Study on the Performance of Copper(II) Sorption Using Natural and Fe(III)-Modified Natural Zeolite–Sorption Parameters Optimization and Mechanism Elucidation
Abstract
1. Introduction
2. Materials and Methods
2.1. Zeolite Preparation
2.2. Batch Sorption Experiments
2.2.1. Impact of pH
2.2.2. Impact of Solid/Liquid Ratio
2.2.3. Impact of Contact Time
2.2.4. Impact of Initial Concentration
2.3. Leaching Experiments
2.4. Calculation of Sorption Parameters
2.5. Theoretical Backround—Kinetic Analysis for Identifying Rate-Controlling Steps
3. Results and Discussion
3.1. Determination of Optimal Sorption Parameters
3.1.1. Determination of Optimal pH
3.1.2. Determination of Optimal Solid/Liquid Ratio
3.1.3. Determination of Optimal Contact Time
3.1.4. Determination of Optimal Concentration Range and Sorption Mechanism
3.2. Leaching Behavior of Copper-Saturated Zeolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fitzgerald, D.J. Safety guidelines for copper in water. Am. J. Clin. Nutr. 1998, 67, 1098S–1102S. [Google Scholar] [CrossRef]
- Karim, N. Copper and Human Health—A Review. J. Bahria Univ. Med. Dent. Coll. 2018, 8, 117–122. [Google Scholar] [CrossRef]
- Kumar Anant, J.; Inchulkar, S.R.; Bhagat, S. An overview of copper toxicity relevance to public health. Eur. J. Pharm. Med. Res. 2018, 5, 232–237. [Google Scholar]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. 2019, 26, 18003–18016. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health 2023, 20, 3885. [Google Scholar] [CrossRef]
- Binesh, A.; Venkatachalam, K. Copper in Human Health and Disease: A Comprehensive Review. J. Biochem. Mol. Toxicol. 2024, 38, e70052. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Pandita, S.; Singh Sidhu, G.P.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810. [Google Scholar] [CrossRef]
- Sailer, J.; Nagel, J.; Akdogan, B.; Jauch, A.T.; Engler, J.; Knolle, P.A.; Zischka, H. Deadly excess copper. Redox Biol. 2024, 75, 103256. [Google Scholar] [CrossRef] [PubMed]
- Trumbo, H.P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- WHO. Copper in drinking-water. In Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Perestrelo, A.P.; Miranda, G.; Goncalves, M.I.; Belino, C.; Ballesteros, R. Chronic copper sulfate poisoning. Eur. J. Case Rep. Intern. Med. 2021, 8, 002309. [Google Scholar] [CrossRef] [PubMed]
- Boveris, A.; Musacco-Sebio, R.; Ferrarotti, N.; Saporito-Magrina, C.; Torti, H.; Massot, F.; Repetto, M.G. The acute toxicity of iron and copper: Biomolecule oxidation and oxidative damage in rat liver. J. Inorg. Biochem. 2012, 116, 63–69. [Google Scholar] [CrossRef]
- Taylor, A.A.; Tsuji, J.S.; Garry, M.R.; McArdle, M.E.; Goodfellow, W.L., Jr.; Adams, W.J.; Menzie, C.A. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environ. Manag. 2020, 65, 131–159. [Google Scholar] [CrossRef]
- Bulcke, F.; Dringen, R.; Scheiber, I.F. Neurotoxicity of Copper. Adv. Neurobiol. 2017, 18, 313–343. [Google Scholar] [CrossRef]
- USEPA. National Primary Drinking Water Regulations; U.S. Environmental Protection Agency: Washington, DC, USA, 2017. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 30 June 2025).
- WHO. Drinking Water Quality Guidelines Copper Guideline Value; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/9789240045064 (accessed on 30 June 2025).
- Croatian Regulation on the Health Safety of Drinking Water. 2023. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2023_06_64_1057.html (accessed on 30 June 2025).
- Pelosi, C.; Gavinelli, F.; Petit-dit-Grezeriat, L.; Serbource, C.; Schoffer, J.T.; Ginocchio, R.; Yáñez, C.; Concheri, G.; Rault, M.; van Gestel, C.A.M. Copper toxicity to earthworms: A comprehensive review and meta-analysis. Chemosphere 2024, 362, 142765. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Lugato, E.; Jones, A.; Borrelli, P.; Scarpa, S.; Orgiazzi, A.; Montanarella, L. Potential Sources of Anthropogenic Copper Inputs to European Agricultural Soils. Sustainability 2018, 10, 2380. [Google Scholar] [CrossRef]
- Poggere, G.; Gasparin, A.; Zimmer Barbosa, J.; Wellington Melo, G.; Studart Corrêa, R.; Vargas Motta, A.S. Soil contamination by copper: Sources, ecological risks, and mitigation strategies in Brazil. J. Trace Elem. Miner. 2023, 4, 100059. [Google Scholar] [CrossRef]
- United Nations. The UN Sustainable Development Goals; United Nations: New York, NY, USA, 2015; Available online: http://www.un.org/sustainabledevelopment/summit/ (accessed on 8 March 2025).
- Ugrina, M.; Milojković, J. Advances in Wastewater Treatment, 2024. Energies 2024, 17, 1400. [Google Scholar] [CrossRef]
- Croatian Regulation on Wastewater Emission Limit Values. 2020. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2020_03_26_622.html (accessed on 30 June 2025).
- Li, Q.; Wang, Y.; Chang, Z.; Kolaly, W.E.; Fan, F.; Li, M. Progress in the treatment of copper(II)-containing wastewater and wastewater treatment systems based on combined technologies: A review. J. Water Process Eng. 2024, 58, 104746. [Google Scholar] [CrossRef]
- Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J. Copper removal from industrial wastewater: A comprehensive review. J. Ind. Eng. Chem. 2017, 56, 35–44. [Google Scholar] [CrossRef]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Prasad Tiwari, A.; Yong Kim, H.; Kumar Joshi, M. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Bahmanzadegan, F.; Ghaemi, A. A comprehensive review on novel zeolite-based adsorbents for environmental pollutant. J. Hazard. Mater. Adv. 2025, 17, 100617. [Google Scholar] [CrossRef]
- Krstić, V.; Urošević, T.; Pešovski, B. A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem. Eng. Sci. 2018, 192, 273–287. [Google Scholar] [CrossRef]
- Irannajad, M.; Haghighi, H.K. Removal of Heavy Metals from Polluted Solutions by Zeolitic Adsorbents: A Review. Environ. Process 2021, 8, 7–35. [Google Scholar] [CrossRef]
- Velarde, L.; Sadegh Nabavi, M.; Escalera, E.; Antti, M.L.; Akhtar, F. Adsorption of heavy metals on natural zeolites: A review. Chemosphere 2023, 328, 138508. [Google Scholar] [CrossRef]
- Abdelwahab, O.; Thabet, W.M. Natural zeolites and zeolite composites for heavy metal removal from contaminated water and their applications in aquaculture Systems: A review. Egypt. J. Aquat. Res. 2023, 49, 431–443. [Google Scholar] [CrossRef]
- Senthil Rathi, B.; Senthil Kumar, P.; Natanya Ida Susana, J.; Francia Virgin, J.; Dharani, R.; Sanjay, S.; Rangasamy, G. Recent research progress on the removal of heavy metals from wastewater using modified zeolites: A critical review. Des. Water Treat. 2024, 319, 100573. [Google Scholar] [CrossRef]
- Solihin, K.I.; Mardiana, S.; Rusli, H.; Kadja, G.T.M. Removal of Heavy Metal Ions Using Pristine and Functionalized Natural Zeolites. Indones. J. Chem. 2023, 23, 863–880. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, X.; Yi, H.; Yu, Q.; Zhang, Y.; Wei, J.; Yuan, Y. Synthesis, characterization and application of Fe-zeolite: A review. Appl. Cat. A-Gen. 2022, 630, 118467. [Google Scholar] [CrossRef]
- Panayotova, I. Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite. Waste Manag. 2001, 21, 671–676. [Google Scholar] [CrossRef]
- Forughirad, A.; Bahrami, A.; Farhadi, K.; Fathi Azerbaijani, A.; Kazemi, F. Comparative of natural zeolite—Clinoptilolite elimination of metal ions/especially Cu (II) with D-Penicillamine from biological environments. MGPB 2021, 36, 11–19. [Google Scholar] [CrossRef]
- Zendelska, A.; Golomeova, M.; Blazev, K.; Krstev, B.; Golomeov, B.; Krstev, A. Adsorption of copper ions from aqueous solutions on natural zeolite. Environ. Prot. Eng. 2015, 41, 17–36. [Google Scholar] [CrossRef]
- Kabwadza-Corner, P.; Wazingwa Munthali, M.; Johan, E.; Matsue, N. Comparative study of copper adsorptivity and selectivity toward zeolites. Am. J. Analy. Chem. 2014, 5, 395–405. [Google Scholar] [CrossRef]
- Stojaković, Đ.; Milenković, J.; Daneu, N.; Rajić, N. A study of the removal of copper ions from aqueous solution using clinoptilolite from Serbia. Clays Clay Min. 2011, 59, 277–285. [Google Scholar] [CrossRef]
- Bakalár, T.; Pavolová, H.; Kyšel’a, K.; Hajduová, Z. Characterization of Cu(II) and Zn(II) sorption onto zeolite. Crystals 2022, 12, 908. [Google Scholar] [CrossRef]
- Zabukovec Logar, N.; Arčon, I.; Kovač, J.; Popova, M. Removal of Copper from Aqueous Solutions with Zeolites and Possible Treatment of Exhaust Materials. Chem. Ing. Tech. 2021, 93, 941–948. [Google Scholar] [CrossRef]
- Wilopo, W.; Nur Haryono, S.; Prakasa Eka Putra, D.; Warmada, I.W.; Hirajima, T. Copper (Cu2+) removal from water using natural zeolite from Gedangsari, Gunungkidul, Yogyakarta. J. Appl. Geol. 2010, 2, 117–120. [Google Scholar] [CrossRef]
- Doula, M.; Ioannou, A.; Dimirkou, A. Copper adsorption and Si, Al, Ca, Mg, and Na release from clinoptilolite. J. Colloid Interface Sci. 2002, 245, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Pandová, I.; Panda, A.; Valíček, J.; Harničárová, M.; Kušnerová, M.; Palková, Z. Use of sorption of copper cations by clinoptilolite for wastewater treatment. Int. J. Environ. Res. Public Health 2018, 15, 1364. [Google Scholar] [CrossRef] [PubMed]
- Amin, N.A.M.; Kamarudzaman, A.N.; Rahmat, N.R.; Hassan, Z.; Zainon Najib, N.W.A.; Amirah, A.S.N.; Ab Jalil, M.F. Batch adsorption studies on copper removal from an aqueous solution using natural zeolite: Process optimization. IOP Conf. Ser. Earth Environ. Sci. 2024, 1369, 012011. [Google Scholar] [CrossRef]
- Kyzioł-Komosińska, J.; Rosik-Dulewska, C.; Franus, M.; Antoszczyszyn-Szpicka, P.; Czupioł, J.; Krzyżewska, I. Sorption capacities of natural and synthetic zeolites for Cu(II) ions. Pol. J. Environ. Stud. 2015, 24, 1111–1123. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Safonov, A.; Ostovnaya, T.; Boldyrev, K.; Kryuchkov, D.; Popova, N. Bio-zeolite use for metal removal from copper-containing synthetic effluents. J. Environ. Health Sci. Eng. 2021, 19, 1383–1398. [Google Scholar] [CrossRef]
- Elboughdiri, N. The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater. Cogent Eng. 2020, 7, 1782623. [Google Scholar] [CrossRef]
- Tekin, B.; Açikel, Ü. Intake of divalent copper and nickel onto natural zeolite from aqueous solutions: A study in mono- and dicomponent systems. Turk. J. Chem. 2022, 46, 1042–1054. [Google Scholar] [CrossRef]
- Abd-Elaziz, A.S.; Atress, M.S.; Haggag, E.A.; Soliman, K.G. Copper removal from aqueous solution of contaminated soil using natural zeolite. Zagazig J. Agric. Res. 2023, 50, 665–684. [Google Scholar] [CrossRef]
- Belova, T.P. Adsorption of heavy metal ions (Cu2+, Ni2+, Co2+ and Fe2+) from aqueous solutions by natural zeolite. Heliyon 2019, 5, e02320. [Google Scholar] [CrossRef] [PubMed]
- Milićević, S.; Povrenović, D.; Milošević, V.; Martinović, S. Predicting the copper adsorption capacity on different zeolites. J. Min. Metall. 2017, 53, 57–63. [Google Scholar] [CrossRef]
- Yulianti, E.; Yusniyyah, S.I.; Aini, N.; Khalifah, S.N.; Istighfarini, V.N. Removal of Cu and Pb from Wastewater Using Modified Natural Zeolite. In Advances in Social Science, Education and Humanities Research, Proceedings of the International Conference on Engineering, Technology and Social Science (ICONETOS 2020), Malang, Indonesia, 31 October 2020; Atlantis Press: Dordrecht, The Netherlands, 2020; Volume 529, pp. 363–369. [Google Scholar] [CrossRef]
- Kuldeyev, E.; Seitzhanova, M.; Tanirbergenova, S.; Tazhu, K.; Doszhanov, E.; Mansurov, Z.; Azat, S.; Nurlybaev, R.; Berndtsson, R. Modifying natural zeolites to improve heavy metal adsorption. Water 2023, 15, 2215. [Google Scholar] [CrossRef]
- Doula, M.K. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res. 2009, 43, 3659–3672. [Google Scholar] [CrossRef] [PubMed]
- Lipovský, M.; Sirotiak, M.; Soldán, M. Removal of copper from aqueous solutions by using natural and Fe-modified clinoptilolite. Res. Pap. MTF STU 2015, 23, 33–40. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Loganathan, P.; Nguyen, T.V.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chem. Eng. J. 2015, 270, 39357–63404. [Google Scholar] [CrossRef]
- Han, R.; Zou, L.; Zhao, X.; Xu, Y.; Xu, F.; Li, Y.; Wang, Y. Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper(II) from solution in fixed bed column. Chem. Eng. J. 2009, 149, 123–131. [Google Scholar] [CrossRef]
- DIN 66165-2; Particle Size Analysis-Sieving Analysis-Part 2: Procedure. Deutsches Institut für Normung: Berlin, Germany, 2016.
- Ugrina, M.; Vukojević Medvidović, N.; Daković, A. Characterization and environmental application of iron-modified zeolite from the Zlatokop deposit. Desalin. Water Treat. 2015, 53, 3557–3569. [Google Scholar] [CrossRef]
- Voinovitch, I.; Debrad-Guedon, J.; Louvrier, J. The Analysis of Silicates; Israel Program for Scientific Translations: Jerusalem, Israel, 1966; pp. 127–129. [Google Scholar]
- DIN 38414 S4; German Standard Procedure for Water, Wastewater and Sediment Testing–Sludge and Sediment. Determination of Leachability. Institut für Normung: Berlin, Germany, 1984.
- Kumar, D.; Gaur, J.P. Chemical reaction- and particle diffusion-based kinetic modeling of metal biosorption by a phormidium sp.-dominated cyanobacterial mat. Bioresour. Technol. 2011, 102, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Apiratikul, R.; Pavasant, P. Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chem. Eng. J. 2008, 144, 245–258. [Google Scholar] [CrossRef]
- Chiron, N.; Guilet, R.; Deydier, E. Adsorption of Cu(II) and Pb(II) onto a grafted silica: Isotherms and kinetic models. Water Res. 2003, 37, 3079–3086. [Google Scholar] [CrossRef]
- Tosun, I. Ammonium removal from aqueous solutions by clinoptilolite: Determination of isotherm and thermodynamic parameters and comparison of kinetics by the Double exponential model and conventional kinetic models. Int. J. Environ. Res. Public Health 2012, 9, 970–984. [Google Scholar] [CrossRef]
- Helferich, F. Ion Exchange; Mc Graw-Hill Inc.: New York, NY, USA, 1962; pp. 250–322. [Google Scholar]
- Barnum, D.W. Hydrolysis of Cations. Formation Constants and Standard Free Energies of Formation of Hydroxy Complexes. Inorg. Chem. 1983, 22, 2297–2305. [Google Scholar] [CrossRef]
- Minceva, M.; Fajagar, R.; Markovska, L.; Meshko, V. Comparative study of Zn2+, Cd2+, and Pb2+ removal from water solution using natural clinoptilolitic zeolite and commercial granulated activated carbon. Equilibrium and adsorption. Sep. Sci. Technol. 2008, 43, 2117–2143. [Google Scholar] [CrossRef]
- Speight, J.G. Lange’s Handbook of Chemistry, 16th ed.; McGraw-Hill, Inc.: New York, NY, USA, 2005; p. 1334. Available online: https://www.labxing.com/files/lab_data/1340-1625805401-Qqoazhfj.pdf (accessed on 20 August 2025).
- Temkin, M.I.; Pyzhev, V. Kinetic of Ammonia Synthesis on Promoted Iron Catalyst. Acta Phys. Chem. 1940, 12, 327–356. [Google Scholar]
- Dubinin, M.M.; Radushkevich, L.V. The equation of the characteristic curve of activated charcoal. Dokl. Akad. Nauk Sssr. 1947, 55, 331–337. [Google Scholar]
Sample | Content, wt. % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | Na2O | K2O | CaO | MgO | TiO2 | Cu | Loss of Ignition | |
NZ | 65.40 | 14.00 | 2.16 | 1.50 | 1.10 | 3.56 | 0.85 | 0.32 | - | 11.09 |
NZCu | 65.98 | 14.63 | 2.18 | 1.09 | 1.11 | 2.83 | 0.37 | 0.17 | 0.61 | 11.03 |
FeZ | 62.80 | 13.90 | 3.22 | 3.68 | 0.94 | 2.93 | 0.80 | 0.17 | - | 11.56 |
FeZCu | 64.57 | 13.03 | 2.68 | 1.84 | 0.97 | 3.84 | 0.69 | 0.161 | 1.51 | 10.71 |
Kinetic Model/Parameters | NZ | FeZ |
---|---|---|
co [mmol/L] | 10.061 | 10.061 |
qexp [mmol/g] | 0.164 | 0.279 |
Pseudo-first-order model (PFO) | ||
qm [mmol/g] | 0.153 | 0.264 |
k1 [1/min] | 0.029 | 0.320 |
r2 | 0.987 | 0.979 |
RMSE × 103 | 7.339 | 16.000 |
χ2 × 104 | 7.701 | 8.838 |
Pseudo-second-order model (PSO) | ||
qm [mmol/g] | 0.165 | 0.281 |
k2 [g/(mmol∙min)] | 0.233 | 0.161 |
r2 | 0.993 | 0.998 |
RMSE × 103 | 5.165 | 4.993 |
χ2 × 105 | 1.961 | 2.300 |
Elovich model | ||
αE [mmol/(g·min)] | 0.021 | 0.058 |
βE [g/mmol] | 39.217 | 24.814 |
r2 | 0.945 | 0.966 |
RMSE | 0.015 | 0.020 |
χ2 × 103 | 1.537 | 2.638 |
Weber–Morris intra-particle | ||
diffusion model | ||
kWM1 [mmol/(g∙min1/2)] | 0.019 | 0.029 |
DWM1 × 106 [cm2/min] | 1.545 | 9.782 |
I | 0.021 | 0.008 |
RC [%] | 13.060 | 2.392 |
R2 | 0.965 | 0.957 |
kWM2 [mmol/(g∙min1/2)] | 0.002 | 0.003 |
DWM2 × 108 [cm2/min] | 1.019 | 1.309 |
R2 | 0.993 | 0.973 |
Double-exponential model | ||
qm [mmol/g] | 0.165 | 0.277 |
kB1 [1/min] | 0.041 | 0.070 |
B1 [mmol/L] | 1.325 | 1.594 |
kB2 × 103 [1/min] | 2.335 | 7.374 |
B2 [mmol/L] | 0.373 | 1.167 |
r1 × 103 [mmol/(g∙min)] | 5.443 | 0.011 |
r2 × 105 [mmol/(g∙min1/2)] | 0.871 | 8.605 |
r × 103 [mmol/(g∙min1/2)] | 5.520 | 0.012 |
RF [%] | 78.033 | 57.733 |
SF [%] | 21.967 | 42.267 |
r2 | 0.998 | 0.998 |
RMSE × 103 | 2.783 | 4.461 |
χ2 × 107 | 1.329 | 1.875 |
Vermeulen’s approximation | ||
qm [mmol/g] | 0.164 | 0.279 |
DV × 106 (cm2/min) | 1.288 | 1.487 |
r2 | 0.976 | 0.993 |
RMSE | 0.124 | 0.217 |
χ2 × 107 | 1.201 | 1.898 |
Zeolite Type | Zeolite Origin | Sorption Capacity, mmol/g | References |
---|---|---|---|
Natural zeolite | Bulgarian clinoptilolite | 0.150 | [37] |
Japanese clinoptilolite | 0.074 | [38] | |
Slovak clinoptilolite | 0.037 | [40] | |
Japanese clinoptilolite | 0.064 | [42] | |
Ukrainian clinoptilolite | 0.337 | [46] | |
Greek clinoptilolite | 0.210 | [55] | |
Slovak clinoptilolite | 0.0058 | [56] | |
Australian heulandite | 0.063 | [57] | |
Chinese clinoptilolite | 0.061 | [58] | |
Serbian clinoptilolite | 0.156 | Current study | |
Modified zeolite | Greek clinoptilolite | 0.590 | [55] |
Slovak clinoptilolite | 0.0061 | [56] | |
Australian heulandite | 0.077 | [57] | |
Chinese clinoptilolite | 0.081 | [58] | |
Serbian clinoptilolite | 0.271 | Current study |
Sample | Element Quantity, mmol/g | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Na | K | Mg | Ca | Si | Al | O | Fe | Ti | Cu | |
NZ | 0.484 | 0.234 | 0.211 | 0.635 | 10.888 | 2.746 | 27.590 | 0.271 | 0.040 | - |
NZCu | 0.352 | 0.236 | 0.091 | 0.505 | 10.981 | 2.870 | 27.610 | 0.273 | 0.021 | 0.097 |
FeZ | 1.187 | 0.200 | 0.198 | 0.522 | 10.452 | 2.726 | 27.060 | 0.403 | 0.021 | - |
FeZCu | 0.594 | 0.206 | 0.171 | 0.685 | 10.746 | 2.556 | 27.130 | 0.336 | 0.020 | 0.238 |
Element | Na | K | Mg | Ca | Si | Al | O | Fe | Cu |
---|---|---|---|---|---|---|---|---|---|
Sp 1 | - | 0.76 | 0.58 | 1.97 | 30.12 | 6.01 | 58.89 | 0.71 | 0.96 |
Sp 2 | 0.60 | 0.94 | 0.55 | 2.01 | 32.03 | 6.00 | 55.55 | 1.28 | 1.04 |
Sp 3 | - | 0.96 | 0.57 | 2.07 | 31.64 | 5.81 | 57.02 | 1.00 | 0.93 |
Sp 4 | 0.53 | 1.01 | 0.59 | 2.26 | 32.89 | 6.21 | 54.80 | 0.44 | 1.27 |
Mean | 0.28 | 0.92 | 0.57 | 2.08 | 31.67 | 6.01 | 56.57 | 0.86 | 1.05 |
Element | Na | K | Mg | Ca | Si | Al | O | Fe | Cu |
---|---|---|---|---|---|---|---|---|---|
Sp 1 | 0.65 | 0.92 | 0.45 | 1.16 | 28.97 | 5.96 | 56.47 | 2.66 | 2.76 |
Sp 2 | 0.78 | 0.92 | 0.59 | 1.17 | 30.28 | 7.07 | 53.05 | 2.91 | 3.23 |
Sp 3 | 0.89 | 0.55 | 0.41 | 1.07 | 30.11 | 5.51 | 53.78 | 3.71 | 3.97 |
Sp 4 | 0.96 | 0.62 | 0.68 | 1.20 | 29.46 | 6.78 | 54.92 | 2.49 | 2.89 |
Mean | 0.82 | 0.75 | 0.53 | 1.15 | 29.71 | 6.33 | 54.56 | 2.94 | 3.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugrina, M.; Nuić, I.; Milojković, J. Study on the Performance of Copper(II) Sorption Using Natural and Fe(III)-Modified Natural Zeolite–Sorption Parameters Optimization and Mechanism Elucidation. Processes 2025, 13, 2672. https://doi.org/10.3390/pr13092672
Ugrina M, Nuić I, Milojković J. Study on the Performance of Copper(II) Sorption Using Natural and Fe(III)-Modified Natural Zeolite–Sorption Parameters Optimization and Mechanism Elucidation. Processes. 2025; 13(9):2672. https://doi.org/10.3390/pr13092672
Chicago/Turabian StyleUgrina, Marin, Ivona Nuić, and Jelena Milojković. 2025. "Study on the Performance of Copper(II) Sorption Using Natural and Fe(III)-Modified Natural Zeolite–Sorption Parameters Optimization and Mechanism Elucidation" Processes 13, no. 9: 2672. https://doi.org/10.3390/pr13092672
APA StyleUgrina, M., Nuić, I., & Milojković, J. (2025). Study on the Performance of Copper(II) Sorption Using Natural and Fe(III)-Modified Natural Zeolite–Sorption Parameters Optimization and Mechanism Elucidation. Processes, 13(9), 2672. https://doi.org/10.3390/pr13092672