An Optimum Prediction Model for the Strength Index of Unclassified Tailings Filling Body
Abstract
1. Introduction
2. The Basic Theory of Support Vector Machines
2.1. The Basic Idea of the Support Vector Machine
2.2. Support Vector Machine Algorithm
3. Prediction Model of Backfill Strength Design
3.1. Influence of Backfill Strength Design Factors
3.2. Sample Selection and Data Processing
3.3. Model Selection
4. Modelling and Forecasting
4.1. Establishment of the SVM Model
4.2. BP Establishment of Neural Network Model
4.3. SVM Model and BP Neural Network Model Prediction Error Analysis
4.4. Model Calibration
4.5. Engineering Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aldhafeeri, Z.; Fall, M. Time and damage induced changes in the chemical reactivity of cemented paste backfill. J. Environ. Chem. Eng. 2016, 4, 4038–4049. [Google Scholar] [CrossRef]
- Wang, C.; Wu, A.; Lu, H.; Bao, T.; Liu, X. Predicting rockburst tendency based on fuzzy matter–element model. Int. J. Rock Mech. Min. Sci. 2015, 75, 224–232. [Google Scholar] [CrossRef]
- Belem, T.; Benzaazoua, M. Design and application of underground mine paste backfill technology. Geotech. Geol. Eng. 2008, 26, 147–174. [Google Scholar] [CrossRef]
- Skrzypkowski, K. Determination of the Backfilling Time for the Zinc and Lead Ore Deposits with Application of the Backfill CAD Model. Energies 2021, 14, 3186. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A.; Chen, Q.; Zhang, Q. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J. Clean. Prod. 2018, 183, 566–578. [Google Scholar] [CrossRef]
- Tuylu, A.N.A.; Tuylu, S.; Adiguzel, D.; Namli, E.; Gungoren, C.; Demir, I. Optimizing strength prediction for cemented paste backfills with various fly ash substitution: Computational approach with machine learning algorithms. Minerals 2025, 15, 234. [Google Scholar] [CrossRef]
- Kang, F.; Xu, Q.; Li, J. Slope reliability analysis using surrogate models via new support vector machines with swarm intelligence. Appl. Math. Model. 2016, 40, 6105–6120. [Google Scholar] [CrossRef]
- Ke, X.; Zhou, X.; Wang, X.; Hou, H.; Zhou, M. Effect of tailings fineness on the pore structure development of cemented paste backfill. Constr. Build. Mater. 2016, 126, 345–350. [Google Scholar] [CrossRef]
- Li, L. Analytical solution for determining the required strength of a side-exposed mine backfill containing a plug. Can. Geotech. J. 2014, 51, 508–519. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Yang, X.; Guo, L. Stability analyses of vertically exposed cemented backfill. Int. J. Min. Sci. Technol. 2016, 26, 1135–1144. [Google Scholar] [CrossRef]
- Samui, P. Slope stability analysis: A support vector machine approach. Environ. Geol. 2008, 56, 255. [Google Scholar] [CrossRef]
- Samui, P.; Kothari, D. Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Sci. Iran. 2011, 8, 53–58. [Google Scholar] [CrossRef]
- Chau, A.; Li, X.; Yu, W. Support vector machine classification for large datasets using decision tree and Fisher linear discriminant. Future Gener. Comput. Systems. 2014, 36, 57–65. [Google Scholar] [CrossRef]
- Sarafis, I.; Diou, C.; Delopoulos, A. Building effective SVM concept detectors from click through data for large-scale image retrieval. Int. J. Multimed. Inf. Retr. 2015, 4, 129–142. [Google Scholar] [CrossRef]
- Singh, K.; Gupta, S.; Rai, P. Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos. Environ. 2013, 80, 426–437. [Google Scholar] [CrossRef]
- Li, B.; Yan, H.; Zhang, J.; Zhou, N. Compaction Property Prediction of Mixed Gangue Backfill Materials Using Hybrid Intelligence Models: A New Approach. Constr. Build. Mater. 2020, 247, 118633. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Xie, X. Prediction of Uniaxial Compression Strength of Limestone Based on the Point Load Strength and SVM Model. Minerals 2021, 11, 1387. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, J. Refined Approaches for Open Stope Stability Analysis in Mining Environments: Hybrid SVM Model with Multi-Optimization Strategies and GP Technique. Rock Mech. Rock Eng. 2024, 57, 9781–9804. [Google Scholar] [CrossRef]
- Zhao, D.; Shen, Z. Study on Roadway Fault Diagnosis of the Mine Ventilation System Based on Improved SVM. Min. Metall. Explor. 2022, 39, 983–992. [Google Scholar] [CrossRef]
- Dong, D.; Chen, Z.; Lin, G.; Li, X.; Zhang, R.; Ji, Y. Combining the Fisher Feature Extraction and Support Vector Machine Methods to Identify the Water Inrush Source: A Case Study of the Wuhai Mining Area. Mine Water Environ. 2019, 38, 855–862. [Google Scholar] [CrossRef]
- Zhang, B.; Li, K.; Hu, Y.; Ji, K.; Han, B. Prediction of Backfill Strength Based on Support Vector Regression Improved by Grey Wolf Optimization. J. Shanghai Jiaotong Univ. Sci. 2023, 28, 686–694. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Q.; Hu, W.; Gao, R. SVM optimal prediction model of backfill drill-hole life. J. Cent. South Univ. 2014, 45, 536–541. (In Chinese) [Google Scholar]
- Luo, Z.; Huang, R.; Shen, G. Research on Wear Risk Prediction of Filling Pipeline Based on KPCA-IPSO-LSSVM. Gold Sci. Technol. 2021, 29, 245–255. (In Chinese) [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Xue, X.; Yang, X.; Chen, X. Application of a support vector machine for prediction of slope stability. Sci. China-Technol. Sci. 2014, 57, 2379–2386. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Q.; He, L.; Guo, T. The one-against-all partition based binary tree support vector machine algorithms for multi-class classification. Neurocomputing 2013, 113, 1–7. [Google Scholar] [CrossRef]
- Zhu, F.; Wei, J. Localization Algorithm in wireless sensor networks based on improved support vector machine. J. Nanoelectron. Optoelectron. 2017, 12, 452–459. [Google Scholar] [CrossRef]
- Nalepa, J.; Kawulok, M. Selecting training sets for support vector machines: A review. Artif. Intell. Rev. 2019, 52, 857–900. [Google Scholar] [CrossRef]
- Beya, F.K.; Mbonimpa, M.; Belem, T.; Li, L.; Marceau, U.; Kalonji, P.K.; Benzaazoua, M.; Ouellet, S. Mine backfilling in the permafrost, Part I: Numerical prediction of thermal curing conditions within the cemented paste backfill matrix. Minerals 2019, 9, 165. [Google Scholar] [CrossRef]
- Qiu, J.; Zhao, Y.; Xing, J.; Sun, X. Fly ash/blast furnace slag-based geopolymer as a potential binder for mine backfilling: Effect of binder type and activator concentration. Adv. Mater. Sci. Eng. 2019, 2019, 2028109. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Yang, S. An ultrasonic-based method for longwall top-coal cavability assessment. Int. J. Rock. Mech. Min. Sci. 2018, 112, 209–225. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A.; Chen, Q. Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill. Constr. Build. Mater. 2018, 159, 473–478. [Google Scholar] [CrossRef]
- Wang, H.; Poulsen, B.A.; Shen, B.; Xue, S.; Jiang, Y. The influence of roadway backfill on the coal pillar strength by numericalinvestigation. Int. J. Rock Mech. Min. Sci. 2011, 48, 443–450. [Google Scholar] [CrossRef]
- Kostecki, T.; Spearing, A.J. Influence of backfill on coal pillar strength and floor bearing capacity in weak floor conditions in the Illinois Basin. Int. J. Rock Mech. Min. Sci. 2015, 76, 55–67. [Google Scholar] [CrossRef]
- Qi, C.; Tang, X.; Dong, X.; Chen, Q.; Fourie, A.; Liu, E. Towards Intelligent Mining for Backfill: A genetic programming-based method for strength forecasting of cemented paste backfill. Miner. Eng. 2019, 133, 69–79. [Google Scholar] [CrossRef]
- Sbarufatti, C.; Corbetta, M.; Giglio, M.; Cadini, F. Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks. J. Power Sources. 2017, 344, 128–140. [Google Scholar] [CrossRef]
- Wang, D.; Luo, H.; Grunder, O.; Lin, Y.; Guo, H. Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm. Appl. Energy 2017, 190, 390–407. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, D.; Chen, M.; Chen, X.; Li, J. A precise BP neural network-based online model predictive control strategy for die forging hydraulic press machine. Neural Comput. Appl. 2016, 29, 585–596. [Google Scholar] [CrossRef]
- Kieslich, C.; Smadbeck, J.; Khoury, G.; Floudas, C. conSSert: Consensus SVM model for accurate prediction of ordered secondary structure. J. Chem. Inf. Model. 2016, 56, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Chang, J.; Huang, Q.; Che, Y.; Leng, G. Quantifying the relative contribution of climate and human impacts on runoff change based on the budyko hypothesis and SVM model. Water Resour. Manag. 2016, 30, 2377–2390. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, L.; Yin, S.; Yan, Z.; Zhang, X. Multiphase slurry flow regimes and its pipeline transportation of underground backfill in metal mine: Mini review. Constr. Build. Mater. 2023, 402, 133014. [Google Scholar] [CrossRef]
NO. | X1/m | X2/m | X3/m | X4 | X5 | X6 | X7/m | X8/m2 | T/MPa | |
---|---|---|---|---|---|---|---|---|---|---|
Training samples | 1 | 550 | 63 | 763 | 1.71 | 15 | 3.24 | 25 | 1770 | 1.16 |
2 | 645 | 65 | 282 | 2.11 | 14 | 2.95 | 30 | 2050 | 1.35 | |
3 | 730 | 45 | 270 | 2.25 | 13 | 3.18 | 18 | 1550 | 0.95 | |
4 | 585 | 80 | 629 | 2.28 | 9 | 6.53 | 30 | 1750 | 1.27 | |
5 | 865 | 75 | 949 | 2.26 | 15 | 3.75 | 27 | 2050 | 1.28 | |
6 | 680 | 125 | 856 | 2.70 | 13 | 2.95 | 30 | 2350 | 1.21 | |
7 | 525 | 45 | 675 | 1.95 | 10 | 4.72 | 45 | 2050 | 0.89 | |
8 | 750 | 65 | 965 | 2.31 | 9 | 2.95 | 33 | 1400 | 1.10 | |
9 | 645 | 65 | 1046 | 2.15 | 13 | 2.89 | 45 | 2100 | 1.23 | |
10 | 890 | 95 | 1130 | 2.51 | 11 | 3.64 | 15 | 1550 | 1.12 | |
11 | 720 | 72 | 825 | 2.52 | 12 | 4.34 | 28 | 2050 | 1.15 | |
12 | 645 | 81 | 308 | 2.35 | 13 | 6.29 | 30 | 2056 | 0.97 | |
13 | 970 | 72 | 913 | 1.99 | 13 | 2.89 | 6.6 | 865 | 0.99 | |
14 | 935 | 100 | 850 | 2.55 | 8 | 3.69 | 40 | 2800 | 1.34 | |
15 | 580 | 70 | 926 | 1.99 | 9 | 2.98 | 45 | 1900 | 0.89 | |
16 | 950 | 98 | 1040 | 2.55 | 14 | 3.25 | 7 | 640 | 1.55 | |
17 | 765 | 72 | 385 | 2.33 | 15 | 2.85 | 3 | 550 | 0.95 | |
18 | 643 | 68 | 995 | 2.25 | 9 | 2.88 | 30 | 890 | 0.80 | |
19 | 795 | 42 | 935 | 2.65 | 14 | 3.42 | 25 | 1350 | 1.18 | |
20 | 863 | 110 | 920 | 2.78 | 13 | 3.57 | 27 | 1250 | 1.16 | |
… | … | … | … | … | … | … | … | … | … | |
71 | 896 | 55 | 1330 | 2.32 | 13 | 2.96 | 3.8 | 380 | 1.21 | |
72 | 1050 | 70 | 1450 | 2.65 | 15 | 2.75 | 6 | 540 | 0.86 | |
Test samples | 73 | 823 | 58 | 724 | 2.46 | 17 | 2.73 | 5 | 400 | 1.01 |
74 | 875 | 53 | 613 | 2.82 | 13 | 2.81 | 20 | 450 | 0.75 | |
75 | 890 | 67 | 900 | 2.59 | 16 | 3.13 | 8 | 500 | 0.79 | |
76 | 975 | 58 | 625 | 1.93 | 17 | 2.78 | 15 | 480 | 1.14 | |
77 | 845 | 80 | 835 | 2.62 | 14 | 3.03 | 6 | 350 | 1.03 | |
78 | 720 | 63 | 725 | 2.64 | 13 | 3.56 | 15 | 485 | 0.85 |
Model Types | Maximum Error/% | Minimum Error/% | Average Errors/% |
---|---|---|---|
SVM Model | 4.97 | 0.12 | 1.94 |
BP Model | 10.17 | 1.49 | 5.26 |
Model | Maximum Error/% | Minimum Error/% | Average Errors/% |
---|---|---|---|
SVM Model | 3.546 | 0.548 | 2.232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.; Yin, S.; Tian, D.; Yi, C.; Xu, J.; Wang, L. An Optimum Prediction Model for the Strength Index of Unclassified Tailings Filling Body. Processes 2025, 13, 2395. https://doi.org/10.3390/pr13082395
Yao J, Yin S, Tian D, Yi C, Xu J, Wang L. An Optimum Prediction Model for the Strength Index of Unclassified Tailings Filling Body. Processes. 2025; 13(8):2395. https://doi.org/10.3390/pr13082395
Chicago/Turabian StyleYao, Jian, Shenghua Yin, Dongmei Tian, Chen Yi, Jinglin Xu, and Leiming Wang. 2025. "An Optimum Prediction Model for the Strength Index of Unclassified Tailings Filling Body" Processes 13, no. 8: 2395. https://doi.org/10.3390/pr13082395
APA StyleYao, J., Yin, S., Tian, D., Yi, C., Xu, J., & Wang, L. (2025). An Optimum Prediction Model for the Strength Index of Unclassified Tailings Filling Body. Processes, 13(8), 2395. https://doi.org/10.3390/pr13082395