess as electrodes. Sep. Purif. Technol. 2023, 322, 124361. [Google Scholar] [CrossRef]
- Hu, W.L.; Cheng, W.C.; Wang, Y.H.; Wen, S.J.; Xue, Z.F. Applying a nanocomposite hydrogel electrode to mitigate electrochemical polarization and focusing effect in electrokinetic remediation of a Cu- and Pb-contaminated loess. Environ. Pollut. 2023, 333, 122039. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xiong, Z.; Nie, Y.; Niu, Y.Y.; Wang, L.; Liu, Y.Y. Near-anode focusing phenomenon caused by the high anolyte concentration in the electrokinetic remediation of chromium(VI)-contaminated soil. J. Hazard. Mater. 2012, 229, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Guo, S.H.; Li, S.C.; Zhang, L.Y.; Wang, S.S. Comparison of approaching and fixed anodes for avoiding the ‘focusing’ effect during electrokinetic remediation of chromium-contaminated soil. Chem. Eng. J. 2012, 203, 231–238. [Google Scholar] [CrossRef]
- Wang, S.J.; Chen, S.R.; Fu, Y.T.; Ye, F.; Qi, H.Y. 2025. Introduction of Resin Barrier to Improve the Efficiency of Electrokinetic Remediation for Pb-Contaminated Soil. Pol. J. Environ. Stud. 2025, 34, 2025. [Google Scholar] [CrossRef]
- Zheng, Z.Q.; Li, Y.L.; Wang, C.Z.; Xue, C.; Chen, C.; Wu, J.N. Enhanced electrokinetic remediation of chromium-contaminated soil by exploiting chemical oxidation and ion exchange membranes combined with auxiliary liquid chamber (ALC). Chem. Eng. J. 2025, 518, 164482. [Google Scholar] [CrossRef]
- Fardin, A.B.; Jamshidi, Z.A. A critical review on soil remediation using electrokinetic-enhanced permeable reactive barriers: Challenges and enhancements. Chem. Eng. J. Adv. 2025, 23, 10074. [Google Scholar] [CrossRef]
- Li, Z.H.; Li, X.G. Bibliometric analysis and systematic review on the electrokinetic remediation of contaminated soil and sediment. Environ. Geochem. Health 2025, 47, 15. [Google Scholar] [CrossRef]
- Naseer, U.; Du, Z.P.; Ahmad, A.; Farooq, S.; Yousaf, M.; Yue, T.X. Advanced Electrode Materials in Electrokinetic Technology for Remediation of Heavy Metal-Contaminated Soil: Recent Progress and Challenges. Adv. Sustain. Syst. 2025, 9, 2500197. [Google Scholar] [CrossRef]
- Liang, C.; Yang, S.S.; Xing, B.L.; Li, C.Q.; Yuan, F.; Wang, J.J.; Dong, W.Z.; Yan, S.L.; Sun, Z.M. Review and perspective of sulfate radical-based advanced oxidation processes (SR-AOPs) in the remediation of polycyclic aromatic hydrocarbon (PAHs) contaminated soil. J. Environ. Manag. 2025, 390, 126337. [Google Scholar] [CrossRef] [PubMed]
- Méndez, E.; Pérez, M.; Romero, O.; Beltrán, E.D.; Castro, S.; Corona, J.L.; Corona, A.; Cuevas, M.C.; Bustos, E. Effects of electrode material on the efficiency of hydrocarbon removal by an electrokinetic remediation process. Electrochim. Acta 2012, 86, 148–156. [Google Scholar] [CrossRef]
- Jeon, E.K.; Jung, J.M.; Kim, W.S.; Ko, S.H.; Baek, K. In situ electrokinetic remediation of As-, Cu-, and Pb-contaminated paddy soil using hexagonal electrode configuration: A full scale study. Environ. Sci. Pollut. Res. 2015, 22, 711–720. [Google Scholar] [CrossRef]
- Suzuki, T.; Niinae, M.; Koga, T.; Akita, T.; Ohta, M.; Choso, T. EDDS-enhanced electrokinetic remediation of heavy metal-contaminated clay soils under neutral pH conditions. Colloids Surf. A-Physicochem. Eng. Asp. 2014, 440, 145–150. [Google Scholar] [CrossRef]
- Suzuki, T.; Kawai, K.; Moribe, M.; Niinae, M. Recovery of Cr as Cr(III) from Cr(VI)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier. J. Hazard. Mater. 2014, 278, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Yang, J.W. A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. J. Hazard. Mater. 2000, 77, 227–240. [Google Scholar] [CrossRef]
- Zhang, P.; Jin, C.J.; Sun, Z.F.; Huang, G.H.; She, Z.L. Assessment of Acid Enhancement Schemes for Electrokinetic Remediation of Cd/Pb Contaminated Soil. Water Air Soil Pollut. 2016, 227, 217. [Google Scholar] [CrossRef]
- Wu, J.N.; Wei, B.; Lv, Z.W.; Fu, Y.P. To improve the performance of focusing phenomenon related to energy consumption and removal efficiency in electrokinetic remediation of Cr-contaminated soil. Sep. Purif. Technol. 2021, 272, 118882. [Google Scholar] [CrossRef]
- Hus, C. Electrokinetic Remediation of Heavy Metal Contaminated Soils; A&M University: College Station, TX, USA, 1997. [Google Scholar]
- Wang, X.W.; Hu, W.L. Enhancing Electrokinetic Remediation of Cu- and Pb-Contaminated Loess Using Irregular Electrode Configurations: A Numerical Investigation of Transport and Remediation Mechanisms. Processes 2025, 13, 1948. [Google Scholar] [CrossRef]
- Cuevas, O.; Herrada, R.A.; Corona, J.L.; Olvera, M.G.; Sepúlveda-Guzmán, S.; Sirés, I.; Bustos, E. Assessment of IrO2-Ta2O5|Ti electrodes for the electrokinetic treatment of hydrocarbon-contaminated soil using different electrode arrays. Electrochim. Acta 2016, 208, 282–287. [Google Scholar] [CrossRef]
- Kim, B.K.; Baek, K.; Ko, S.H.; Yang, J.W. Research and field experiences on electrokinetic remediation in South Korea. Sep. Purif. Technol. 2011, 79, 116–123. [Google Scholar] [CrossRef]
- Liu, H.; Cang, L.; Hao, X.Z.; Wang, Y.X.; Zhou, D.M. Field-scale electrokinetic remediation of heavy metal contaminated sites. Chin. J. Environ. Eng. 2016, 10, 3877–3883. (In Chinese) [Google Scholar] [CrossRef]
- Sun, Z.; Xu, S.; Zhang, J.; Eugene, B.D.; Li, S. Effect of Electrode Positioning on Electrokinetic Remediation of Contaminated Soft Clay with Surface Electrolyte. Toxics 2024, 12, 758. [Google Scholar] [CrossRef]
- Sun, Z.; Geng, J.; Zhang, C.; Du, Q. Electrokinetic Remediation of Cu- and Zn-Contaminated Soft Clay with Electrolytes Situated above Soil Surfaces. Toxics 2024, 12, 563. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Y.; Dennell, R.; Huang, W.W.; Wu, Y.; Rao, Z.G.; Qiu, S.F.; Xie, J.B.; Liu, W.; Fu, S.Q.; Han, J.W.; et al. New dating of the Homo erectus cranium from Lantian (Gongwangling), China. J. Hum. Evol. 2015, 78, 144–157. [Google Scholar] [CrossRef] [PubMed]
- GB/T 50123-2019; Standard for Geotechnical Test Methods. Ministry of Water Resources of the People’s Republic of China, China Planning Press: Beijing, China, 2019.
- GB 15618-2018; Soil Environmental Quality: Risk Control Strandard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment: Beijing, China, 2018.
- Yuan, L.Z.; Xu, X.J.; Li, H.Y.; Wang, Q.Y.; Wang, N.N.; Yu, H.W. The influence of macroelements on energy consumption during periodic power electrokinetic remediation of heavy metals contaminated black soil. Electrochim. Acta 2017, 235, 604–612. [Google Scholar] [CrossRef]
- Millán, M.; Bucio-Rodríguez, P.Y.; Lobato, J.; Fernández-Marchante, C.M.; Roa-Morales, G.; Barrera-Díaz, C.; Rodrigo, M.A. Strategies for powering electrokinetic soil remediation: A way to optimize performance of the environmental technology. J. Environ. Manag. 2020, 267, 110665. [Google Scholar] [CrossRef]
- López-Vizcaíno, R.; Alomso, J.; Canizares, P.; Leon, M.J.; Navarro, V.; Rodrigo, M.A.; Saez, C. Electroremediation of a natural soil polluted with phenanthrene in a pilot plant. J. Hazard. Mater. 2014, 265, 142–150. [Google Scholar] [CrossRef]
- Sánchez, V.; López-Bellido, F.J.; Cañizares, P.; Villaseñor, J.; Rodríguez, L. Scaling up the electrokinetic-assisted phytoremediation of atrazine-polluted soils using reversal of electrode polarity: A mesocosm study. J. Environ. Manag. 2020, 255, 109806. [Google Scholar] [CrossRef]
- Benamar, A.; Ammami, M.T.; Song, Y.; Portet-Koltalo, F. Scale-up of electrokinetic process for dredged sediments remediation. Electrochim. Acta 2020, 352, 136488. [Google Scholar] [CrossRef]
- Muazu, N.D.; Essa, M.H. Comparative performance evaluation of anodic materials for electro-kinetic removal of Lead (II) from contaminated clay soil. Soil Sediment Contam. 2020, 29, 69–95. [Google Scholar] [CrossRef]
- Li, X.J.; Wang, L.G.; Sun, X.M.; Cong, Y.S. Analysis of mobilization of inorganic ions in soil by electrokinetic remediation. Front. Struct. Civ. Eng. 2020, 13, 1463–1473. [Google Scholar] [CrossRef]
- Villen-Guzman, M.; Paz-Garcia, J.M.; Rodriguez-Maroto, J.M.; Garcia-Herruzo, F.; Amaya-Santos, G.; Gomez-Lahoz, C.; Vereda-Alonso, C. Scaling-up the acid-enhanced electrokinetic remediation of a real contaminated soil. Electrochim. Acta 2015, 181, 139–145. [Google Scholar] [CrossRef]
- Telepanich, A.; Marshall, T.; Gregori, S.; Marangoni, A.G.; Pensini, E. Graphene-Alginate Fluids as Unconventional Electrodes for the Electrokinetic Remediation of Cr(VI). Water Air Soil Pollut. 2021, 232, 334. [Google Scholar] [CrossRef]
- Torabi, M.S.; Asadollahfardi, G.; Rezaee, M.; Panah, N.B. Electrokinetic Removal of Cd and Cu from Mine Tailing: EDTA Enhancement and Voltage Intensity Effects. J. Hazard. Toxic Radioact. Waste 2021, 25, 05020007. [Google Scholar] [CrossRef]
- Ghobadi, R.; Altaee, A.; Zhou, J.L.; Mclean, P. Copper removal from contaminated soil through electrokinetic process with reactive filter media. Chemosphere 2020, 252, 126607. [Google Scholar] [CrossRef] [PubMed]
- Ouhadi, V.R.; Yong, R.N.; Shariatmadari, N. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method. J. Hazard. Mater. 2010, 173, 87–94. [Google Scholar] [CrossRef]
- Behrouzinia, S.; Ahmadi, H.; Abbasi, N.; Javadi, A.A. Experimental investigation on a combination of soil electrokinetic consolidation and remediation of drained water using composite nanofiber-based electrodes. Sci. Total Environ. 2022, 836, 155562. [Google Scholar] [CrossRef] [PubMed]
Property | Loess |
---|---|
Sand (%) | 3.3 |
Silt (%) | 87.4 |
Clay (%) | 9.3 |
Void ratio, e | 0.898 |
Bulk unit weight, γ (kN/m3) | 16.2 |
Specific gravity, Gs | 2.69 |
Water content, ωn (%) | 16.5 |
Liquid limit, ωL (%) | 31.6 |
Plastic limit, ωP (%) | 19.5 |
USCS symbol | CL |
Permeability (m s−1) | 2.55 × 10−6 |
Organic matter (mg g−1) | 4.1 |
pH | 7.8 |
Electrical conductivity (μs cm−1) | 244 |
BET specific surface area (m2 g−1) | 24.1 |
Composition of ions | |
Ca2+ (mg/kg) | 126 |
Mg2+ (mg/kg) | 40 |
Na+ (mg/kg) | 103 |
K+ (mg/kg) | 4.6 |
Test | Electrode Type | Pollutant | Voltage Gradient/V cm−1 | Enhancement Methods | Duration Time/h |
---|---|---|---|---|---|
EK1 | Gr 0.125 | Cu + Pb | 1.5 | / | 72 |
EK2 | EKG | Cu + Pb | 1.5 | / | 72 |
EK3 | NH | Cu + Pb | 1.5 | / | 72 |
EK4 | NH | Cu + Pb | 1.5 | focusing position adjustment | 72 |
EK5 | NH | Cu + Pb | 1.5 | exchange electrode | 72 |
EK6 | NH | Cu + Pb | 1.5 | focusing position adjustment + exchange electrode | 72 |
Electrode | Contaminants | Initial Concentration C0 (mg/kg) | Time t (h) | Intensity (V/cm) | Soil Type | Removal Efficiency (%) | References |
---|---|---|---|---|---|---|---|
Aluminum electrode | Cr, Ni | 186, 132 | 72 | 0.6–1.0 | Sand | 3.1–30.1, 27.3–48.5 | [42] |
Hydroel electrode | Cr | 200 | 0.5 | 4.8 | Sand | 70 | [59] |
Composite electrode | Cu | 200 | 60 | 1.25 | kaolin | 17.5 | [56] |
Graphite | Pb | 120 | 168 | 1.08 | Clay | 14.15 | [57] |
Graphite | Cu, Pb | 327.8 240.8 | 705 | 1.0 | Black soil | 94.84, 95.85 | [52] |
/ | Cu, Cd | 248.4, 82 | 240 | 1.0 | sludge | 4.59, 30.65 | [61] |
Graphite | Cu | 1000 | 144 | 1.0 | Kaolinite soil | 27 | [62] |
NH electrode | Cu, Pb | 500,500 | 72 | 1.5 | loess | 47.25, 16.93 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Hu, W.; Zhu, X.; Zhang, S.; Wang, W. Removal of Cu and Pb in Contaminated Loess by Electrokinetic Remediation Using Novel Hydrogel Electrodes Coupled with Focusing Position Adjustment and Exchange Electrode. Processes 2025, 13, 2915. https://doi.org/10.3390/pr13092915
Liu C, Hu W, Zhu X, Zhang S, Wang W. Removal of Cu and Pb in Contaminated Loess by Electrokinetic Remediation Using Novel Hydrogel Electrodes Coupled with Focusing Position Adjustment and Exchange Electrode. Processes. 2025; 13(9):2915. https://doi.org/10.3390/pr13092915
Chicago/Turabian StyleLiu, Chengbo, Wenle Hu, Xiang Zhu, Shixu Zhang, and Weijing Wang. 2025. "Removal of Cu and Pb in Contaminated Loess by Electrokinetic Remediation Using Novel Hydrogel Electrodes Coupled with Focusing Position Adjustment and Exchange Electrode" Processes 13, no. 9: 2915. https://doi.org/10.3390/pr13092915
APA StyleLiu, C., Hu, W., Zhu, X., Zhang, S., & Wang, W. (2025). Removal of Cu and Pb in Contaminated Loess by Electrokinetic Remediation Using Novel Hydrogel Electrodes Coupled with Focusing Position Adjustment and Exchange Electrode. Processes, 13(9), 2915. https://doi.org/10.3390/pr13092915