Multi-Stage Microwave-Assisted Extraction of Phenolic Compounds from Tunisian Walnut (Juglans regia L.) Bark
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Methodology
2.2.1. Multi-Stage Conventional Solvent Extraction (MS CSE)
2.2.2. Multi-Stage Microwave-Assisted Extraction (MS MAE)
2.3. Analysis
2.3.1. TPC Content
2.3.2. Phenolic Compound Identification and Quantification
2.4. Diffusion Coefficient Calculation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Conventional Solvent Extraction (CSE)
3.1.1. Effect of Ethanol Concentration on Phenolic Extraction Efficiency
3.1.2. Influence of Liquid–Solid Ratio on Extraction Efficacy
3.1.3. Influence of Temperature
3.1.4. Multiple Extraction Stages
3.2. Microwave-Assisted Extraction
3.2.1. Effect of Microwave Power
3.2.2. Microwave Multiple Extraction Stages
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Nomenclature
TPC | Total phenolic compound content (g GAE/100 g DM) |
Y | Total phenolic compound extraction yield (%), |
Ct | Total phenolic compound concentration (g/L), |
C∞ | Total phenolic compound concentration after infinite time (g/L), |
Deff | Effective diffusivity coefficient (m2/s) |
DM | Dry matter |
Ea | Energy activation (J/mol) |
GAE | Gallic acid equivalent |
LS | Liquid-to-solid ratio |
EC | Ethanol concentration |
t | Time (s) |
T | Temperature (°C) |
Ta | Absolute temperature (K) |
α | Ratio of volumes of solvent/particles |
ρ | Density (kg/m3) |
References
- Carvalho, M.; Ferreira, P.J.; Mendes, V.S.; Silva, R.; Pereira, J.A.; Jerónimo, C.; Silva, B.M. Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem. Toxicol. 2010, 48, 441–447. [Google Scholar] [CrossRef]
- Noumi, E.; Snoussi, M.; Trabelsi, N.; Ksouri, R.; Hamdani, G.; Bouslama, L.; Bakhrouf, A. Antioxidant activities and RP-HPLC identification of polyphenols in the ethyl acetate extract of Tunisian Juglans regia L treated barks. J. Med. Plants Res. 2012, 6, 1468–1475. [Google Scholar] [CrossRef]
- Noumi, E.; Snoussi, M.; Hajlaoui, H.; Valentin, E.; Bakhrouf, A. Antifungal properties of Salvadora persica and Juglans regia L. extracts against oral Candida strains. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 81–88. [Google Scholar] [CrossRef]
- Medic, A.; Zamljen, T.; Hudina, M.; Veberič, R. Identification and Quantification of Naphthoquinones and Other Phenolic Compounds in Leaves, Petioles, Bark, Roots, and Buds of Juglans regia L., Using HPLC-MS/MS. Horticulturae 2021, 7, 326. [Google Scholar] [CrossRef]
- Colaric, M.; Veberic, R.; Solar, A.; Hudina, M.; Stampar, F. Phenolic acids, syringaldehyde, and juglone in fruits of different cultivars of Juglans regia L. J. Agric. Food Chem. 2005, 53, 6390–6396. [Google Scholar] [CrossRef]
- Medic, A.; Jakopic, J.; Hudina, M.; Solar, A.; Veberic, R. Identification and quantification of the major phenolic constituents in Juglans regia L. peeled kernels and pellicles, using HPLC-MS/MS. Food Chem. 2021, 352, 129404. [Google Scholar] [CrossRef]
- Medic, A.; Jakopic, J.; Solar, A.; Hudina, M.; Veberic, R. Walnut (J. regia) Agro-Residues as a Rich Source of Phenolic Compounds. Biology 2021, 10, 535. [Google Scholar] [CrossRef]
- Vu, D.C.; Vo, P.H.; Coggeshall, M.V.; Lin, C.H. Identification and Characterization of Phenolic Compounds in Black Walnut Kernels. J. Agric. Food Chem. 2018, 66, 4503–4511. [Google Scholar] [CrossRef] [PubMed]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules 2019, 24, 2133. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, A.; Hosseini, S.M.; Ghorbani, M. Enhanced extraction of phenolic compounds from walnut bark using salt-assisted aqueous ethanol. J. Food Meas. Charact. 2020, 14, 2341–2350. [Google Scholar]
- Zhang, M.; Jia, L.; Li, M.; Peng, H.; Tan, Y.; Arvelli, S.; Huang, Y.; Neves, A.C.; Oh, E.J.; Zhao, J. One-Pot Biomass Pretreatment for Ethanol Production by Engineered Saccharomyces cerevisiae. ACS Sustain. Chem. Eng. 2025, 13, 5201–5209. [Google Scholar] [CrossRef]
- Podsedek, A.; Masek, A.; Latos-Brozio, M.; Chrzescijanska, E. Polyphenolic Profile and Antioxidant Activity of Juglans regia L. Leaves and Husk Extracts. Forests 2019, 10, 988. [Google Scholar] [CrossRef]
- Amaral, J.S.; Seabra, R.M.; Andrade, P.B.; Valentão, P.; Pereira, J.A.; Ferreres, F. Phenolic profile in the quality control of walnut (Juglans regia L.) leaves. Food Chem. 2004, 88, 373–379. [Google Scholar] [CrossRef]
- Ghasemi, K.; Ghasemi, Y.; Ehteshamnia, A.; Nabavi, S.M.; Nabavi, S.F.; Ebrahimzadeh, M.A.; Pourmorad, F. Influence of environmental factors on antioxidant activity, phenol and flavonoid contents of walnut (Juglans regia L.) green husks. J. Med. Plants Res. 2011, 5, 1128–1133. Available online: https://www.researchgate.net/publication/267036465_Influence_of_environmental_factors_on_antioxidant_activity_phenol_and_flavonoids_contents_of_walnut_Juglans_regia_L_green_husks (accessed on 19 July 2025).
- Tabaraki, R.; Rastgoo, S. Comparison between conventional and ultrasound-assisted extractions of natural antioxidants from walnut green husk. Korean J. Chem. Eng. 2014, 31, 676–683. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Kung, F.W.-L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Ganesapillai, M.; Mathew, M.; Singh, A.; Simha, P. Influence of Microwave and Ultrasound pretreatment on Solvent Extraction of Bio-components from Walnut (Julgans regia L.) Shells. Period. Polytech. Chem. Eng. 2016, 60, 40–48. [Google Scholar] [CrossRef]
- Ince, A.E.; Sahin, S.; Sumnu, G. Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. J. Food Sci. Technol. 2014, 51, 2776–2782. [Google Scholar] [CrossRef]
- Yan, M.-M.; Liu, W.; Fu, Y.-J.; Zu, Y.-G.; Chen, C.-Y.; Luo, M. Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali. Food Chem. 2010, 119, 1663–1670. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2016, 17, 300–312. [Google Scholar] [CrossRef]
- Pérez, L.; Conde, E.; Domínguez, H. Microwave hydrodiffusion and gravity processing of Sargassum muticum. Process Biochem. 2014, 49, 981–988. [Google Scholar] [CrossRef]
- Aspé, E.; Fernández, K. The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Ind. Crops Prod. 2011, 34, 838–844. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Zill-e-Huma, Y.J. Microwave assisted separations: Green chemistry in action. In Green Chemistry Research Trends; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; pp. 33–62. [Google Scholar]
- Bouras, M.; Chadni, M.; Barba, F.J.; Grimi, N.; Bals, O.; Vorobiev, E. Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Ind. Crops Prod. 2015, 77, 590–601. [Google Scholar] [CrossRef]
- Lee, M.; Kim, M.; Kim, J.; Lee, S.; Kim, Y.; Kim, S.; Park, J. Conditions d’extraction des polyphénols de l’écorce de pin radiata (Pinus radiata). J. Korean Wood Sci. Technol. 2020, 48, 861–873. [Google Scholar] [CrossRef]
- Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave assisted extraction—An innovative and promising extraction tool for medicinal plant research. Pharmacogn. Rev. 2007, 1, 7–18. [Google Scholar]
- Chen, Y.; Xie, M.-Y.; Gong, X.-F. Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J. Food Eng. 2007, 81, 162–170. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Koubaa, M.; Mhemdi, H.; Vorobiev, E. Seed oil polyphenols: Rapid and sensitive extraction method and high resolution–mass spectrometry identification. Anal. Biochem. 2015, 476, 91–93. [Google Scholar] [CrossRef]
- Fick, A. On liquid diffusion. Philos. Mag. 1855, 10, 30–39. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Stevanovic, T.; Diouf, P.N.; Garcia-Perez, M.E. Bioactive polyphenols from healthy diets and forest biomass. Curr. Nutr. Food Sci. 2009, 5, 264–295. [Google Scholar] [CrossRef]
- Chew, K.K.; Khoo, M.Z.; Ng, S.Y.; Thoo, Y.Y.; Wan Aida, W.M.; Ho, C.W. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. Int. Food Res. J. 2011, 18, 1427–1435. [Google Scholar]
- Fernández-Agulló, A.; Pereira, E.; Freire, M.S.; Valentão, P.; Andrade, P.B.; González-Álvarez, J.; Pereira, J.A. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crops Prod. 2013, 42, 126–132. [Google Scholar] [CrossRef]
- Thoo, Y.Y.; Ho, S.K.; Liang, J.Y.; Ho, C.W.; Tan, C.P. Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia). Food Chem. 2010, 120, 290–295. [Google Scholar] [CrossRef]
- Goldstein, D.B.; Chin, J.H. Interaction of ethanol with biological membranes. Fed. Proc. 1981, 37, 2073–2076. [Google Scholar]
- Rajha, H.N.; Boussetta, N.; Louka, N.; Maroun, R.G.; Vorobiev, E. A comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots. Food Res. Int. 2014, 65, 462–468. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Freire, M.S.; González-Álvarez, J. Effect of the extraction technique on the recovery of bioactive compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. Ind. Crops Prod. 2015, 64, 105–113. [Google Scholar] [CrossRef]
- Brianceau, S.; Turk, M.; Vitrac, X.; Vorobiev, E. Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innov. Food Sci. Emerg. Technol. 2015, 29, 2–8. [Google Scholar] [CrossRef]
- Boussetta, N.; Lebovka, N.; Vorobiev, E.; Adenier, H.; Bedel-Cloutour, C.; Lanoisellé, J.-L. Electrically assisted extraction of soluble matter from chardonnay grape skins for polyphenol recovery. J. Agric. Food Chem. 2009, 57, 1491–1497. [Google Scholar] [CrossRef]
- Gallo, M.; Ferracane, R.; Graziani, G.; Ritieni, A.; Fogliano, V. Microwave assisted extraction of phenolic compounds from four different spices. Molecules 2010, 15, 6365–6374. [Google Scholar] [CrossRef]
- Ismail-Suhaimy, N.W.; Gani, S.S.A.; Zaidan, U.H.; Halmi, M.I.E.; Bawon, P. Optimizing Conditions for Microwave-Assisted Extraction of Polyphenolic Content and Antioxidant Activity of Barleria lupulina Lindl. Plants 2021, 10, 682. [Google Scholar] [CrossRef]
- Lovrić, V.; Putnik, P.; Kovačević, D.B.; Jukić, M.; Dragović-Uzelac, V. Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers. Food Technol Biotechnol. 2017, 55, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Sen, K.K.; Chouhan, K.B.; Tandey, R.; Mehta, R.; Mandal, V. Impact of microwaves on the extraction yield of phenolics, flavonoids, and triterpenoids from centella leaves: An approach toward digitized robust botanical extraction. Phcog Mag. 2019, 15, 267–273. Available online: https://phcog.com/article/view/2019/15/64/267-273 (accessed on 19 July 2025).
- Weremfo, A.; Adulley, F.; Adarkwah-Yiadom, M. Simultaneous Optimization of Microwave-Assisted Extraction of Phenolic Compounds and Antioxidant Activity of Avocado (Persea americana Mill.) Seeds Using Response Surface Methodology. J. Anal. Methods Chem. 2020, 17, 7541927. [Google Scholar] [CrossRef]
- Gharekhani, M.; Ghorbani, M.; Rasoulnejad, N. Microwave-assisted extraction of phenolic and flavonoid compounds from Eucalyptus camaldulensis Dehn leaves as compared with ultrasound-assisted extraction. Lat. Am. Appl. Res. 2012, 42, 305–310. Available online: https://www.scielo.org.ar/scielo.php?script=sci_abstract&pid=S0327-07932012000300013 (accessed on 19 July 2025).
- Zhang, H.-F.; Zhang, X.; Yang, X.-H.; Qiu, N.-X.; Wang, Y.; Wang, Z.-Z. Microwave assisted extraction of flavonoids from cultivated Epimedium sagittatum: Extraction yield and mechanism, antioxidant activity and chemical composition. Ind. Crops Prod. 2013, 50, 857–865. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Liu, C.Z. Microwave-assisted extraction of solanesol from tobacco leaves. J. Chromatogr. A 2006, 1129, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Ballard, T.S.; Mallikarjunan, P.; Zhou, K.; O’Keefe, S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem. 2010, 120, 1185–1192. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Achim, G. Phenolic acids and flavonoids profiles of walnut (Juglans regia L.) leaves. Sci. Hortic. 2010, 129, 528–533. [Google Scholar] [CrossRef]
- Ben Sghaier, M.; Pagano, A.; Mousslim, M.; Ammari, Y.; Belhamra, M.; Touil, A.; Bouaziz, M. Phenolic profile and biological activities of Juglans regia L. bark extracts. Ind. Crops Prod. 2016, 83, 254–263. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 2007, 45, 2287–2295. [Google Scholar] [CrossRef] [PubMed]
Peak | Compound | RT (min) | [M-H]− (m/z) | Major Fragments (m/z) | UV λmax (nm) | Content (mg/100 g DM) |
---|---|---|---|---|---|---|
1 | Gallic acid | 3.5 | 169 | 125, 79 | 280 | 21.6 ± 0.9 |
2 | Protocatechuic acid | 4.8 | 153 | 109 | 260, 295 | 0.8 ± 0.1 |
3 | Unknown X1 | 5.3 | 153 | 109, 93 | 275 | Not quantified |
4 | Vanillic acid | 6.2 | 167 | 152, 108 | 255, 280 | 17.2 ± 0.5 |
5 | Catechin | 8.1 | 289 | 245, 203 | 280 | 4.2 ± 0.3 |
6 | Epicatechin | 9.0 | 289 | 245 | 280 | 0.5 ± 0.1 |
7 | Unknown X2 (flavonoid glycoside) | 7.4 | 431 | 285, 151 | 280, 320 | Not quantified |
8 | Syringic acid | 10.5 | 197 | 182, 167 | 275 | 0.6 ± 0.1 |
9 | Quercetin-3-glucoside | 11.7 | 463 | 301 | 265, 350 | 1.2 ± 0.2 |
10 | Quercetin (aglycone) | 12.8 | 301 | 179, 151 | 260, 350 | 8.8 ± 0.4 |
11 | Juglone | 14.5 | 173 | 145, 117 | 260, 380 | 0.3 ± 0.1 |
12 | Unknown X3 (quercetin derivative) | 13.6 | 447 | 301, 285 | 270, 340 | Not quantified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukettaya, N.; Mhemdi, H.; Kechaou, N. Multi-Stage Microwave-Assisted Extraction of Phenolic Compounds from Tunisian Walnut (Juglans regia L.) Bark. Processes 2025, 13, 2914. https://doi.org/10.3390/pr13092914
Boukettaya N, Mhemdi H, Kechaou N. Multi-Stage Microwave-Assisted Extraction of Phenolic Compounds from Tunisian Walnut (Juglans regia L.) Bark. Processes. 2025; 13(9):2914. https://doi.org/10.3390/pr13092914
Chicago/Turabian StyleBoukettaya, Nesrine, Houcine Mhemdi, and Nabil Kechaou. 2025. "Multi-Stage Microwave-Assisted Extraction of Phenolic Compounds from Tunisian Walnut (Juglans regia L.) Bark" Processes 13, no. 9: 2914. https://doi.org/10.3390/pr13092914
APA StyleBoukettaya, N., Mhemdi, H., & Kechaou, N. (2025). Multi-Stage Microwave-Assisted Extraction of Phenolic Compounds from Tunisian Walnut (Juglans regia L.) Bark. Processes, 13(9), 2914. https://doi.org/10.3390/pr13092914