A Lagrange-Based Multi-Objective Framework for Wind–Thermal Economic Emission Dispatch
Abstract
1. Introduction
2. Formulation of the WTEED Problem
2.1. Formulation of the Thermal Power, Emissions, and Wind Power
2.1.1. Formulation of the Emission Cost Function
- (a)
- Real power balance constraints
- (a)
- Generation capacitor for conventional and wind power constraints
2.1.2. Wind Power Probability Distribution Function
2.1.3. Multi-Criteria Optimization Problem
2.2. Proposed Algorithm for Solving the WTEED Problem
- (1)
- The initial value of the Lagrange multiplier , and the value of the condition for optimality is given.
- (2)
- In Equation (34), matrices are formed.
- (3)
- Equation (36) is solved, and is determined.
- (4)
- Equations (18)–(21) are used for wind power calculation. Wind power calculation is done using the trapezoidal method within the MATLAB environment.
- (5)
- The optimum power calculations from Equations (18)–(21) and (36) are added to form the total power generated by both wind and thermal generators.
- (6)
- The obtained vector of is fitted to constraint Equation (41).
- (7)
- is calculated using Equation (39) where is substituted.
- (8)
- Condition (41) is checked. If it is fulfilled, the operation stops. But if it is not, the improved value of is calculated using Equation (40).
- (9)
- Calculation of the improved is done following step 5, and the process will repeat itself until the conditions of Equation (42) are met.
3. Description of the Test Systems
3.1. Test System 1
Results and Discussion of the WTEED Problem for the Six-Unit System
3.2. Test System 2
3.3. Results and Discussion of the WTEED Problem for the Ten-Unit System
3.4. Test System 3
Results and Discussions of the WTEED Problem for the Forty-Unit System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Nomenclature
Abbreviations | |
CDF | Cumulative Distribution Function |
DERs | Distributed Energy Resources |
DPO | Diffusion Particle Optimization |
GA | Genetic Algorithm |
GABC | Gbest Guided Artificial Bee Colony algorithm |
GAEPSO | Gravitational Acceleration Enhanced Particle Swarm Optimization |
GSA | Gravitational Search Algorithm |
HFPA-TVFSM | Hybrid Flower Pollination Algorithm and Time Varying Fuzzy Selection Mechanism |
IEEE | Institute of Electrical and Electronics Engineers |
LMM | Lagrange Multiplier Method |
LR | Lagrange |
MFO | Moth–Flame Optimization |
Probability Distribution Function | |
MLTA | Modified Teaching–Learning Algorithm |
NO2 | Nitrogen Oxide |
OLHBMO | Online Learning Honey Bee Mating Optimization |
PSO | Particle Swarm Optimization |
SAR | Search and Rescue Algorithm |
SO2 | Sulfur Dioxide |
SSA | Salp Swarm Algorithm |
WOA | Whale Optimization Algorithm |
WPDF | Weibull Probability Distribution Function |
WTEED | Wind–Thermal Economic Emission Dispatch |
Nomenclature | |
Symbol | Description |
Transmission loss coefficient between generator m and n | |
Direct cost coefficient for wind generation | |
Overestimation cost coefficient for wind generation | |
Underestimation cost coefficient for wind generation | |
CEED | Combined Economic and Emission Dispatch objective value |
Emission function of generator i | |
Total emissions from all generators | |
Fuel cost function of thermal generator i | |
F(v) | Weibull cumulative distribution function |
f(v) | Weibull probability density function |
k | Shape parameter of Weibull distribution |
m | Maximum number of iterations |
Number of wind farms | |
Number of thermal generators | |
Number of wind generators per wind farm | |
Total load demand | |
Transmission line losses | |
Output power of i-th thermal generator | |
Output power of k-th wind generator in j-th wind farm | |
v | Wind speed |
Cut-in wind speed | |
Cut-out wind speed | |
Rated wind speed | |
WTEED | Wind–Thermal Economic Emission Dispatch |
Fuel cost coefficients of thermal generator i | |
Emission coefficients of generator i | |
Γ (·) | Gamma function |
ε | Convergence tolerance |
λ | Lagrange multiplier |
References
- Azizipanah-Abarghooee, R.; Niknam, T.; Roosta, A.; Malekpour, A.; Zare, M. Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method. Energy 2012, 37, 322–335. [Google Scholar] [CrossRef]
- Peng, C.; Sun, H.; Guo, J.; Liu, G. Dynamic economic dispatch for wind-thermal power system using a novel bi-population chaotic differential evolution algorithm. Int. J. Electr. Power Energy Syst. 2012, 42, 119–126. [Google Scholar] [CrossRef]
- Jadhav, H.; Roy, R. Gbest guided artificial bee colony algorithm for environmental/economic dispatch considering wind power. Expert Syst. Appl. 2013, 40, 6385–6399. [Google Scholar] [CrossRef]
- Mondal, S.; Bhattacharya, A.; nee Dey, S. Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration. Int. J. Electr. Power Energy Syst. 2013, 44, 282–292. [Google Scholar] [CrossRef]
- Dubey, H.; Pandit, M.; Panigrahi, B. Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch. Renew. Energy 2015, 83, 188–202. [Google Scholar] [CrossRef]
- Jiang, S.; Ji, Z.; Wang, Y. A novel gravitational acceleration enhanced particle swarm optimization algorithm for wind–thermal economic emission dispatch problem considering wind power availability. Int. J. Electr. Power Energy Syst. 2015, 73, 1035–1050. [Google Scholar] [CrossRef]
- Ghasemi, A.; Gheydi, M.; Golkar, M.; Eslami, M. Modelling of Wind/Environment/Economic Dispatch in power system and solving via an online learning meta-heuristic method. Appl. Soft Comput. 2016, 43, 454–468. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Qu, B. Multi-Objective Economic Emission Dispatch Considering Wind Power Using Evolutionary Algorithm Based on Decomposition. Int. J. Electr. Power Energy Syst. 2014, 63, 434–445. [Google Scholar] [CrossRef]
- Pandit, M.; Chaudhary, V.; Dubey, H.M.; Panigrahi, B.K. Multi-Period Wind Integrated Optimal Dispatch Using Series PSO-DE with Time-Varying Gaussian Membership Function Based Fuzzy Selection. Int. J. Electr. Power Energy Syst. 2015, 73, 259–272. [Google Scholar] [CrossRef]
- Zhang, Y.; Ni, M. Fully Distributed Economic Dispatch with Random Wind Power Using Parallel and Finite-Step Consensus-Based ADMM. Electronics 2024, 13, 1437. [Google Scholar] [CrossRef]
- Shalini, S.P.; Lakshmi, K. Solution to Economic Emission Dispatch problem using Lagrangian relaxation method. In Proceedings of the 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), Coimbatore, India, 6–8 March 2014; IEEE: New York, NY, USA; pp. 1–6. [Google Scholar] [CrossRef]
- Damodaran, S.K.; Kumar, T.S. Combined economic and emission dispatch using a classical technique. IFAC Proc. Vol. 2014, 47, 1049–1053. [Google Scholar] [CrossRef]
- Singhal, P.K.; Naresh, R.; Sharma, V.; Kumar, G. Enhanced lambda iteration algorithm for the solution of large-scale economic dispatch problem. In Proceedings of the International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 9–11 May 2014; IEEE: New York, NY, USA; pp. 1–6. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Tzoneva, R. Comparison of the Lagrange’s and particle swarm optimisation solutions of an economic emission dispatch problem with transmission constraints. In Proceedings of the 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Bengaluru, India, 16–19 December 2012; IEEE: New York, NY, USA; pp. 1–8. [Google Scholar] [CrossRef]
- Kothari, D.P.; Dhillon, J.S. Power System Optimization; PHI Learning Private Limited: New Delhi, India, 2010. [Google Scholar]
- Raza, M.Y.; Lin, B. Development trend of Pakistan’s natural gas consumption: A sectorial decomposition analysis. Energy 2023, 278 Pt A, 127872. [Google Scholar] [CrossRef]
- Abdelaziz, A.Y.; Ali, E.S.; Elazim, S.M.A. Implementation of Flower Pollination Algorithm for Solving Economic Load Dispatch and Combined Economic Emission Dispatch Problems in Power Systems. Energy 2016, 101, 506–518. [Google Scholar] [CrossRef]
- Huang, W.-T.; Yao, K.-C.; Chen, M.-K.; Wang, F.-Y.; Zhu, C.-H.; Chang, Y.-R.; Lee, Y.-D.; Ho, Y.-H. Derivation and Application of a New Transmission Loss Formula for Power System Economic Dispatch. Energies 2018, 11, 417. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, C.; Wu, W.; Chen, S. Combined Economic and Emission Dispatch Problem of Wind-Thermal Power System Using Gravitational Particle Swarm Optimization Algorithm. Math. Probl. Eng. 2019, 2019, 5679361. [Google Scholar] [CrossRef]
- De, M.; Goswami, S.K. A Direct and Simplified Approach to Power-flow Tracing and Loss allocation Using Graph Theory. Electr. Power Compon. Syst. 2010, 38, 241–259. [Google Scholar] [CrossRef]
- Masters, G. Renewable and Efficient Electric Power Systems, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Leon-Garcia, A. Probability Statistics and Random Processes for Electrical Engineering, 3rd ed.; Pearson Prentice Hall, Pearson Education International: London, UK, 2016. [Google Scholar]
- Qu, B.Y.; Liang, J.J.; Zhu, Y.S.; Wang, Z.Y.; Suganthan, P.N. Economic Emission Dispatch Problems with Stochastic Wind Power Using Summation Based Multi-Objective Evolutionary Algorithm. Inf. Sci. 2016, 351, 48–66. [Google Scholar] [CrossRef]
- Liu, N.X.; Xu, W. Minimum Emission Dispatch Constrained by Stochastic Wind Power Availability and Cost. IEEE Trans. Power Syst. 2010, 25, 1705–1713. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W. Economic Load Dispatch Constrained by Wind Power Availability: A Here-and-Now Approach. IEEE Trans. Sustain. Energy 2010, 1, 2–9. [Google Scholar] [CrossRef]
- Hetzer, J.; Yu, D.C.; Bhattarai, K. An Economic Dispatch Model Incorporating Wind Power. IEEE Trans. Energy Convers. 2008, 23, 603–611. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Chattopadhyay, P.K. Biogeography-Based Optimization for Different Economic Load Dispatch Problems. IEEE Trans. Power Syst. 2009, 25, 1064–1077. [Google Scholar] [CrossRef]
- Kumari, M.; Pal, K. Dynamic Combined Economic Emission Dispatch Including Wind Generators by Real Coded Genetic Algorithm. Int. J. Appl. Metaheuristic Comput. 2021, 13, 1–23. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Tzoneva, R.; Apostolov, A. Method for a Parallel Solution of a Combined Economic Emission Dispatch Problem. Electr. Power Compon. Syst. 2017, 45, 393–409. [Google Scholar] [CrossRef]
- Gnanadass, R. Optimal Power Dispatch and Pricing for Deregulated Power Industry. Ph.D. Thesis, Department of ECE, Pondicherry Engineering College, Puducherry, India, 2005. [Google Scholar]
- Damodaran, S.; Kumar, T.S. Hydro-Thermal-Wind Generation Scheduling Considering Economic and Environmental Factors Using Heuristic Algorithms. Energies 2018, 11, 353. [Google Scholar] [CrossRef]
- Basu, M. Economic Environmental Dispatch Using Multi-Objective Differential Evolution. Appl. Soft Comput. 2010, 11, 2845–2853. [Google Scholar] [CrossRef]
- Mishra, S.; Shaik, A.G. Solving Bi-Objective Economic-Emission Load Dispatch of Diesel-Wind-Solar Microgrid Using African Vulture Optimization Algorithm. Heliyon 2024, 10, e24993. [Google Scholar] [CrossRef]
- Secui, D.C.; Hora, C.; Bendea, C.; Secui, M.L.; Bendea, G.; Dan, F.C. Modified Social Group Optimization to Solve the Problem of Economic Emission Dispatch with the Incorporation of Wind Power. Sustainability 2024, 16, 397. [Google Scholar] [CrossRef]
Criteria | Lagrange Multiplier Method | Heuristic Algorithms |
---|---|---|
Optimality | Yes (for convex/nonconvex and differentiable problems). | Cannot be mathematically guaranteed, since these algorithms mostly use random numbers in generating population values, which positively affects the calculation of active power. |
Determinism | The initial value does not change the mathematical solution. Same solution every run, depending on the initial guess value of lambda variable. | These algorithms mostly use random numbers in generating population values, which positively affects the calculation of active power. This will yield different results on different runs. |
Constraint Fulfillment | Can fulfill constraints for both nonlinear and linear optimization problems. | Approximate via penalty functions. |
Computational Cost | Low for convex economic emission dispatch problems. | This may be high due to many iterations and evaluations of the fitness function in finding global solutions. |
Interpretability | This is mostly achieved by breaking down the whole optimization problem into subproblems and using in the subproblems to find a solution in the master. | Not easy to break down this algorithm to subproblems, while it is easy to find the solutions of nonlinear, nonconvex, and non-smooth economic emission dispatch problems. |
Parameter Modification | This is not required in the classical method. The best solution and computational time are achieved by choosing an initial guess value . | Most parameters need proper tuning of the algorithm parameters. If this is not done, the optimal solution of the economic dispatch problem can prematurely converge. |
Convergence Speed | This is fast if the economic emission dispatch is convex but depends on choosing an initial guess value . | Can be slower, and maybe stagnate near the optimum solution. |
PD [MW] | 125 | 150 | 175 | 200 | 225 | 250 | 283.4 |
---|---|---|---|---|---|---|---|
P1 [MW] | 5 | 5 | 6.65 | 9.54 | 12.44 | 15.35 | 19.24 |
P2 [MW] | 28.29 | 30.37 | 32.32 | 34.17 | 36.03 | 37.89 | 40.37 |
P3 [MW] | 14.5 | 20.87 | 26.85 | 32.54 | 38.24 | 43.96 | 51.63 |
P4 [MW] | 50.68 | 57.51 | 63.91 | 69.98 | 76.06 | 82.15 | 90.31 |
P5 [MW] | 13.72 | 19.98 | 25.85 | 31.42 | 37.01 | 42.61 | 50.11 |
P6 [MW] | 13.15 | 16.9 | 20.4 | 23.71 | 27.02 | 30.32 | 34.72 |
P7 [MW] | 118.28 | 118.28 | 118.28 | 118.28 | 118.28 | 118.28 | 118.28 |
PL [MW] | 1.32 | 1.63 | 1.97 | 2.36 | 2.79 | 3.26 | 3.96 |
FC [USD/h] | 25,391 | 29,234 | 33,164 | 37,160 | 41,167 | 45,183 | 50,562.51 |
ET [kg/h] | 22.26 | 21.62 | 21.05 | 20.55 | 20.17 | 19.89 | 19.69 |
CEED [kg/h] | 28,361 | 33,066 | 37,966 | 43,039 | 48,265 | 53,644 | 61,070 |
Algorithm | PSO MW | GSA MW | GAEPSO MW | GA MW | GPSOA Without Wind | Proposed LMM MW |
---|---|---|---|---|---|---|
P1 [MW] | 2 | 14.45 | 20.75 | 36.62 | 11.29 | 19.24 |
P2 [MW] | 30.06 | 53.46 | 30.09 | 42.58 | 29.95 | 40.37 |
P3 [MW] | 28.24 | 23.87 | 34.63 | 30.31 | 52.66 | 51.63 |
P4 [MW] | 31.29 | 6 | 35.06 | 31.36 | 101.69 | 90.31 |
P5 [MW] | 40.32 | 25.48 | 34.53 | 53.44 | 52.68 | 50.11 |
P6 [MW] | 41.61 | 22.67 | 32.93 | 43.52 | 35.95 | 34.72 |
Pw [MW] | 110.2 | 137.71 | 95.47 | 45.57 | -- | 118.28 |
PL [MW] | --- | --- | --- | --- | --- | 3.96 |
FC [USD/h] | 62,497 | 58,846 | 57,219 | 66,582 | 60,029 | 50,562.51 |
% Deviation FC [USD/h] solutions from the literature with reference to the proposed LMM | 5.27 | 3.78 | 3.08 | 6.83 | 4.10 | 4.27 |
ET [kg/h] | 20.43 | 21.33 | 20.49 | 19.72 | 22.21 | 19.69 |
% Deviation ET [kg/h] solutions from the literature with reference to the proposed LMM | 0.922 | 1.99 | 0.99 | 0.038 | 3.007 | 3.007 |
PD [MW] | 650 | 800 | 1000 | 1200 | 1500 | 2000 |
---|---|---|---|---|---|---|
P1 [MW] | 16.9077 | 43.2946 | 55.0000 | 55.0000 | 55.0000 | 55.0000 |
P2 [MW] | 20.4349 | 45.0263 | 59.3561 | 69.8398 | 80.0000 | 80.0000 |
P3 [MW] | 47.0000 | 47.0000 | 60.9549 | 71.9979 | 87.5874 | 111.9414 |
P4 [MW] | 20.0000 | 44.1126 | 59.4937 | 70.7465 | 86.6321 | 111.4487 |
P5 [MW] | 50.0000 | 50.0000 | 50.0000 | 50.0000 | 67.6960 | 111.5112 |
P6 [MW] | 70.0000 | 70.0000 | 70.0000 | 70.0000 | 78.8096 | 134.2497 |
P7 [MW] | 60.0000 | 62.8499 | 106.5857 | 138.5827 | 183.7531 | 254.3184 |
P8 [MW] | 70.0000 | 70.0000 | 114.6430 | 152.1590 | 205.1205 | 287.8573 |
P9 [MW] | 135.0000 | 135.0000 | 175.7180 | 229.6450 | 305.7741 | 424.7033 |
P10 [MW] | 150.0000 | 150.0000 | 173.2323 | 228.4474 | 306.3949 | 428.1648 |
P11 [MW] | 24.028 | 100.116 | 100.116 | 100.116 | 100.116 | 100.116 |
PL [MW] | 13.3715 | 17.4007 | 25.1010 | 36.5356 | 56.8851 | 99.3099 |
FC [USD/h] | 37,639.687359 | 41,146.509 | 50,742.1419 | 60,746.3 | 76,945.943152 | 107,422.761421 |
ET [kg/h] | 1399.058217 | 1333.454716 | 1501.85983 | 1803.17 | 2440.652768 | 3910.593584 |
CEED [kg/h] | 63,739.681832 | 66,384.319239 | 80,126.5769 | 97,793.9 | 131,033.780343 | 203,261.325452 |
Algorithm | MFO | WOA | SAR | GA | Proposed LMM |
---|---|---|---|---|---|
P1 [MW] | 37.16 | 46.96 | 53.49 | 34.17 | 55.0000 |
P2 [MW] | 25.84 | 68.61 | 77.10 | 63.49 | 80.0000 |
P3 [MW] | 120 | 69.24 | 64.41 | 95.75 | 111.9414 |
P4 [MW] | 93.90 | 129.21 | 83.05 | 121.67 | 111.4487 |
P5 [MW] | 160 | 50 | 158.73 | 145.83 | 111.5112 |
P6 [MW] | 240 | 226 | 239.50 | 229.86 | 134.2497 |
P7 [MW] | 244.61 | 298.21 | 275.88 | 281.21 | 254.3184 |
P8 [MW] | 286.25 | 337.93 | 332.28 | 307.35 | 287.8573 |
P9 [MW] | 470 | 390.40 | 409.12 | 391.63 | 424.7033 |
P10 [MW] | 404.92 | 468 | 388.56 | 410.56 | 428.1648 |
P11 [MW] | 30 | 30 | 30 | 30 | 100.116 |
Fc [USD] | 116,690.89 | 114,678.84 | 114,106.19 | 115,802.24 | 107,422.761421 |
%Deviation of Fc for LMM compared to the literature | 2.07 | 1.63 | 1.508477 | 1.876913 | 1.876 |
FCT [USD] | 239,158.66 | 244,987.20 | 226,506.78 | 231,903.60 | 110,572.517314- |
PL [MW] | 83.70 | 84.44 | 82.81 | 83.9 | 99.310 |
ET [T] | 4080 | 4220 | 4103.3 | 4390 | 3910.593584 |
%Deviation of Fc for LMM compared to the literature | 1.060036 | 1.90273 | 1.202327 | 2.897008 | 2.887784 |
CEED [USD] | 239,158.66 | 244,987.20 | 226,506.78 | 231,903.60 | 203,261.325452 |
Algorithm | Best Cost (USD/h) | Best Cost (%) Deviation | Best Emission (kg/h) | Best Emission (%) Deviation |
---|---|---|---|---|
DE | 111,500.000 | 0.931205 | 3923.40 | 0.081736 |
QPSO | 119,005.3030 | 2.557665 | 4032.38 | 0.76663 |
GQPSO | 112,424.7444 | 1.137603 | 4011.9244 | 0.639511 |
SGO | 111,497.6302 | 0.930674 | 3932.243252 | 0.138022 |
MSGO | 111,497.6301 | 0.930674 | 3932.243252 | 0.138022 |
LMM | 107,422.761421 | 1.297564 | 3910.593584 | 0.352784 |
PD [MW] | 10,500 | 11,000 | 11,200 | 11,300 |
---|---|---|---|---|
P1 [MW] | 114.0000 | 114.0000 | 114.0000 | 114.0000 |
P2 [MW] | 114.0000 | 114.0000 | 114.0000 | 114.0000 |
P3 [MW] | 120.0000 | 120.0000 | 120.0000 | 120.0000 |
P4 [MW] | 190.0000 | 190.0000 | 190.0000 | 190.0000 |
P5 [MW] | 97.0000 | 97.0000 | 97.0000 | 97.0000 |
P6 [MW] | 140.0000 | 140.0000 | 140.0000 | 140.0000 |
P7 [MW] | 300.0000 | 300.0000 | 300.0000 | 300.0000 |
P8 [MW] | 300.0000 | 300.0000 | 300.0000 | 300.0000 |
P9 [MW] | 300.0000 | 300.0000 | 300.0000 | 300.0000 |
P10 [MW] | 236.1173 | 300.0000 | 300.0000 | 300.0000 |
P11 [MW] | 279.1346 | 369.8932 | 375.0000 | 375.0000 |
P12 [MW] | 277.8458 | 369.5691 | 375.0000 | 375.0000 |
P13 [MW] | 383.4729 | 500.0000 | 500.0000 | 500.0000 |
P14 [MW] | 422.9295 | 500.0000 | 500.0000 | 500.0000 |
P15 [MW] | 421.4242 | 500.0000 | 500.0000 | 500.0000 |
P16 [MW] | 421.4242 | 500.0000 | 500.0000 | 500.0000 |
P17 [MW] | 500.0000 | 500.0000 | 500.0000 | 500.0000 |
P18 [MW] | 500.0000 | 500.0000 | 500.0000 | 500.0000 |
P19 [MW] | 550.0000 | 550.0000 | 550.0000 | 550.0000 |
P20 [MW] | 550.0000 | 550.0000 | 550.0000 | 550.0000 |
P21 [MW] | 550.0000 | 550.0000 | 550.0000 | 550.0000 |
P22 [MW] | 550.0000 | 550.0000 | 550.0000 | 550.0000 |
P23 [MW] | 550.0000 | 550.0000 | 550.0000 | 550.0000 |
P24 [MW] | 550.0000 | 550.0000 | 550.0000 | 550.0000 |
P25 [MW] | 550.0000 | 550.0000 | 550.0000 | 550.0000 |
P26 [MW] | 550.0000 | 550.0000 | 550.0000 | 550.0000 |
P27 [MW] | 17.9820 | 23.6373 | 101.6061 | 142.1987 |
P28 [MW] | 17.9820 | 23.6373 | 101.6061 | 142.1987 |
P29 [MW] | 17.9820 | 23.6373 | 101.6061 | 142.1987 |
P30 [MW] | 97.0000 | 97.0000 | 97.0000 | 97.0000 |
P31 [MW] | 190.0000 | 190.0000 | 190.0000 | 190.0000 |
P32 [MW] | 190.0000 | 190.0000 | 190.0000 | 190.0000 |
P33 [MW] | 190.0000 | 190.0000 | 190.0000 | 190.0000 |
P34 [MW] | 90.0000 | 90.0000 | 90.0000 | 90.0000 |
P35 [MW] | 90.0000 | 90.0000 | 90.0000 | 90.0000 |
P36 [MW] | 90.0000 | 90.0000 | 90.0000 | 90.0000 |
P37 [MW] | 110.0000 | 110.0000 | 110.0000 | 110.0000 |
P38 [MW] | 110.0000 | 110.0000 | 110.0000 | 110.0000 |
P39 [MW] | 110.0000 | 110.0000 | 110.0000 | 110.0000 |
P40 [MW] | 550.0000 | 550.0000 | 550.0000 | 550.000 |
P41 [MW] | 150.386 | 150.386 | 150.386 | 150.386 |
FC [USD/h] | 133,540.341 | 143,551.62517 | 159,778.38 | 175,659.5 |
PL [MW] | 1038.682 | 1152.8 | 1197.2 | 1218.984 |
ET [kg/h] | 105,263.403 | 136,510.06316 | 190,426.05 | 244,979.8 |
CEED [kg/h] | 254,190.3053 | 283,453.10221 | 317,220.20 | 350,503.7 |
Algorithm | MGSO Without Wind Power | MSGO | PSO | GSA | GAEPSO | Proposed LMM 150 MW Wind Power | Proposed LMM 1100 MW Wind Power |
---|---|---|---|---|---|---|---|
P1 [MW] | 114.000000 | 549.9997828 | 114.0000 | 105.5679 | 106.3768 | 114.0000 | 114.0000 |
P2 [MW] | 113.999999 | 549.9997818 | 104.0000 | 88.2574 | 113.2637 | 114.0000 | 114.0000 |
P3 [MW] | 120.000000 | 119.9988116 | 120.0000 | 105.9739 | 108.5784 | 120.0000 | 108.3202 |
P4 [MW] | 189.999995 | 179.7374211 | 169.3671 | 150.3464 | 188.6623 | 190.0000 | 165.3147 |
P5 [MW] | 96.999999 | 96.99883835 | 97.0000 | 82.0595 | 77.0086 | 97.0000 | 97.0000 |
P6 [MW] | 140.000000 | 105.4022758 | 124.2630 | 119.5704 | 132.6636 | 140.0000 | 130.6214 |
P7 [MW] | 300.000000 | 299.9999742 | 299.6931 | 248.5154 | 288.3156 | 300.0000 | 285.1828 |
P8 [MW] | 300.000000 | 285.7135868 | 297.9093 | 276.3936 | 235.0264 | 300.0000 | 300.0000 |
P9 [MW] | 299.999998 | 287.9519754 | 297.2578 | 244.2866 | 285.7760 | 300.0000 | 300.0000 |
P10 [MW] | 279.599683 | 204.8086989 | 130.0007 | 262.1424 | 264.6783 | 236.1273 | 166.9658 |
P11 [MW] | 168.799860 | 243.6012566 | 298.4210 | 293.2579 | 312.0426 | 279.1439 | 214.3810 |
P12 [MW] | 94.0000003 | 243.6003501 | 298.0264 | 264.5149 | 112.8675 | 277.8553 | 212.4040 |
P13 [MW] | 484.039161 | 394.2851366 | 433.5590 | 432.2395 | 486.8320 | 383.4865 | 289.4015 |
P14 [MW] | 484.039166 | 394.2799802 | 421.7360 | 391.8179 | 341.2265 | 422.9446 | 318.7482 |
P15 [MW] | 484.039164 | 394.2841752 | 422.7884 | 422.8119 | 428.9123 | 421.4392 | 317.4792 |
P16 [MW] | 484.039178 | 484.0292251 | 422.7841 | 414.8810 | 436.8761 | 421.4392 | 317.4792 |
P17 [MW] | 489.279372 | 489.2692227 | 439.4078 | 428.5659 | 426.2216 | 500.0000 | 462.7621 |
P18 [MW] | 489.279372 | 399.5209877 | 409.4132 | 422.1613 | 442.5531 | 500.0000 | 464.5057 |
P19 [MW] | 511.279600 | 506.0067276 | 439.4111 | 440.9423 | 454.6218 | 550.0000 | 506.5800 |
P20 [MW] | 511.279490 | 421.5364187 | 429.4155 | 435.9092 | 491.0606 | 550.0000 | 506.5812 |
P21 [MW] | 526.732209 | 433.5530376 | 439.4421 | 451.8724 | 450.2265 | 550.0000 | 550.0000 |
P22 [MW] | 550.000000 | 514.2353651 | 439.4587 | 436.1765 | 406.2236 | 550.0000 | 550.0000 |
P23 [MW] | 523.279384 | 433.5329212 | 429.7822 | 437.2970 | 464.5563 | 550.0000 | 550.0000 |
P24 [MW] | 523.279383 | 433.5268561 | 439.7697 | 442.0350 | 444.5589 | 550.0000 | 550.0000 |
P25 [MW] | 524.239856 | 433.5342317 | 430.1191 | 445.9564 | 455.3451 | 550.0000 | 550.0000 |
P26 [MW] | 523.815577 | 433.7489257 | 440.1219 | 429.3785 | 468.2267 | 550.0000 | 550.0000 |
P27 [MW] | 10.000020 | 10.05540017 | 28.9738 | 124.0932 | 103.8549 | 17.9826 | 13.9471 |
P28 [MW] | 10.000113 | 10.24418652 | 29.0007 | 117.8668 | 146.2286 | 17.9826 | 13.9471 |
P29 [MW] | 10.000007 | 10.0022597 | 28.9828 | 94.5359 | 148.8421 | 17.9826 | 13.9471 |
P30 [MW] | 87.800155 | 89.80426078 | 97.0000 | 89.6485 | 96.7263 | 97.0000 | 97.0000 |
P31 [MW] | 190.000000 | 189.998884 | 172.3348 | 153.1318 | 189.2261 | 190.0000 | 175.9692 |
P32 [MW] | 190.000000 | 189.9955403 | 172.3327 | 159.0102 | 86.6516 | 190.0000 | 175.9692 |
P33 [MW] | 190.000000 | 189.9978565 | 172.3262 | 148.7814 | 89.2264 | 190.0000 | 175.9692 |
P34 [MW] | 200.000000 | 199.9994215 | 200.0000 | 176.4061 | 93.9663 | 90.0000 | 90.0000 |
P35 [MW] | 199.999999 | 199.9994151 | 200.0000 | 170.0710 | 102.2234 | 90.0000 | 90.0000 |
P36 [MW] | 164.799870 | 199.998299 | 200.0000 | 181.6662 | 168.2261 | 90.0000 | 90.0000 |
P37 [MW] | 110.000000 | 110.0000000 | 100.8441 | 96.8108 | 78.2663 | 110.0000 | 110.0000 |
P38 [MW] | 109.999999 | 109.9997758 | 100.8346 | 94.3094 | 107.8912 | 110.0000 | 110.0000 |
P39 [MW] | 110.000000 | 109.9962344 | 100.8362 | 82.4816 | 98.0368 | 110.0000 | 110.0000 |
P40 [MW] | 550.000000 | 509.5675741 | 439.3868 | 456.2560 | 442.4562 | 550.0000 | 506.5800 |
P41 [MW] | - | 1100 | 66.2736 | 83.099 | 151.9009 | 150.294 | 1100 |
FC [USD/h] | 136,454.3369 | 126,645.13420 | 133,995.0611 | 142,675.36 | 158,269.6617 | 133,541.733580 | 121,045.419972 |
%Deviation of Fc for LMM compared with the literature | 2.992 | 1.13 | 2.54 | 4.17 | 6.66 | 2.454 | 3.313174 (Average) |
PL [MW] | 958.6206217 | 962.815076 | - | - | - | 1038.679 | 1063.127 |
ET [kg/h] | 347,578.4905 | 239,155.73184 | 352.766.822 | 366,190.13 | 156,826.1213 | 105,267.750200 | 75,880.539978 |
%Deviation of Fc for LMM compared with the literature | 32.08 | 25.91371319 | 32.29 | 32.83 | 17.39 | 8.11 | 24.77 (Average) |
Algorithm | Best Cost (USD/h) | Best Cost (%) Deviation | Best Emission (kg/h) | Best Emission (%) Deviation |
---|---|---|---|---|
PSO | 123,607.9479 | 0.523706 | 193,313.7047 | 21.8119754 |
DE | 123,804.0394 | 0.56333 | 193,953.9668 | 21.87886 |
SCA | 125,895.2706 | 0.981987 | 210,484.9674 | 23.50221 |
SGO | 123,289.7874 | 0.45928 | 193,311.54075 | 21.81175 |
MGSO | 123,161.8867 | 0.433334 | 193,311.54075 | 21.81175 |
LMM | 121,045.419972 | 0.592327 | 75,880.5399 | 22.16331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbangeni, L.; Krishnamurthy, S. A Lagrange-Based Multi-Objective Framework for Wind–Thermal Economic Emission Dispatch. Processes 2025, 13, 2814. https://doi.org/10.3390/pr13092814
Mbangeni L, Krishnamurthy S. A Lagrange-Based Multi-Objective Framework for Wind–Thermal Economic Emission Dispatch. Processes. 2025; 13(9):2814. https://doi.org/10.3390/pr13092814
Chicago/Turabian StyleMbangeni, Litha, and Senthil Krishnamurthy. 2025. "A Lagrange-Based Multi-Objective Framework for Wind–Thermal Economic Emission Dispatch" Processes 13, no. 9: 2814. https://doi.org/10.3390/pr13092814
APA StyleMbangeni, L., & Krishnamurthy, S. (2025). A Lagrange-Based Multi-Objective Framework for Wind–Thermal Economic Emission Dispatch. Processes, 13(9), 2814. https://doi.org/10.3390/pr13092814