Hydrothermal Carbonization Treatment as a Pathway for Energy Utilization of Municipal Sludge and Agricultural Residues Through Co-Gasification
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of Experiments and Reactors Design
2.3. SOLAR Distillation
2.4. Materials Analysis
2.5. Model and Energy Balances
2.6. Energy Demand and Production
2.7. Limitations of the Study
3. Results and Discussion
3.1. Chemical Oxygen Demands Characterization of the Liquid Samples
3.2. Characterization of Solid Products (HC)
3.3. Higher Heating Value of the HC
3.4. LHV of the HC and % Molar Fraction of the Produced Gases
3.5. Energy Output of the Integrated System
3.6. Economic Assessment
3.7. Limitations of the Study Results and Future Work
4. Conclusions
- The process could significantly reduce landfilling costs while enhancing energy production.
- HTC is proposed as a method to convert sludge into HC, a carbon-rich product, without the need for drying sludge that typically contains 12% to 15% TS.
- Furthermore, the use of solar distillation as a low-energy method for drying the HTC effluent is particularly notable for its sustainability and resourcefulness in utilizing natural processes to reduce energy consumption.
- The combined approach of HTC, solar distillation, and gasification projected to increase total electricity production of Lesvos Island by 4720 MWh/year.
- This integrated solution not only promotes waste valorization but also contributes to the renewable energy production on the island. The text concludes with a call for a thorough techno-economic analysis to fully understand the benefits and potential challenges of such an integrated system.
- This analysis would be crucial in evaluating the viability and economic attractiveness of the proposed system, as well as in identifying any technical or logistical obstacles that may need to be overcome for successful implementation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GHGs | Greenhouse Gasses |
WWTPs | Wastewater Treatment Plants |
S.S. | Sewage Sludge |
AD | Anaerobic Digestion |
A.D.S. | Anaerobically Digested Sludge |
HTC | Hydrothermal Carbonization |
HT | Hydrothermal Treatment |
PTFE | Polytetrafluoroethylene |
COD | Chemical Oxygen Demand |
TS | Total Solids |
VS | Volatile Solids |
HHV | Higher Heating Value |
MAGSY | Modelling of Advanced Gasification Systems |
VCS | Villars–Cruise–Smith |
OMWW | Olive Mill Wastewater |
HC | Hydrochar |
LHV | Lower Heating Value |
MHV | Medium Heating Value |
References
- Wang, J.H.; Zhao, X.L.; Guo, Z.W.; Yan, P.; Gao, X.; Shen, Y.; Chen, Y.P. A full-view management method based on artificial neural networks for energy and material-savings in wastewater treatment plants. Environ. Res. 2022, 211, 113054. [Google Scholar] [CrossRef]
- Shanmugam, K.; Gadhamshetty, V.; Tysklind, M.; Bhattacharyya, D.; Upadhyayula, V.K. A sustainable performance assessment framework for circular management of municipal wastewater treatment plants. J. Clean. Prod. 2022, 339, 130657. [Google Scholar] [CrossRef]
- Ragi, K.B.; Ekka, B.; Mezule, L. Zero pollution protocol for the recovery of cellulose from municipal sewage sludge. Bioresour. Technol. Rep. 2022, 20, 101222. [Google Scholar] [CrossRef]
- Xu, Z.; Jin, Q.; Wang, M.; Zhao, Y.; Wang, T.; Zhai, W.; Huang, Z.; Yang, G. Preparation of environmental remediation material based on manganese-slag and sewage sludge as a strategy for remediation of cadmium pollution. J. Environ. Manag. 2023, 347, 119096. [Google Scholar] [CrossRef]
- Achkir, A.; Aouragh, A.; El Mahi, M.; Labjar, N.; Bouch, M.E.; Ouahidi, M.L.; Badza, T.; Farhane, H.; Moussaoui, T.E. Implication of sewage sludge increased application rates on soil fertility and heavy metals contamination risk. Emerg. Contam. 2023, 9, 100200. [Google Scholar] [CrossRef]
- Urbaniak, M.; Baran, A.; Giebułtowicz, J.; Bednarek, A.; Serwecińska, L. The occurrence of heavy metals and antimicrobials in sewage sludge and their predicted risk to soil—Is there anything to fear? Sci. Total Environ. 2023, 912, 168856. [Google Scholar] [CrossRef] [PubMed]
- Limmun, W.; Ishikawa, N.; Maeda, T.; Umeda, T.; Song, J.; Sasamoto, M.; Umita, T.; Ito, A. Exploration of an efficient method for removing antibiotics from water and digested sewage sludge using Fe (VI): Kinetics and P phytoavailability and compostability in treated sludge. Chemosphere 2023, 336, 139165. [Google Scholar] [CrossRef] [PubMed]
- Merzari, F.; Goldfarb, J.; Andreottola, G.; Mimmo, T.; Volpe, M.; Fiori, L. Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties. Energies 2020, 13, 2890. [Google Scholar] [CrossRef]
- Tasca, A.L.; Puccini, M.; Gori, R.; Corsi, I.; Galletti, A.M.R.; Vitolo, S. Hydrothermal carbonization of sewage sludge: A critical analysis of process severity, hydrochar properties and environmental implications. Waste Manag. 2019, 93, 1–13. [Google Scholar] [CrossRef]
- Xu, Z.X.; Ma, X.Q.; Zhou, J.; Duan, P.G.; Zhou, W.Y.; Ahmed, A.; Luque, R. The influence of key reactions during hydrothermal carbonization of sewage sludge on aqueous phase properties: A review. J. Anal. Appl. Pyrolysis 2022, 167, 105678. [Google Scholar] [CrossRef]
- Malhotra, M.; Garg, A. Hydrothermal carbonization of centrifuged sewage sludge: Determination of resource recovery from liquid fraction and thermal behaviour of hydrochar. Waste Manag. 2020, 117, 114–123. [Google Scholar] [CrossRef]
- Pérez, L.E.; Pérez, A.E.; Pino-Cortés, E.; Vallejo, F.; Díaz-Robles, L.A. An environmental assessment for municipal organic waste and sludge treated by hydrothermal carbonization. Sci. Total Environ. 2022, 828, 154474. [Google Scholar] [CrossRef]
- Vakalis, S.; Georgiou, A.; Moustakas, K.; Fountoulakis, M. Assessing the effect of hydrothermal treatment on the volatile solids content and the biomethane potential of common reed (Phragmites australis). Bioresour. Technol. Rep. 2022, 17, 100923. [Google Scholar] [CrossRef]
- Wang, L.; Chang, Y.; Li, A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renew. Sustain. Energy Rev. 2019, 108, 423–440. [Google Scholar] [CrossRef]
- Maniscalco, M.P.; Volpe, M.; Messineo, A. Hydrothermal carbonization as a valuable tool for energy and environmental applications: A review. Energies 2020, 13, 4098. [Google Scholar] [CrossRef]
- Rabea, K.; Michailos, S.; Akram, M.; Hughes, K.J.; Ingham, D.; Pourkashanian, M. An improved kinetic modelling of woody biomass gasification in a downdraft reactor based on the pyrolysis gas evolution. Energy Convers. Manag. 2022, 258, 115495. [Google Scholar] [CrossRef]
- Nunes, L.J. Biomass gasification as an industrial process with effective proof-of-concept: A comprehensive review on technologies, processes and future developments. Results Eng. 2022, 14, 100408. [Google Scholar] [CrossRef]
- Akbarian, A.; Andooz, A.; Kowsari, E.; Ramakrishna, S.; Asgari, S.; Cheshmeh, Z.A. Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy. Bioresour. Technol. 2022, 362, 127774. [Google Scholar] [CrossRef]
- Srimalanon, A.; Kachapongkun, P. Synthesis gas production with gasification technology from municipal solid waste. Appl. Sci. Eng. Prog. 2023, 16, 6633. [Google Scholar] [CrossRef]
- Situmorang, Y.A.; Zhao, Z.; Chaihad, N.; Wang, C.; Anniwaer, A.; Kasai, Y.; Abudula, A.; Guan, G. Steam gasification of co-pyrolysis chars from various types of biomass. Int. J. Hydrogen Energy 2021, 46, 3640–3650. [Google Scholar] [CrossRef]
- Jeong, H.J.; Park, S.; Hwang, J. Co-gasification of coal–biomass blended char with CO2 at temperatures of 900–1100 °C. Fuel 2014, 116, 465–470. [Google Scholar] [CrossRef]
- Wei, J.; Guo, Q.; Gong, Y.; Ding, L.; Yu, G. Synergistic effect on co-gasification reactivity of biomass-petroleum coke blended char. Bioresour. Technol. 2017, 234, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Fona, Z.; Irvan, I.; Tambun, R.; Fatimah, F.; Setiawan, A.; Adriana, A. Review on advance catalyst for biomass gasification. Appl. Sci. Eng. Prog. 2024, 17, 7295. [Google Scholar] [CrossRef]
- Lin, C.; Zuo, W.; Yuan, S.; Zhao, P.; Zhou, H. Effect of moisture on gasification of hydrochar derived from real-MSW. Biomass Bioenergy 2023, 178, 106976. [Google Scholar] [CrossRef]
- Vasileiadou, M.A.; Altiparmaki, G.; Moustakas, K.; Vakalis, S. Quality of Hydrochar from Wine Sludge under Variable Conditions of Hydrothermal Carbonization: The Case of Lesvos Island. Energies 2022, 15, 3574. [Google Scholar] [CrossRef]
- Mastoras, P.; Vakalis, S.; Fountoulakis, M.S.; Gatidou, G.; Katsianou, P.; Koulis, G.; Thomaidis, N.S.; Haralambopoulos, D.; Stasinakis, A.S. Evaluation of the performance of a pilot-scale solar still for olive mill wastewater treatment. J. Clean. Prod. 2022, 365, 132695. [Google Scholar] [CrossRef]
- Leghari, A.; Laghari, A.A.; Kumar, A.; Rizwan, M.; Latif, A.; Kumari, L.; Laghari, M.; Ding, L.; Yu, G. Co-gasification of sewage sludge derived hydrochar and coal: Implications for syngas production and ash content. Int. J. Hydrogen Energy 2025, 161, 150682. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association, Port City Press: Baltimore, MD, USA, 1998; p. 415. [Google Scholar]
- Vakalis, S.; Moustakas, K. Applications of the 3T method and the R1 formula as efficiency assessment tools for comparing waste-to-energy and landfilling. Energies 2019, 12, 1066. [Google Scholar] [CrossRef]
- Mendecka, B.; Lombardi, L.; Micali, F.; De Risi, A. Energy Recovery from Olive Pomace by Hydrothermal Carbonization on Hypothetical Industrial Scale: A LCA Perspective. Waste Biomass Valorization 2020, 11, 5503–5519. [Google Scholar] [CrossRef]
- Patuzzi, F.; Prando, D.; Vakalis, S.; Rizzo, A.M.; Chiaramonti, D.; Tirler, W.; Mimmo, T.; Gasparella, A.; Baratieri, M. Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy). Energy 2016, 112, 285–293. [Google Scholar] [CrossRef]
- Alipour, M.; Asadi, H.; Chen, C.; Rashti, M.R. Bioavailability and eco-toxicity of heavy metals in chars produced from municipal sewage sludge decreased during pyrolysis and hydrothermal carbonization. Ecol. Eng. 2021, 162, 106173. [Google Scholar] [CrossRef]
- Petrovič, A.; Predikaka, T.C.; Vuković, J.P.; Jednačak, T.; Hribernik, S.; Vohl, S.; Urbancl, D.; Tišma, M.; Čuček, L. Sustainable hydrothermal co-carbonization of residues from the vegetable oil industry and sewage sludge: Hydrochar production and liquid fraction valorisation. Energy 2024, 307, 132760. [Google Scholar] [CrossRef]
- Altiparmaki, G.; Vasileiadou, M.A.; Vakalis, S. The effect of excess water on the hydrothermal carbonization of anise waste from ouzo production on Lesvos Island. Sustain. Chem. Pharm. 2022, 29, 100831. [Google Scholar] [CrossRef]
- Kossińska, N.; Krzyżyńska, R.; Grosser, A.; Kwapińska, M.; Ghazal, H.; Jouhara, H.; Kwapiński, W. Hydrothermal carbonisation products energy properties: The role of digested sludge type and operating conditions. Therm. Sci. Eng. Prog. 2025, 61, 103461. [Google Scholar] [CrossRef]
- Marin-Batista, J.D.; Mohedano, A.F.; Rodríguez, J.J.; De La Rubia, M.A. Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge. Waste Manag. 2020, 105, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Sarrión, A.; Baeza, J.A.; Diaz, E.; Calvo, L.; Mohedano, A.F.; Gilarranz, M.A. Integration of hydrothermal carbonization and aqueous phase reforming for energy recovery from sewage sludge. Chem. Eng. J. 2022, 442, 136301. [Google Scholar] [CrossRef]
- Salimbeni, A.; Demey, H. Integrating hydrothermal carbonization and chemical leaching to recover biogenic carbon from sewage sludge. J. Environ. Manag. 2025, 373, 123516. [Google Scholar] [CrossRef]
- Shrestha, A.; Acharya, B.; Farooque, A.A. Study of hydrochar and process water from hydrothermal carbonization of sea lettuce. Renew. Energy 2021, 163, 589–598. [Google Scholar] [CrossRef]
- Selvaraj, P.S.; Ettiyagounder, P.; Sabarish, K.; Periasamy, K.; Rengasamy, B.; Veeraswamy, D.; Karchiyappan, T.; Kathirvel, S. Hydrothermal carbonization approach for transforming biomass waste to value added hydrochar and its applications in water remediation. Desalination Water Treat. 2025, 322, 101199. [Google Scholar] [CrossRef]
- Duan, Z.; Li, C.; Zhang, Y.; Xu, D.; Zhi, Y.; Yakovlev, V.A.; Strizhak, P.A. Optimizing Co-hydrothermal carbonization of municipal sludge and enteromorpha prolifera for enhanced hydrochar yield and adsorption capacity using response surface methodology. Algal Res. 2025, 90, 104189. [Google Scholar] [CrossRef]
- Zhi, Y.; Xu, D.; Jiang, G.; Yang, W.; Chen, Z.; Duan, P.; Zhang, J. A review of hydrothermal carbonization of municipal sludge: Process conditions, physicochemical properties, methods coupling, energy balances and life cycle analyses. Fuel Process. Technol. 2024, 254, 107943. [Google Scholar] [CrossRef]
- Gong, M.; Liu, P.; Xu, F.; Xu, Q.; Feng, J.; Su, Y.; Fan, Y. A critical review on preparation, property prediction and application of sludge co-hydrothermal carbonization hydrochar as solid fuel. J. Environ. Chem. Eng. 2025, 13, 116458. [Google Scholar] [CrossRef]
- Mazumder, T.S.; Mahmud, R.; Rahman, M.M.; Islam, M.S. Assessment of nutrient and heavy metal contents in a sewage sludge treatment plant through hydrothermal carbonization. S. Afr. J. Chem. Eng. 2025, 53, 117–126. [Google Scholar] [CrossRef]
- Chen, D.; Qiu, P.; Liu, S.; Wang, W.; Sun, R.; Zhao, Y.; Zhang, L.; Liu, L.; Xing, C. Study on the combustion characteristics of micro-mixing nozzle unit at different syngas heating values. Int. J. Hydrogen Energy 2025, 136, 456–468. [Google Scholar] [CrossRef]
- Saba, B.; Christy, A.D.; Shah, A. Hydrochar for pollution remediation: Effect of process parameters, adsorption modeling, life cycle assessment and techno-economic evaluation. Resour. Conserv. Recycl. 2024, 202, 107359. [Google Scholar] [CrossRef]
Experiment | Reactor Material/Filing (gr) | Temperature (°C) | Pressure | Residence Time (hours) |
---|---|---|---|---|
HC-1 | Anaerobic sludge/7.5 gr | 200 | Autogenous pressure | 24 |
HC-2 | Anaerobic sludge/10 gr | 200 | Autogenous pressure | 24 |
HC-3 | Anaerobic sludge/12.5 gr | 200 | Autogenous pressure | 24 |
HC-4 | Anaerobic sludge/7.5 gr | 220 | Autogenous pressure | 24 |
HC-5 | Anaerobic sludge/10 gr | 220 | Autogenous pressure | 24 |
HC-6 | Anaerobic sludge/12.5 gr | 220 | Autogenous pressure | 24 |
HC-7 | Sewage sludge/7.5 gr | 200 | Autogenous pressure | 24 |
HC-8 | Sewage sludge/10 gr | 200 | Autogenous pressure | 24 |
HC-9 | Sewage sludge/12.5 gr | 200 | Autogenous pressure | 24 |
HC-10 | Sewage sludge/7.5 gr | 220 | Autogenous pressure | 24 |
HC-11 | Sewage sludge/10 gr | 220 | Autogenous pressure | 24 |
HC-12 | Sewage sludge/12.5 gr | 220 | Autogenous pressure | 24 |
Liquid Samples | Solid Samples | |
---|---|---|
Analyses | COD | Mass yield |
pH | HHV | |
Conductivity |
Olive Pruning | Sludge | Hydrochar HC-4 | Olive Pruning | Sludge | 100% HC | 20% HC | 50% HC | ||
---|---|---|---|---|---|---|---|---|---|
C | 48.50 | 34.9 | 32.45 | C | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
H | 5.30 | 4.67 | 3.11 | H | 1.31 | 1.61 | 1.15 | 1.27 | 1.22 |
O | 44.70 | 20.15 | 11.73 | O | 0.69 | 0.43 | 0.27 | 0.59 | 0.45 |
N | 0.70 | 4.38 | 3.26 | N | 0.01 | 0.11 | 0.09 | 0.03 | 0.05 |
Ash | 0.80 | 35.9 | 49.45 |
Experiment | COD (mg/L) of HC |
---|---|
Raw A.D.S. | 477.8 |
HC-1 | 25,130.3 |
HC-2 | 25,144.8 |
HC-3 | 23,334.6 |
HC-4 | 34,332.8 |
HC-5 | 22,667.2 |
HC-6 | 23,195.8 |
Raw S.S. | 2175.4 |
HC-7 | 16,931.8 |
HC-8 | 16,374.2 |
HC-9 | 15,434.8 |
HC-10 | 14,701.4 |
HC-11 | 11,991.6 |
HC-12 | 13,269.0 |
Experiment | HHV (MJ/kg) |
---|---|
HC-1 | 19.16 |
HC-2 | 19.27 |
HC-3 | 21.77 |
HC-4 | 19.29 |
HC-5 | 19.88 |
HC-6 | 21.74 |
HC-7 | 21.69 |
HC-8 | 23.87 |
HC-9 | 30.53 |
HC-10 | 37.37 |
HC-11 | 20.48 |
HC-12 | 18.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altiparmaki, G.; Liakos, D.; Artikopoulos, A.; Vakalis, S. Hydrothermal Carbonization Treatment as a Pathway for Energy Utilization of Municipal Sludge and Agricultural Residues Through Co-Gasification. Processes 2025, 13, 2713. https://doi.org/10.3390/pr13092713
Altiparmaki G, Liakos D, Artikopoulos A, Vakalis S. Hydrothermal Carbonization Treatment as a Pathway for Energy Utilization of Municipal Sludge and Agricultural Residues Through Co-Gasification. Processes. 2025; 13(9):2713. https://doi.org/10.3390/pr13092713
Chicago/Turabian StyleAltiparmaki, Georgia, Dimitrios Liakos, Andreas Artikopoulos, and Stergios Vakalis. 2025. "Hydrothermal Carbonization Treatment as a Pathway for Energy Utilization of Municipal Sludge and Agricultural Residues Through Co-Gasification" Processes 13, no. 9: 2713. https://doi.org/10.3390/pr13092713
APA StyleAltiparmaki, G., Liakos, D., Artikopoulos, A., & Vakalis, S. (2025). Hydrothermal Carbonization Treatment as a Pathway for Energy Utilization of Municipal Sludge and Agricultural Residues Through Co-Gasification. Processes, 13(9), 2713. https://doi.org/10.3390/pr13092713