Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism
Abstract
1. Introduction
2. Experiment and Methodology
2.1. Materials and Reagents
2.2. Catalyst Preparation
2.3. Catalytic Activity Tests
2.4. Catalyst Characterization
3. Results and Discussion
3.1. Relationship Between Catalytic Performance and Catalyst Properties
3.1.1. Effect of Zeolite SiO2/Al2O3 on Catalytic Ozonation of
3.1.2. Textual Properties
3.1.3. Crystalline Structures
3.1.4. Surface Properties
3.1.5. Adsorption Properties in Liquid Phase
3.2. Performance of O3 + Mn/ZSM-5 System for Catalytic Oxidation of
3.3. Effects of Different System Conditions on Oxidation Efficiency
3.3.1. Effect of Reaction Temperature
3.3.2. Effect of Initial Liquid pH Value
3.3.3. Effect of Oxidant Concentration
3.4. Mechanisms of Catalytic Ozonation on Mn/ZSM-5 Zeolite Catalyst
- (1)
- O3 adsorbs on the catalyst surface and decomposes to form radicals, which subsequently react with in the solution.
- (2)
- adsorbs on the catalyst and is then attacked by O3 molecules or other reactive species.
- (3)
- Both O3 and adsorb on the catalyst surface and undergo direct reaction.
3.5. Effect of O3 + Mn/ZSM-5 System on Ozone Oxidation Flue Gas Denitrification System
4. Conclusions
- (1)
- A significant structure–activity relationship existed between the SiO2/Al2O3 ratio of Mn/ZSM-5 zeolite and its catalytic oxidation capability. The Mn/ZSM-5 (SiO2/Al2O3 = 400) catalyst achieved an exceptional oxidation efficiency of 94.33%, which could be attributed to its optimal physicochemical properties, including the largest specific surface area, enhanced adsorption capacity, abundant surface Mn3+/Mn4+ species, hydroxyl oxygen groups, and chemisorbed oxygen, which collectively contributed to remarkable improvements in both oxidation selectivity and catalytic activity. Repeated testing confirmed the outstanding structural stability and catalytic durability of Mn/ZSM-5, maintaining over 93% oxidation efficiency after multiple prolonged reaction cycles.
- (2)
- The oxidation efficiency and conversion pathways of were governed by several key operational parameters, including reaction temperature, initial pH, catalyst dosage, and oxidant concentration. Compared with HZSM-5, the Mn/ZSM-5 catalyst demonstrated superior environmental adaptability and catalytic stability, effectively broadening the optimal operational windows for both temperature and pH in the catalytic oxidation process. The synergistic effect between Mn species and the zeolite support significantly enhanced ozone utilization efficiency, enabling the O3 + Mn/ZSM-5 system to achieve comparable oxidation performance with substantially reduced ozone consumption, thereby improving overall economics. Furthermore, the combined use of oxygen and ozone proved more effective in promoting oxidation than ozone alone.
- (3)
- In the O3 + Mn/ZSM-5 heterogeneous wet catalytic oxidation system, the highly efficient catalytic oxidation of followed a dual-path reaction mechanism involving the synergistic combination of direct ozonation and radical chain reactions. Under acidic conditions, preferentially adsorbed onto the acidic sites of Mn/ZSM-5 zeolite via electrostatic interactions, forming stable surface-adsorbed species. Molecular ozone underwent chemical adsorption on the catalyst surface, enabling direct oxidation of partially adsorbed species. Concurrently, ozone activation occurred at the Mn3+/Mn4+ active sites, generating highly reactive hydroxyl radicals (OH). These radical species subsequently participated in oxidation reactions with through interfacial diffusion, thereby enhancing the overall oxidation performance.
- (4)
- The O3 + Mn/ZSM-5 system demonstrated excellent compatibility with existing spray absorption systems for multi-pollutant removal, requiring no installation of additional liquid-phase byproduct treatment facilities. The introduction of the Mn/ZSM-5 catalyst would not affect the long-term operational stability of both the flue gas purification system and spray absorption unit. Under conditions ensuring effective removal of flue gas pollutants, the O3 + Mn/ZSM-5 system achieved 91.33% oxidation efficiency, providing critical technical parameters for the green upgrading of wet flue gas desulfurization and denitrification processes.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Zwolińska, E.; Chmielewski, A.G. Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 119–142. [Google Scholar] [CrossRef]
- Ma, J.; Xu, X.; Zhao, C.; Yan, P. A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions. Adv. Atmos. Sci. 2012, 29, 1006–1026. [Google Scholar] [CrossRef]
- Goldberg, D.L.; Lu, Z.; Streets, D.G.; Foy, D.B.; Griffin, D.; Mclinden, C.A.; Lamsal, L.N.; Krotkov, N.A.; Eskes, H. Enhanced Capabilities of TROPOMI NO2: Estimating NOx from North American Cities and Power Plants. Environ. Sci. Technol. 2019, 53, 12594–12601. [Google Scholar] [CrossRef]
- Ji, Y.; Gao, F.; Wu, Z.; Li, L.; Li, D.; Zhang, H.; Zhang, Y.; Gao, J.; Bai, Y.; Li, H. A review of atmospheric benzene homologues in China: Characterization, health risk assessment, source identification and countermeasures. J. Environ. Sci. 2020, 95, 225–239. [Google Scholar] [CrossRef]
- Shao, J.; Xu, C.; Wang, Z.; Zhang, J.; Wang, R.; He, Y.; Cen, K. NOx reduction in a 130 t/h biomass-fired circulating fluid bed boiler using coupled ozonation and wet absorption technology. Ind. Eng. Chem. Res. 2019, 58, 18134–18140. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Ma, X.; Xu, C.; He, Y.; Zhu, Y.; Alegria, E.C.B.A.; Wang, Z.; Pombeiro, A.J.L. Simultaneous Removal of Multipollutants (VOCs/NO/SO2) by Catalytic Ozonation Coupled with Wet Scrubbing Technology: From the Laboratory to Industrial Testing. Ind. Eng. Chem. Res. 2024, 63, 8610–8621. [Google Scholar] [CrossRef]
- Lin, F.; Wang, Z.; Ma, Q.; He, Y.; Whiddon, R.; Zhu, Y.; Liu, J. N2O5 Formation Mechanism during the Ozone-Based Low-Temperature Oxidation deNOx Process. Energy Fuels 2016, 30, 5101–5107. [Google Scholar] [CrossRef]
- Shao, J.; Yang, Y.; Whiddon, R.; Wang, Z.; Lin, F.; He, Y.; Kumar, S.; Cen, K. Investigation of NO removal with ozone deep oxidation in Na2CO3 solution. Energy Fuels 2019, 33, 4454–4461. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, J.; Zhu, Y.; Wen, Z.; Liu, J.; Cen, K. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Process. Technol. 2007, 88, 817–823. [Google Scholar] [CrossRef]
- Tang, H.; He, Y.; Lin, F.; Zhu, Y.; Duan, Y.; Wang, Z. Simultaneous catalytic ozonation of NO and dichloromethane on Mn/H-ZSM-5 catalysts: Interaction effect and mechanism. Proc. Combust. Inst. 2023, 39, 4387–4397. [Google Scholar] [CrossRef]
- Lin, F.; Wang, Z.; Zhang, Z.; He, Y.; Zhu, Y.; Shao, J.; Yuan, D.; Chen, G.; Cen, K. Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury. Chem. Eng. J. 2020, 382, 123030. [Google Scholar] [CrossRef]
- Chang, F.; Lei, B.; Yang, C.; Wang, J.; Hu, X. Ultra-stable Bi4O5Br2/Bi2S3 n-p heterojunctions induced simultaneous generation of radicals OH and and NO conversion to nitrate/nitrite species with high selectivity under visible light. Chem. Eng. J. 2021, 413, 127443. [Google Scholar] [CrossRef]
- Guo, L.; Han, C.; Zhang, S.; Zhong, Q.; Ding, J.; Zhang, B.; Zeng, Y. Enhancement effects of and OH radicals on NOx removal in the presence of SO2 by using an O3/H2O2 AOP system with inadequate O3 (O3/NO molar ratio = 0.5). Fuel 2018, 233, 769–777. [Google Scholar] [CrossRef]
- Wu, Q.; Sun, C.; Wang, H.; Wang, T.; Wang, Y.; Wu, Z. The role and mechanism of triethanolamine in simultaneous absorption of NOx and SO2 by magnesia slurry combined with ozone gas-phase oxidation. Chem. Eng. J. 2018, 341, 157–163. [Google Scholar] [CrossRef]
- Kim, H.; Lim, T.J.; Eom, H.H.; Kim, Y.J.; Kim, K.; Lee, J.W. Reconstructed fluorine doped perovskites for electrocatalytic urea production through reaction pathways with CO2 and nitrate ions. Appl. Catal. B Environ. Energy 2025, 365, 124974. [Google Scholar] [CrossRef]
- Jiang, H.; Li, T.; Gao, Y.; Fan, J.; Gan, D.; Yuan, S.; Hong, L.; Feng, Y.; Sun, J.; Song, Q.; et al. Sustainable ammonia synthesis: Opportunities for electrocatalytic nitrate reduction. J. Energy Chem. 2025, 105, 630–668. [Google Scholar] [CrossRef]
- Aridi, R.; Yehya, A. Review on the sustainability of phase-change materials used in buildings. Energy Convers. Manag. X 2022, 15, 100237. [Google Scholar] [CrossRef]
- Dungel, P.; Weidinger, A.; Wagner, C.; Redl, H.; Kozlov, A. Effects of nitrite on hepatocytes damaged by hypoxia/reoxygenation (H/R) in various in vitro models. Nitric Oxide 2011, 24, S34. [Google Scholar] [CrossRef]
- Tau, P.; Nyokong, T. Electrocatalytic activity of arylthio tetra-substituted oxotitanium(IV) phthalocyanines towards the oxidation of nitrite. Electrochim. Acta 2007, 52, 4547–4553. [Google Scholar] [CrossRef]
- Picetti, R.; Deeney, M.; Pastorino, S.; Miller, M.R.; Shah, A.; Leon, D.A.; Dangour, A.D.; Green, R. Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis. Environ. Res. 2022, 210, 112988. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; He, Y.; Zhu, Y.; Liu, J. Experimental study on three additives used for the removal of nitrite, a byproduct of ozone oxidation denitration technology. Environ. Technol. Innov. 2023, 32, 103236. [Google Scholar] [CrossRef]
- Lim, J.H.; Goh, K.; Ng, D.Y.F.; Jiang, X.; Chuah, C.Y.; Chew, J.W.; Wang, R. Alternating spin-and-spray electrospun scaffold membranes with fractionated MIL-101(Cr) adsorbent for high-performance single-pass dye adsorption process. Chem. Eng. J. 2022, 450, 137963. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, K.; Li, J.; Sun, S.; Jia, T.; Huang, Y.; Peng, Y.; Zhang, L. Pilot-scale evaluation of partial denitrification/anammox on nitrogen removal from low COD/N real sewage based on a modified process. Bioresour. Technol. 2021, 338, 125580. [Google Scholar] [CrossRef]
- Neşe, Ö.; TEnnil, K. A kinetic study of nitrite adsorption onto sepiolite and powdered activated carbon. Desalination 2008, 223, 174–179. [Google Scholar] [CrossRef]
- Ahn, J.; Choo, K.; Park, H. Reverse osmosis membrane treatment of acidic etchant wastewater: Effect of neutralization and polyelectrolyte coating on nitrate removal. J. Membr. Sci. 2008, 310, 296–302. [Google Scholar] [CrossRef]
- López, J.; Gibert, O.; Cortina, J.L. Integration of membrane technologies to enhance the sustainability in the treatment of metal-containing acidic liquid wastes. An overview. Sep. Purif. Technol. 2021, 265, 118485. [Google Scholar] [CrossRef]
- Martínez, J.; Ortiz, A.; Ortiz, I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl. Catal. B Environ. 2017, 207, 42–59. [Google Scholar] [CrossRef]
- Marchesini, F.A.; Gutierrez, L.B.; Querini, C.A.; Miró, E.E. Pt, In and Pd, In catalysts for the hydrogenation of nitrates and nitrites in water. FTIR characterization and reaction studies. Chem. Eng. J. 2010, 159, 203–211. [Google Scholar] [CrossRef]
- Guo, Z.; Zheng, Z.; Gu, C.; Zheng, Y. Gamma irradiation-induced removal of low-concentration nitrite in aqueous solution. Radiat. Phys. Chem. 2008, 77, 702–707. [Google Scholar] [CrossRef]
- Samatya, S.; Kabay, N.; Yüksel, Ü.; Arda, M.; Yüksel, M. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 2006, 66, 1206–1214. [Google Scholar] [CrossRef]
- Bian, X.; Wu, Y.; Li, J.; Yin, M.; Li, D.; Pei, H.; Chang, S.; Guo, W. Effect of dissolved oxygen on high C/N wastewater treatment in moving bed biofilm reactors based on heterotrophic nitrification and aerobic denitrification: Nitrogen removal performance and potential mechanisms. Bioresour. Technol. 2022, 365, 128147. [Google Scholar] [CrossRef]
- Hao, Z.; Ali, A.; Ren, Y.; Su, J.; Wang, Z. A mechanistic review on aerobic denitrification for nitrogen removal in water treatment. Sci. Total Environ. 2022, 847, 157452. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Zhang, C.; Ren, X.; Zhou, M. A critical review of ozone-based electrochemical advanced oxidation processes for water treatment: Fundamentals, stability evaluation, and application. Chemosphere 2024, 365, 143330. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, K.; Chen, T.; Xiong, Y.; Li, Y.; Addisu, A.; Pillai, S.C.; Dionysiou, D.D.; Wang, D. Regulating the generation of singlet oxygen (1O2) in Advanced oxidation processes by catalyst design for water treatment. Chem. Eng. J. 2024, 500, 156532. [Google Scholar] [CrossRef]
- Sushma Kumari, M.; Saroha, A.K. Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review. J. Environ. Manag. 2018, 228, 169–188. [Google Scholar] [CrossRef]
- Chen, J.; Tu, Y.; Shao, G.; Zhang, F.; Zhou, Z.; Tian, S.; Ren, Z. Catalytic ozonation performance of calcium-loaded catalyst (Ca-C/Al2O3) for effective treatment of high salt organic wastewater. Sep. Purif. Technol. 2022, 301, 121937. [Google Scholar] [CrossRef]
- Gulde, R.; Clerc, B.; Rutsch, M.; Helbing, J.; Salhi, E.; Mcardell, C.S.; Gunten, V.U. Oxidation of 51 micropollutants during drinking water ozonation: Formation of transformation products and their fate during biological post-filtration. Water Res. 2021, 207, 117812. [Google Scholar] [CrossRef]
- Graça, C.A.L.; Zema, R.; Orge, C.A.; Restivo, J.; Sousa, J.; Pereira, M.F.R.; Soares, O.S.G.P. Temperature and nitrogen-induced modification of activated carbons for efficient catalytic ozonation of salicylic acid as a model emerging pollutant. J. Environ. Manag. 2023, 344, 118639. [Google Scholar] [CrossRef]
- You, N.; Deng, S.; He, H.; Hu, J. Ferromanganese oxide-functionalized TiO2 for rapid catalytic ozonation of PPCPs through a coordinated oxidation process with adjusted composition and strengthened generation of reactive oxygen species. Water Res. 2024, 258, 121813. [Google Scholar] [CrossRef]
- Qin, Y.; Yuan, R.; Luo, S.; Huang, H.; He, X. Catalytic ozonation process for treating coking biochemical wastewater based on an Fe-Mn/Al2O3 catalyst. Colloids Surf. A Physicochem. Eng. Asp. 2025, 713, 136478. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Brown, D.R.; Kasprzyk-Hordern, B. Catalytic ozonation for the removal of organic contaminants in water on ZSM-5 zeolites. Appl. Catal. B Environ. 2014, 154, 110–122. [Google Scholar] [CrossRef]
- Xue, E.; Seshan, K.; Ross, J. Roles of supports, Pt loading and Pt dispersion in the oxidation of NO to NO2 and of SO2 to SO3. Appl. Catal. B Environ. 1996, 11, 65–79. [Google Scholar] [CrossRef]
- Chen, K.; Wang, H.; Luo, X.; Li, J.; Xu, Y.; Meng, Q.; He, H.; Xu, J.; Huang, G. Recent advances in high-performance Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol. Chem. Eng. Sci. 2025, 313, 121761. [Google Scholar] [CrossRef]
- Lu, P.; Ye, L.; Yan, X.; Fang, P.; Chen, X.; Chen, D.; Cen, C. Impact of toluene poisoning on MnCe/HZSM-5 SCR catalyst. Chem. Eng. J. 2021, 414, 128838. [Google Scholar] [CrossRef]
- Su, Y.; Fu, K.; Zheng, Y.; Ji, N.; Song, C.; Ma, D.; Lu, X.; Han, R.; Liu, Q. Catalytic oxidation of dichloromethane over Pt-Co/HZSM-5 catalyst: Synergistic effect of single-atom Pt, Co3O4, and HZSM-5. Appl. Catal. B Environ. 2021, 288, 119980. [Google Scholar] [CrossRef]
- Yan, R.; Lin, S.; Li, Y.; Liu, W.; Mi, Y.; Tang, C.; Wang, L.; Wu, P.; Peng, H. Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NOx with enhanced SO2/H2O tolerance. J. Hazard. Mater. 2020, 396, 122592. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, Z.; Li, Z.; Zhang, Y.; Mao, W.; Wang, Z.; Sun, X.; Li, K.; Wang, F.; Ning, P. Defect confinement in CuO/HZSM-5-T catalysts: A novel approach for enhancing stability in AsH3 catalytic oxidation. Fuel 2025, 381, 133367. [Google Scholar] [CrossRef]
- Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K. Mesopore-Modified Zeolites: Preparation, Characterization, and Applications. Chem. Rev. 2006, 106, 896–910. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Ji, D.; Zhao, X.; Li, C.; Guo, P.; Li, G. Synthesis of hollow HZSM-5 zeolite-based catalysts and catalytic performance in MTA reaction. Microporous Mesoporous Mater. 2022, 329, 111546. [Google Scholar] [CrossRef]
- Ogura, M. Towards Realization of a Micro- and Mesoporous Composite Silicate Catalyst. Catal. Surv. Asia 2008, 12, 16–27. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, P.; Wang, Z.; Tang, H.; He, Y.; Zhu, Y. Efficient catalytic ozonation of ethyl acetate over Cu-Mn catalysts: Further insights into the reaction mechanism. Chem. Eng. J. 2023, 477, 147282. [Google Scholar] [CrossRef]
- Tu, Y.; Shao, G.; Zhang, W.; Chen, J.; Qu, Y.; Zhang, F.; Tian, S.; Zhou, Z.; Ren, Z. The degradation of printing and dyeing wastewater by manganese-based catalysts. Sci. Total Environ. 2022, 828, 154390. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, S.; Xu, Z. Development and application of catalysts for catalytic ozonation of Cl-VOCs at low temperature: A comprehensive review. Sep. Purif. Technol. 2024, 333, 125882. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Z.; Lin, F.; Zhang, Z.; Yu, H.; Yan, B.; Wang, Z. Comparative investigation on catalytic ozonation of VOCs in different types over supported MnOx catalysts. J. Hazard. Mater. 2020, 391, 122218. [Google Scholar] [CrossRef]
- Lin, F.; Wang, Z.; Ma, Q.; Whiddon, R.; Zhu, Y.; Cen, K. Catalytic deep oxidation of NO by ozone over MnOx loaded spherical alumina catalyst. Appl. Catal. B Environ. 2016, 198, 100–111. [Google Scholar] [CrossRef]
- Lin, F.; Zhang, Z.; Xiang, L.; Zhang, L.; Cheng, Z.; Wang, Z.; Yan, B.; Chen, G. Efficient degradation of multiple Cl-VOCs by catalytic ozonation over MnOx catalysts with different supports. Chem. Eng. J. 2022, 435, 134807. [Google Scholar] [CrossRef]
- Shu, Y.; He, M.; Ji, J.; Huang, H.; Liu, S.; Leung, D.Y.C. Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5. J. Hazard. Mater. 2019, 364, 770–779. [Google Scholar] [CrossRef]
- Huang, H.; Huang, H.; Zhan, Y.; Liu, G.; Wang, X.; Lu, H.; Xiao, L.; Feng, Q.; Dennis, Y.C.L. Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation: Performance and mechanism. Appl. Catal. B Environ. 2016, 186, 62–68. [Google Scholar] [CrossRef]
- Esmaeilirad, M.; Zabihi, M.; Shayegan, J.; Khorasheh, F. Oxidation of toluene in humid air by metal oxides supported on γ-alumina. J. Hazard. Mater. 2017, 333, 293–307. [Google Scholar] [CrossRef]
- Du, C.; Lu, S.; Wang, Q.; Buekens, A.G.; Ni, M.; Debecker, D.P. A review on catalytic oxidation of chloroaromatics from flue gas. Chem. Eng. J. 2018, 334, 519–544. [Google Scholar] [CrossRef]
- Yang, P.; Zuo, S.; Zhou, R. Synergistic catalytic effect of (Ce, Cr)xO2 and HZSM-5 for elimination of chlorinated organic pollutants. Chem. Eng. J. 2017, 323, 160–170. [Google Scholar] [CrossRef]
- Peng, Y.; Si, W.; Li, J.; Crittenden, J.; Hao, J. Experimental and DFT studies on Sr-doped LaMnO3 catalysts for NOx storage and reduction. Catal. Sci. Technol. 2015, 5, 2478–2485. [Google Scholar] [CrossRef]
- Yang, W.; Su, Z.A.; Xu, Z.; Yang, W.; Peng, Y.; Li, J. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. Appl. Catal. B Environ. 2020, 260, 118150. [Google Scholar] [CrossRef]
- Gopi, T.; Swetha, G.; Chandra Shekar, S.; Ramakrishna, C.; Saini, B.; Krishna, R.; Rao, P.V.L. Catalytic decomposition of ozone on nanostructured potassium and proton containing δ-MnO2 catalysts. Catal. Commun. 2017, 92, 51–55. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, W.; Zhang, P.; Zhang, J. Nitric acid-treated birnessite-type MnO2: An efficient and hydrophobic material for humid ozone decomposition. Appl. Surf. Sci. 2018, 442, 640–649. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, P.; Chen, L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl. Catal. B Environ. 2016, 189, 210–218. [Google Scholar] [CrossRef]
- Lin, F.; Shao, J.; Tang, H.; Li, Y.; Wang, Z.; Chen, G.; Yuan, D.; Cen, K. Enhancement of NO oxidation activity and SO2 resistance over LaMnO3+δ perovskites catalysts with metal substitution and acid treatment. Appl. Surf. Sci. 2019, 479, 234–246. [Google Scholar] [CrossRef]
- Sun, M.; Li, W.; Zhang, B.; Cheng, G.; Lan, B.; Ye, F.; Zheng, Y.; Cheng, X.; Yu, L. Enhanced catalytic performance by oxygen vacancy and active interface originated from facile reduction of OMS-2. Chem. Eng. J. 2018, 331, 626–635. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Zhang, T.; Luo, Y.; Lan, Z.; Zhang, K.; Zuo, J.; Jiang, L.; Wang, R. Geometrical-Site-Dependent Catalytic Activity of Ordered Mesoporous Co-Based Spinel for Benzene Oxidation: In Situ DRIFTS Study Coupled with Raman and XAFS Spectroscopy. ACS Catal. 2017, 7, 1626–1636. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325. [Google Scholar] [CrossRef]
- Nawaz, F.; Cao, H.; Xie, Y.; Xiao, J.; Chen, Y.; Ghazi, Z.A. Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol. Chemosphere 2017, 168, 1457–1466. [Google Scholar] [CrossRef]
- Costa, E.P.; Roccamante, M.; Amorim, C.C.; Oller, I.; Sánchez Pérez, J.A.; Malato, S. New trend on open solar photoreactors to treat micropollutants by photo-Fenton at circumneutral pH: Increasing optical pathway. Chem. Eng. J. 2020, 385, 123982. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, M.; Liu, Y.; Wu, Z. Ozone-assisted catalytic oxidation of aqueous nitrite ions on HZSM-5 zeolites. Sci. Rep. 2019, 9, 14322. [Google Scholar] [CrossRef]
- Braschi, I.; Blasioli, S.; Buscaroli, E.; Montecchio, D.; Martucci, A. Physicochemical regeneration of high silica zeolite Y used to clean-up water polluted with sulfonamide antibiotics. J. Environ. Sci. 2016, 43, 302–312. [Google Scholar] [CrossRef]
- Ma, S.; Zuo, X.; Xiong, J.; Ma, C.; Chen, Z. Feasibility of high silica ZSM-5 recovery by ozone with sulfamethoxazole removal from water. J. Water Process Eng. 2019, 32, 100956. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Ziółek, M.; Nawrocki, J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B Environ. 2003, 46, 639–669. [Google Scholar] [CrossRef]
- Nawrocki, J.; Kasprzyk-Hordern, B. The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B Environ. 2010, 99, 27–42. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Q.; Wang, Y.; Wang, Q.; Li, Z. Enhanced ozonation of nitrobenzene in water using natural iron ores: Efficiencies, mechanisms and stability. J. Water Process Eng. 2024, 61, 105315. [Google Scholar] [CrossRef]
- Yuan, X.; Qin, W.; Lei, X.; Sun, L.; Li, Q.; Li, D.; Xu, H.; Xia, D. Efficient enhancement of ozonation performance via ZVZ immobilized g-C3N4 towards superior oxidation of micropollutants. Chemosphere 2018, 205, 369–379. [Google Scholar] [CrossRef]
- Ma, J.; Sui, M.; Zhang, T.; Guan, C. Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene. Water Res. 2005, 39, 779–786. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, X.; Dong, H.; Sans, C. Progress in MnO2/MnO2-based materials catalytic ozonation process for water and wastewater treatment. J. Environ. Manag. 2025, 383, 125493. [Google Scholar] [CrossRef]
Catalysts | Actual SiO2/Al2O3 | Loaded Metal | Actual Mn Content |
---|---|---|---|
HZSM-5 (400) | 400.1 | - | 0 |
Mn/ZSM-5 (21) | 21.2 | Mn | 5.06 wt% |
Mn/ZSM-5 (85) | 85.3 | Mn | 5.11 wt% |
Mn/ZSM-5 (200) | 200.1 | Mn | 4.99 wt% |
Mn/ZSM-5 (300) | 300.0 | Mn | 5.04 wt% |
Mn/ZSM-5 (400) | 399.6 | Mn | 5.01 wt% |
Group | Total Gas Volume | O3/NO | Catalyst | Catalyst Dosage |
---|---|---|---|---|
I | 5 L/min | 1.6 | - | 0 g/L |
II | 5 L/min | 1.6 | Mn/ZSM-5 (400) | 1 g/L |
III | 5 L/min | 1.6 | Mn/ZSM-5 (400) | 2 g/L |
IV | 5 L/min | 1.6 | Mn/ZSM-5 (400) | 3 g/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Sun, Y.; Zhu, Y.; Weng, W.; He, Y.; Wang, Z. Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism. Processes 2025, 13, 2387. https://doi.org/10.3390/pr13082387
Zhang Y, Sun Y, Zhu Y, Weng W, He Y, Wang Z. Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism. Processes. 2025; 13(8):2387. https://doi.org/10.3390/pr13082387
Chicago/Turabian StyleZhang, Yiwei, Yulin Sun, Yanqun Zhu, Wubin Weng, Yong He, and Zhihua Wang. 2025. "Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism" Processes 13, no. 8: 2387. https://doi.org/10.3390/pr13082387
APA StyleZhang, Y., Sun, Y., Zhu, Y., Weng, W., He, Y., & Wang, Z. (2025). Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism. Processes, 13(8), 2387. https://doi.org/10.3390/pr13082387