Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications
Abstract
1. Introduction
2. Ozone-Based Industrial Wastewater Treatment
2.1. Contaminant Oxidation and Abatement
2.2. Microbial Inactivation
2.3. Challenges and Trade-Off in Ozone-Based Treatment
3. Recent Advances in Industrial Ozone Applications
3.1. Food and Beverage Industry
3.2. Agriculture and Aquaculture Industry
3.3. Textile Industry
3.4. Pulp and Paper Industry
3.5. Oil and Gas Industry
3.6. Medical and Pharmaceutical Industry
3.7. Miscellaneous Industry
4. Discussion
4.1. Sector-Based Research Trends
4.2. Economic Considerations and Future Directions
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Activated carbon/charcoal |
Al2O3 | Aluminum oxide |
AOP | Advanced oxidation process |
AOX | Absorbable organic halides |
ARB | Antibiotic resistant bacteria |
ARG | Antibiotic resistance gene |
As(III) | Arsenic(III), Arsenite |
As(V) | Arsenic(V), Arsenate |
BAF | Biological aerated filter |
BOD | Biochemical oxygen demand |
BOD5 | 5-Day BOD |
BWB | Biological wriggle bed |
CIP | Clean-in-place |
ClO4− | Perchlorate |
CN− | Cyanide |
COD | Chemical oxygen demand |
DAF | Dissolved air flotation |
DOC | Dissolved organic carbon |
DOF | Dissolved ozone flotation |
EC50 | Half maximal effective concentration |
EOX | Extractable organic halogens |
EPA | Environmental Protection Agency |
Fe(II) | Iron(II), Ferric iron |
Fe(III) | Iron(III), Ferrous iron |
FTU | Formazin nephelometric unit |
GAC | Granular activated carbon |
HCO− | Bicarbonate |
HO• | Hydroxyl radical |
HS− | Bisulfide |
H2O2 | Hydrogen peroxide |
H2S | Hydrogen sulfide |
LC50 | Lethal concentration 50 |
MBR | Membrane bioreactor |
MBs | Microbubbles |
MnOx | Manganese oxides |
Mn(II) | Manganese(II) |
Mn(IV) | Manganese(IV) |
NAs | Naphthenic acids |
NH3 | Ammonia |
NH4+ | Ammonium |
NF | Nanofiltration |
NTU | Nephelometric turbidity unit |
N2 | Nitrogen |
OSPW | Oil sands process-affected water |
O2 | Oxygen |
O3 | Ozone |
PAC | Powdered activated carbon |
PFAS | Per- and polyfluoroalkyl substances |
PFOS | Perfluorooctanesulfonic acid |
PPCPs | Pharmaceuticals and personal care products |
PtCo | Platinum cobalt |
RAS | Recirculating aquaculture system |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SCOD | Soluble chemical oxygen demand |
SO42− | Sulfate |
SeO42− | Selenate |
TDS | Total dissolved solids |
TiO2 | Titanium dioxide |
TMAH | Tetramethylammonium hydroxide |
TOC | Total organic carbon |
TPH | Total petroleum hydrocarbons |
TS | Total solids |
TSS | Total suspended solids |
UASB | Upflow anaerobic sludge blanket |
UF | Ultrafiltration |
UV | Ultraviolet |
VNCs | Volatile nitrogen compounds |
VOCs | Volatile organic compounds |
VSCs | Volatile sulfur compounds |
VS | Volatile solids |
References
- Hoigne, J.; Bader, H. Rate constants of reactions of ozone with organic and inorganic compounds in water. 1. Non-dissociating organic-compounds. Water Res. 1983, 17, 173–183. [Google Scholar] [CrossRef]
- Ikehata, K.; Gamal El-Din, M. Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: A review (Part II). Ozone-Sci. Eng. 2005, 27, 173–202. [Google Scholar] [CrossRef]
- Ikehata, K.; Gamal El-Din, M. Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: A review (Part I). Ozone-Sci. Eng. 2005, 27, 83–114. [Google Scholar] [CrossRef]
- Ikehata, K.; Gamal El-Din, M. Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: A review. Ozone-Sci. Eng. 2004, 26, 327–343. [Google Scholar] [CrossRef]
- Broseus, R.; Vincent, S.; Aboulfadl, K.; Daneshvar, A.; Sauve, S.; Barbeau, B.; Prevost, M. Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment. Water Res. 2009, 43, 4707–4717. [Google Scholar] [CrossRef] [PubMed]
- Ikehata, K.; Naghashkar, N.J.; Gamal El-Din, M. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A Review. Ozone-Sci. Eng. 2007, 28, 353–414. [Google Scholar] [CrossRef]
- Snyder, S.; Westerhoff, P.; Yoon, Y.; Vanderford, B.; Rexing, D. Evaluation of conventional and advanced treatment processes to remove endocrine disruptors and pharmaceutically active compounds. Abstr. Pap. Am. Chem. Soc. 2004, 228, U620. [Google Scholar]
- Nakonechny, M.; Ikehata, K.; Gamal El-Din, M. Kinetics of estrone ozone/hydrogen peroxide advanced oxidation treatment. Ozone-Sci. Eng. 2008, 30, 249–255. [Google Scholar] [CrossRef]
- Ning, B.; Graham, N.; Zhang, Y.; Nakonechny, M.; Gamal El-Din, M. Degradation of endocrine disrupting chemicals by ozone/AOPs. Ozone-Sci. Eng. 2007, 29, 153–176. [Google Scholar] [CrossRef]
- Hoigne, J. Organic micropollutants and treatment processes—Kinetics and final effects of ozone and chlorine dioxide. Sci. Total Environ. 1985, 47, 169–185. [Google Scholar] [CrossRef]
- Finch, G.R.; Belosevic, M. Controlling Giardia spp. and Cryptosporidium spp. in drinking water by microbial reduction processes. Can. J. Civ. Eng. 2001, 28, 67–80. [Google Scholar] [CrossRef]
- Loeb, B.L. Ozone: Science & Engineering Thirty Years of Progress. Ozone-Sci. Eng. 2009, 31, 379–392. [Google Scholar] [CrossRef]
- Morrison, C.; Atkinson, A.; Zamyadi, A.; Kibuye, F.; McKie, M.; Hogard, S.; Monica, P.; Jasim, S.; Wert, E.C. Critical Review and Research Needs of Ozone Applications Related to Virus Inactivation: Potential Implications for SARS-CoV-2. Ozone-Sci. Eng. 2021, 43, 2–20. [Google Scholar] [CrossRef]
- Morrison, C.M.; Hogard, S.; Pearce, R.; Gerrity, D.; Wert, E.C.; von Gunten, U. Ozone disinfection of waterborne pathogens and their surrogates: A critical review. Water Res. 2022, 214, 118206. [Google Scholar] [CrossRef] [PubMed]
- Loeb, B.L.; Thompson, C.M.; Drago, J.; Takahara, H.; Baig, S. Worldwide Ozone Capacity for Treatment of Drinking Water and Wastewater: A Review. Ozone-Sci. Eng. 2012, 34, 64–77. [Google Scholar] [CrossRef]
- Oneby, M.A.; Bromley, C.O.; Borchardt, J.H.; Harrison, D.S. Ozone Treatment of Secondary Effluent at US Municipal Wastewater Treatment Plants. Ozone-Sci. Eng. 2010, 32, 43–55. [Google Scholar] [CrossRef]
- Thompson, C.M.; Drago, J.A. North American Installed Water Treatment Ozone Systems. J. Am. Water Work. Assoc. 2015, 107, 45–55. [Google Scholar] [CrossRef]
- Rice, R.G. Applications of ozone for industrial wastewater treatment—A review. Ozone-Sci. Eng. 1997, 18, 477–515. [Google Scholar] [CrossRef]
- Rice, R.G. Century 21—Pregnant with ozone. Ozone-Sci. Eng. 2002, 24, 1–15. [Google Scholar] [CrossRef]
- Rakness, K.L. Ozone in Drinking Water Treatment: Process Design, Operation, and Optimization; American Water Works Association: Denver, CO, USA, 2005. [Google Scholar]
- Von Sonntag, C.; Von Gunten, U. Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications; IWA Publishing: London, UK, 2012. [Google Scholar]
- Beltran, F.J. Ozone Reaction Kinetics for Water and Wastewater Systems; Lewis Publishers: Boca Raton, FL, USA, 2004. [Google Scholar]
- Das, P.P.; Dhara, S.; Samantha, N.S.; Purkait, M.K. Advancements on ozonation process for wastewater treatment: A comprehensive review. Chem. Eng. Process.-Process Intensif. 2024, 202, 109862. [Google Scholar] [CrossRef]
- Sanchez-Castillo, M.A.; Carrillo-Pedroza, F.R.; Fraga-Tovar, F.; Soria-Aguilar, M.D. Ozonation of Cyanide Catalyzed by Activated Carbon. Ozone-Sci. Eng. 2015, 37, 240–251. [Google Scholar] [CrossRef]
- Kerc, A.; Olmez, S.S. Ozonation of Odorous Air in Wastewater Treatment Plants. Ozone-Sci. Eng. 2010, 32, 199–203. [Google Scholar] [CrossRef]
- Mark, G.; Naumov, S.; von Sonntag, C. The Reaction of Ozone with Bisulfide (HS-) in Aqueous Solution—Mechanistic Aspects. Ozone-Sci. Eng. 2011, 33, 37–41. [Google Scholar] [CrossRef]
- Jasim, S.Y.; Mohseni, M. Ozone Application for Arsenic and Manganese Treatment at the City of White Rock, BC, Canada. Ozone-Sci. Eng. 2019, 41, 322–331. [Google Scholar] [CrossRef]
- Malkov, V.; Sadar, M. Control of Iron and Manganese Ozone Removal by Differential Turbidity Measurements. Ozone-Sci. Eng. 2010, 32, 286–291. [Google Scholar] [CrossRef]
- Reckhow, D.A.; Knocke, W.R.; Kearney, M.J.; Parks, C.A. Oxidation of iron and manganese by ozone. Ozone-Sci. Eng. 1991, 13, 675–695. [Google Scholar] [CrossRef]
- Elmghari-Tabib, M.; Laplanche, A.; Venien, F.; Martin, G. Ozonation of amines in aqueous-solutions. Water Res. 1982, 16, 223–229. [Google Scholar] [CrossRef]
- Pietsch, J.; Schmidt, W.; Brauch, H.J.; Worch, E. Kinetic and mechanistic studies of the ozonation of alicyclic amines. Ozone-Sci. Eng. 1999, 21, 23–37. [Google Scholar] [CrossRef]
- Bijan, L.; Mohseni, M. Integrated ozone and biotreatment of pulp mill effluent and changes in biodegradability and molecular weight distribution of organic compounds. Water Res. 2005, 39, 3763–3772. [Google Scholar] [CrossRef] [PubMed]
- Gokcen, F.; Ozbelge, T.A. Pre-ozonation of aqueous azo dye (Acid Red-151) followed by activated sludge process. Chem. Eng. J. 2006, 123, 109–115. [Google Scholar] [CrossRef]
- Lei, L.; Li, Y. Effect of Ozonation on Recalcitrant Chemical Oxygen Demand (COD), Color, and Biodegradability of Hardwood Kraft Pulp (KP) Bleaching Effluent. Bioresources 2014, 9, 1236–1245. [Google Scholar] [CrossRef]
- Wang, Y.M.; Yang, M.; Zhang, J.; Zhang, Y.; Gao, M.C. Improvement of biodegradability of oil field drilling wastewater using ozone. Ozone-Sci. Eng. 2004, 26, 309–315. [Google Scholar] [CrossRef]
- Camel, V.; Bermond, A. The use of ozone and associated oxidation processes in drinking water treatment. Water Res. 1998, 32, 3208–3222. [Google Scholar] [CrossRef]
- Paraskeva, P.; Graham, N.J.D. Ozonation of municipal wastewater effluents. Water Environ. Res. 2002, 74, 569–581. [Google Scholar] [CrossRef] [PubMed]
- von Gunten, U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003, 37, 1469–1487. [Google Scholar] [CrossRef] [PubMed]
- Khadre, M.A.; Yousef, A.E.; Kim, J.G. Microbiological aspects of ozone applications in food: A review. J. Food Sci. 2001, 66, 1242–1252. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, H.-S.; Lee, B.-H. Combination of Sequential Batch Reactor (SBR) and Dissolved Ozone Flotation-Pressurized Ozone Oxidation (DOF-PO2) Processes for Treatment of Pigment Processing Wastewater. Environ. Eng. Res. 2011, 16, 97–102. [Google Scholar] [CrossRef]
- Rice, R.G.; Farquhar, J.W.; Bollyky, L.J. Review of the applications of ozone for increasing storage times of perishable foods. Ozone-Sci. Eng. 1982, 4, 147–163. [Google Scholar]
- Skowron, K.; Walecka-Zacharska, E.; Grudlewska, K.; Bialucha, A.; Wiktorczyk, N.; Bartkowska, A.; Kowalska, M.; Kruszewski, S.; Gospodarek-Komkowska, E. Biocidal Effectiveness of Selected Disinfectants Solutions Based on Water and Ozonated Water against Listeria monocytogenes Strains. Microorganisms 2019, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Wysok, B.; Uradzinski, J.; Gomolka-Pawlicka, M. Ozone as an alternative disinfectant—A review. Pol. J. Food Nutr. Sci. 2006, 15, 3–8. [Google Scholar]
- Cumbo, E.; Gallina, G.; Messina, P.; Scardina, G.A. Alternative Methods of Sterilization in Dental Practices Against COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 5736. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, M.; Moghaddam, V.K.; Moghaddam, A.D.; Sagharloo, N.G.; Kouhi, R. Optimization of Ozonation Process for Disinfection of Dental Unit Waterlines Using Response Surface Methodology. Ozone-Sci. Eng. 2020, 42, 54–65. [Google Scholar] [CrossRef]
- Martins, C.P.V.; Xavier, C.S.F.; Cobrado, L. Disinfection methods against SARS-CoV-2: A systematic review. J. Hosp. Infect. 2022, 119, 84–117. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.B.; Castro, I.A.; Pontelli, M.; Souza, J.P.; Lima, T.M.; Melo, S.R.; Zen Siqueira, J.P.; Caetano, M.H.; Arruda, E.; Gottardo de Almeida, M.T. SARS-CoV-2 Inactivation by Ozonated Water: A Preliminary Alternative for Environmental Disinfection. Ozone-Sci. Eng. 2021, 43, 108–111. [Google Scholar] [CrossRef]
- Shrivastava, V.; Ali, I.; Marjub, M.M.; Rene, E.R.; Florencia Soto, A.M. Wastewater in the food industry: Treatment technologies and reuse potential. Chemosphere 2022, 293, 133553. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.M.d.; Jardim, W.F. Trends and strategies of ozone application in environmental problems. Química Nova 2006, 29, 310–317. [Google Scholar] [CrossRef]
- Peña, M.; Coca, M.; González, G.; Rioja, R.; García, M.T. Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere 2003, 51, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Serventi, L. Sustainability of dairy and soy processing: A review on wastewater recycling. J. Clean. Prod. 2019, 237, 117821. [Google Scholar] [CrossRef]
- Karamah, E.F.; Adripratiwi, I.P.; Anindita, L. Combination of Ozonation and Adsorption Using Granular Activated Carbon (GAC) for Tofu Industry Wastewater Treatment. Indones. J. Chem. 2018, 18, 600–606. [Google Scholar] [CrossRef]
- Martins, R.C.; Quinta-Ferreira, R.M. Final Remediation of Post-Biological Treated Milk Whey Wastewater by Ozone. Int. J. Chem. React. Eng. 2010, 8, A142. [Google Scholar] [CrossRef]
- Benincá, C.; Peralta-Zamora, P.; Tavares, C.R.G.; Igarashi-Mafra, L. Degradation of an Azo Dye (Ponceau 4R) and Treatment of Wastewater from a Food Industry by Ozonation. Ozone Sci. Eng. 2013, 35, 295–301. [Google Scholar] [CrossRef]
- Garcia-Morales, M.A.; Roa-Morales, G.; Barrera-Diaz, C.; Balderas-Hernandez, P. Treatment of soft drink process wastewater by ozonation, ozonation-H2O2 and ozonation-coagulation processes. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2012, 47, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Sripiboon, S.; Suwannahong, K. Color removal by ozonation process in biological wastewater treatment from the breweries. IOP Conf. Ser. Earth Environ. Sci. 2018, 167, 012010. [Google Scholar] [CrossRef]
- Nahim-Granados, S.; Rivas-Ibanez, G.; Antonio Sanchez Perez, J.; Oller, I.; Malato, S.; Polo-Lopez, M.I. Synthetic fresh-cut wastewater disinfection and decontamination by ozonation at pilot scale. Water Res. 2020, 170, 115304. [Google Scholar] [CrossRef] [PubMed]
- Atwell, C.; Martin, E.; Montague, G.; Swuste, J.; Picksley, M. Optimization of cleaning detergent use in brewery fermenter cleaning. J. Inst. Brew. 2017, 123, 70–76. [Google Scholar] [CrossRef]
- Bari, S.; Veale, D. Improvement of BIB packaging product filling valve CIP performance and efficiency. Food Bioprod. Process. 2012, 90, 849–857. [Google Scholar] [CrossRef]
- Boulton, L.H.; Sorensen, B.M. Corrosion of stainless-steels in hypochlorite clean-in-place solutions. N. Z. J. Dairy Sci. Technol. 1988, 23, 37–49. [Google Scholar]
- Mostashari, P.; Gavahian, M.; Jafarzadeh, S.; Guo, J.-H.; Hadidi, M.; Pandiselvam, R.; Huseyn, E.; Mousavi Khaneghah, A. Ozone in wineries and wine processing: A review of the benefits, application, and perspectives. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3129–3152. [Google Scholar] [CrossRef] [PubMed]
- Stone, L.S.; Zottola, E.A. Effect of cleaning and sanitizing on the attachment of Pseudomonas fragi to stainless-steel. J. Food Sci. 1985, 50, 951–956. [Google Scholar] [CrossRef]
- Eide, M.H.; Homleid, J.P.; Mattsson, B. Life cycle assessment (LCA) of cleaning-in-place processes in dairies. Lebensm.-Wiss.-Technol.-Food Sci. Technol. 2003, 36, 303–314. [Google Scholar] [CrossRef]
- Avila-Sierra, A.; Vicaria, J.M.; Jurado-Alameda, E.; Martínez-Gallegos, J.F. Removal of food soil by ozone-based oxidation processes: Cleaning and wastewater degradation in a single step. J. Food Eng. 2020, 272, 109803. [Google Scholar] [CrossRef]
- Nishijima, W.; Okuda, T.; Nakai, S.; Okada, M. A green procedure using ozone for Cleaning-in-Place in the beverage industry. Chemosphere 2014, 105, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Dieter, C.A.; Maupin, M.A.; Caldwell, R.R.; Harris, M.A.; Ivahnenko, T.I.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated Use of Water in the United States in 2015; U.S. Department of the Interior-U.S. Geological Survey: Reston, VA, USA, 2018.
- Singh, P.; Gamal El-Din, M.; Bromley, D.; Ikehata, K. Alum settling and filtration treatment of liquid swine manure. Trans. ASABE 2006, 49, 1487–1494. [Google Scholar] [CrossRef]
- Singh, P.; Gamal El-Din, M.; Ikehata, K.; Craik, S.A.; Bromley, D. UV inactivation of bacteria in raw and pre-treated liquid swine manure. Environ. Technol. 2006, 27, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Du, C.; Qian, F.; Song, Y.; Xiang, L. Enhanced Treatment of Pharmaceutical Wastewater by an Improved A2/O Process with Ozone Mixed Municipal Wastewater. Water 2020, 12, 2771. [Google Scholar] [CrossRef]
- de Souza, D.S.; Maciel, A.M.; Otenio, M.H.; de Mendonça, H.V. Optimization of Ozone Application in Post-Treatment of Cattle Wastewater from Organic Farms. Water Air Soil Pollut. 2020, 231, 362. [Google Scholar] [CrossRef]
- Yoon, Y.; Hwang, Y.; Kwon, M.; Jung, Y.; Hwang, T.-M.; Kang, J.-W. Application of O3 and O3/H2O2 as post-treatment processes for color removal in swine wastewater from a membrane filtration system. J. Ind. Eng. Chem. 2014, 20, 2801–2805. [Google Scholar] [CrossRef]
- Takashina, T.A.; Leifeld, V.; Zelinski, D.W.; Mafra, M.R.; Igarashi-Mafra, L. Application of Response Surface Methodology for Coffee Effluent Treatment by Ozone and Combined Ozone/UV. Ozone Sci. Eng. 2017, 40, 293–304. [Google Scholar] [CrossRef]
- Boffa, V.; Fabbri, D.; Calza, P.; Revelli, D.; Christensen, P.V. Potential of nanofiltration technology in recirculating aquaculture systems in a context of circular economy. Chem. Eng. J. Adv. 2022, 10, 100269. [Google Scholar] [CrossRef]
- Gorito, A.M.; Lado Ribeiro, A.R.; Pereira, M.F.R.; Almeida, C.M.R.; Silva, A.M.T. Advanced oxidation technologies and constructed wetlands in aquaculture farms: What do we know so far about micropollutant removal? Environ. Res. 2022, 204, 111955. [Google Scholar] [CrossRef] [PubMed]
- Summerfelt, S.T. Ozonation and UV irradiation—An introduction and examples of current applications. Aquac. Eng. 2003, 28, 21–36. [Google Scholar] [CrossRef]
- Gonçalves, A.A.; Gagnon, G.A. Ozone application in recirculating aquaculture systems: An overview. Ozone-Sci. Eng. 2011, 33, 345–367. [Google Scholar] [CrossRef]
- Chen, S.; Yu, J.; Wang, H.; Yu, H.; Quan, X. A pilot-scale coupling catalytic ozonation–membrane filtration system for recirculating aquaculture wastewater treatment. Desalination 2015, 363, 37–43. [Google Scholar] [CrossRef]
- Singh, R.L.; Singh, R.P. Advances in Biological Treatment of Industrial Waste Water and Their Recycling for a Sustainable Future-2019-Applied Environmental Science and Engineering for a Sustainable Future; Springer: Singapore, 2019. [Google Scholar]
- Kant, R. Textile dyeing industry an environmental hazard. Nat. Sci. 2012, 04, 22–26. [Google Scholar] [CrossRef]
- Nilsson, R.; Nordlinder, R.; Wass, U.; Meding, B.; Belin, L. Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes. Br. J. Ind. Med. 1993, 50, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.P.; Pate, K.A. Optimization of Environmental Parameters on Microbial Degradation of Reactive Black Dye. J. Bioremediat. Biodegrad. 2013, 4, 183. [Google Scholar] [CrossRef]
- Bisschops, I.; Spanjers, H. Literature review on textile wastewater characterisation. Environ. Technol. 2003, 24, 1399–1411. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.Y.; Lamssali, M.; Aryal, N.; Ofori-Boadu, A.; Jha, M.K.; Samuel, R.E. Textiles wastewater treatment technology: A review. Water Environ. Res. 2020, 92, 1805–1810. [Google Scholar] [CrossRef] [PubMed]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Tehrani-Bagha, A.R.; Mahmoodi, N.M.; Menger, F.M. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination 2010, 260, 34–38. [Google Scholar] [CrossRef]
- Suryawan, I.W.K.; Siregar, M.; Prajati, G.; Afifah, A. Integrated Ozone and Anoxic-Aerobic Activated Sludge Reactor for Endek (Balinese Textile) Wastewater Treatment. J. Ecol. Eng. 2019, 20, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.M.; Zhang, Y.G.; Wang, X.J. Textile Wastewater Treatment Using Combined Process of Biological Wriggle Bed and Ozone Biological Aerated Filter. Adv. Mater. Res. 2012, 441, 589–592. [Google Scholar] [CrossRef]
- Mohan, S.; Oke, N. Application of the Optimized Pre-ozonation Treatment for Potential Resource Recovery from Industrial Textile Effluent. Ozone-Sci. Eng. 2022, 44, 236–249. [Google Scholar] [CrossRef]
- Schrank, S.G.; Gebhardt, W.; José, H.J.; Moreira, R.F.P.M.; Schröder, H.F. Ozone Treatment of Tannery Wastewater Monitored by Conventional and Substance Specific Wastewater Analyses. Ozone Sci. Eng. 2017, 39, 159–187. [Google Scholar] [CrossRef]
- Badar, S.; Farooqi, I.H. Pulp and Paper Industry-Manufacturing Process, Wastewater Generation and Treatment. In Environmental Protection Strategies for Sustainable Development; Malik, A., Grohmann, E., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 397–436. [Google Scholar]
- Pokhrel, D.; Viraraghavan, T. Treatment of pulp and paper mill wastewater—A review. Sci. Total Environ. 2004, 333, 37–58. [Google Scholar] [CrossRef] [PubMed]
- Haq, I.; Mazumder, P.; Kalamdhad, A.S. Recent advances in removal of lignin from paper industry wastewater and its industrial applications—A review. Bioresour. Technol. 2020, 312, 123636. [Google Scholar] [CrossRef] [PubMed]
- RoyArcand, L.; Archibald, F. Selective removal of resin and fatty acids from mechanical pulp effluents by ozone. Water Res. 1996, 30, 1269–1279. [Google Scholar] [CrossRef]
- Korhonen, S.; Tuhkanen, T. Effects of ozone on resin acids in thermomechanical pulp and paper mill circulation waters. Ozone-Sci. Eng. 2000, 22, 575–584. [Google Scholar] [CrossRef]
- Shahzad Munir, H.M.; Feroze, N.; Ikhlaq, A.; Kazmi, M.; Javed, F.; Mukhtar, H. Removal of colour and COD from paper and pulp industry wastewater by ozone and combined ozone/UV process. Desalination Water Treat. 2019, 137, 154–161. [Google Scholar] [CrossRef]
- Mainardis, M.; Buttazzoni, M.; De Bortoli, N.; Mion, M.; Goi, D. Evaluation of ozonation applicability to pulp and paper streams for a sustainable wastewater treatment. J. Clean. Prod. 2020, 258, 120781. [Google Scholar] [CrossRef]
- Gupta, S.; Chakrabarti, S.K.; Singh, S. Oxi-Bioremediation of Hazardous Biosludge from Integrated Pulp and Paper Mill. Ozone Sci. Eng. 2012, 34, 334–341. [Google Scholar] [CrossRef]
- Gupta, S.; Chakrabarti, S.K.; Singh, S. Effect of Ozonation on Degradation of Organochlorine Compounds in Biosludge of Pulp and Paper Industry. Ozone Sci. Eng. 2013, 35, 109–115. [Google Scholar] [CrossRef]
- US EPA. Detailed Study of the Petroleum Refining Category—2019 Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2019.
- Talei, M.; Mowla, D.; Esmaeilzadeh, F. Ozonation of an effluent of oil refineries for COD and sulfide removal. Desalination Water Treat. 2014, 56, 1648–1656. [Google Scholar] [CrossRef]
- Chen, C.; Wei, L.; Guo, X.; Guo, S.; Yan, G. Investigation of heavy oil refinery wastewater treatment by integrated ozone and activated carbon -supported manganese oxides. Fuel Process. Technol. 2014, 124, 165–173. [Google Scholar] [CrossRef]
- Boczkaj, G.; Fernandes, A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chem. Eng. J. 2017, 320, 608–633. [Google Scholar] [CrossRef]
- Corrêa, A.X.R.; Tiepo, E.N.; Somensi, C.A.; Sperb, R.M.; Radetski, C.M. Use of Ozone-Photocatalytic Oxidation (O3/UV/TiO2) and Biological Remediation for Treatment of Produced Water from Petroleum Refineries. J. Environ. Eng. 2010, 136, 40–45. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, X.; Yang, K.; Zhu, N.; Lou, Z. The progressive steps for TPH stripping and the decomposition of oil refinery sludge using microbubble ozonation. Sci. Total Environ. 2020, 712, 135631. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Patterson, S.; Wang, N.; Hecker, M.; Martin, J.W.; El-Din, M.G.; Giesy, J.P.; Wiseman, S.B. Toxicity of untreated and ozone-treated oil sands process-affected water (OSPW) to early life stages of the fathead minnow (Pimephales promelas). Water Res. 2012, 46, 6359–6368. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Gupta, A.K.; Ghosal, P.S.; Varma, M. A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. J. Environ. Chem. Eng. 2021, 9, 104812. [Google Scholar] [CrossRef] [PubMed]
- Ferre-Aracil, J.; Valcarcel, Y.; Negreira, N.; de Alda, M.L.; Barcelo, D.; Cardona, S.C.; Navarro-Laboulais, J. Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process. Sci. Total Environ. 2016, 556, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.K.; Bui, X.T.; Chen, S.S.; Nguyen, P.D.; Cao, N.D.; Vo, T.D.; Nguyen, T.T.; Nguyen, T.B. Hospital wastewater treatment by sponge membrane bioreactor coupled with ozonation process. Chemosphere 2019, 230, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.M.S.; Spiliotopoulou, A.; Chhetri, R.K.; Escolà Casas, M.; Bester, K.; Andersen, H.R. Ozonation for source treatment of pharmaceuticals in hospital wastewater—Ozone lifetime and required ozone dose. Chem. Eng. J. 2016, 290, 507–514. [Google Scholar] [CrossRef]
- Kist, L.T.; Albrecht, C.; Machado, Ê.L. Hospital Laundry Wastewater Disinfection with Catalytic Photoozonation. CLEAN-Soil Air Water 2008, 36, 775–780. [Google Scholar] [CrossRef]
- Arslan, A.; Veli, S.; Bingöl, D. Use of response surface methodology for pretreatment of hospital wastewater by O3/UV and O3/UV/H2O2 processes. Sep. Purif. Technol. 2014, 132, 561–567. [Google Scholar] [CrossRef]
- Indah Dianawati, R.; Endah Wahyuningsih, N.; Nur, M. Treatment of hospital waste water by ozone technology. J. Phys. Conf. Ser. 2018, 1025, 012013. [Google Scholar] [CrossRef]
- Gupta, S.; Saratchandra, T.; Malik, S.; Sharma, A.; Lokhande, S.; Waindeskar, V.; Mudliar, S. Ozone-Induced Biodegradability Enhancement and Color Reduction of a Complex Pharmaceutical Effluent. Ozone Sci. Eng. 2015, 37, 538–545. [Google Scholar] [CrossRef]
- Lester, Y.; Mamane, H.; Zucker, I.; Avisar, D. Treating wastewater from a pharmaceutical formulation facility by biological process and ozone. Water Res. 2013, 47, 4349–4356. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; He, J.; Wang, D.; Meng, P.; Zeng, M. Optimization and interpretation of O3 and O3/H2O2 oxidation processes to pretreat hydrocortisone pharmaceutical wastewater. Environ. Technol. 2015, 36, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Wajahat, R.; Yasar, A.; Khan, A.M.; Tabinda, A.B.; Bhatti, S. Ozonation and Photo-Driven Oxidation of Ciprofloxacin in Pharmaceutical Wastewater: Degradation Kinetics and Energy Requirements. Pol. J. Environ. Stud. 2019, 28, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Sun, Y. Catalytic ozone oxidation treatment of wastewater from a pesticide enterprise. Desalination Water Treat. 2020, 208, 330–336. [Google Scholar] [CrossRef]
- Wiliński, P.R.; Marcinowski, P.P.; Naumczyk, J.; Bogacki, J. Pretreatment of cosmetic wastewater by dissolved ozone flotation (DOF). Desalination Water Treat. 2017, 71, 95–106. [Google Scholar] [CrossRef]
- Lee, B.H.; Song, W.C. High concentration of ozone application by the DAF (Dissolved Air Flotation) system to treat livestock wastewater. In Water Pollution VIII: Modelling, Monitoring and Management; WIT Press: Southampton, UK, 2006; pp. 561–569. [Google Scholar]
- Li, J.S.; Wang, X.J.; Deng, R.; Pang, Z.H. Comparison of Degradation and Decoloration on Cigarette Industry Wastewater by Ozone and Advanced Oxidation. Appl. Mech. Mater. 2013, 295–298, 1168–1172. [Google Scholar] [CrossRef]
- Hadiyanto, H.; Christwardana, M.; Indah Pratiwi, D.; Silviana, S.; Syarifudin, M.; Khoironi, A.; Shukla, S.K. Rubber wastewater treatment using UV, ozone, and UV/ozone and its effluent potency for microalgae Spirulina platensis cultivation medium. Cogent Eng. 2020, 7, 1797980. [Google Scholar] [CrossRef]
- Santos, D.C.; Silva, L.; Albuquerque, A.; Simoes, R.; Gomes, A.C. Biodegradability enhancement and detoxification of cork processing wastewater molecular size fractions by ozone. Bioresour. Technol. 2013, 147, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Kim, T.; Lee, I.; Choi, K.; Zoh, K.D. Removal of tetramethylammonium hydroxide (TMAH) in semiconductor wastewater using the nano-ozone H2O2 process. J. Hazard. Mater. 2021, 409, 123759. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wang, X.; Yuan, Y.; Guo, X.; Gu, X.; Jian, L. Combined ozone oxidation and biological aerated filter processes for treatment of cyanide containing electroplating wastewater. Chem. Eng. J. 2014, 241, 184–189. [Google Scholar] [CrossRef]
- Sun, Z.; Xia, F.; Lou, Z.; Chen, X.; Zhu, N.; Yuan, H.; Shen, Y. Innovative process for total petroleum hydrocarbons reduction on oil refinery sludge through microbubble ozonation. J. Clean. Prod. 2020, 256, 120337. [Google Scholar] [CrossRef]
- Mazloum, S.; Jasim, S.Y.; Biswas, N.; Rakness, K.; Hunter, G. Improvement and Optimization of the A. H. Weeks Water Treatment Plant Processes, Windsor, ON, Canada. Ozone-Sci. Eng. 2004, 26, 125–140. [Google Scholar] [CrossRef]
- Borikar, D.; Mohseni, M.; Jasim, S.Y. Evaluation and Comparison of Conventional and Advanced Oxidation Processes for the Removal of PPCPs and EDCs and Their Effect on THM-Formation Potentials. Ozone-Sci. Eng. 2015, 37, 154–169. [Google Scholar] [CrossRef]
- Mundy, B.; Kuhnel, B.; Hunter, G.; Jarnis, R.; Funk, D.; Walker, S.; Burns, N.; Dorago, J.; Nezgod, W.; Huang, J.; et al. A Review of Ozone Systems Costs for Municipal Applications. Report by the Municipal Committee—IOA Pan American Group. Ozone-Sci. Eng. 2018, 40, 266–274. [Google Scholar] [CrossRef]
Industry Sector | Wastewater Characteristics | Wastewater Sub-Type | Treatment Processes | Typical Ozone Dose | Pollutants Targeted | References |
---|---|---|---|---|---|---|
Food and beverage | High organic content, various pH, mostly biodegradable, batch production | Tofu production | O3 + GAC | 16–39 mg/L | COD | [52] |
Cheese | O3/H2O2, O3/Fe2O3-MnOx | Up to 4.2 g/L | COD, BOD5, TOC, color | [53] | ||
Confectionery factory | O3 | Vary | Dye, COD, TOC | [54] | ||
Soft drink | O3, O3/H2O2 | 433 mg/L | COD, turbidity | [55] | ||
Brewery | O3 + UASB | Up to 300 mg/L | Color, COD | [56] | ||
Fresh-cut fruits | O3, O3/H2O2 | 7.5 mg/L for disinfection, 180 mg/L for pesticides | E. coli, Salmonella, pesticides | [57] | ||
Clean-in-place | O3 | 750 mg/L | Odorous organics | [65] | ||
Agriculture and aquaculture | Organics, pesticides, antibiotics, cleaning agents, suspended solids, mostly biodegradable | Swine | UF/NF + O3 or O3/H2O2 | 100–150 mg/L | Color | [71] |
Coffee (synthetic) | O3, O3/UV | Vary | Color, caffeine | [72] | ||
Recirculating aquaculture system | Sand filtration/ceramic membrane + O3, TiO2 catalysts | 52 mg/L | COD removal, ammonia-N, nitrite, turbidity | [77] | ||
Textile | Dyes, colored, highly recalcitrant, toxic | Textile | O3 + anoxic–anaerobic activated sludge | 1 g/L | Color, COD, BOD5 | [86] |
O3 + BAF | 125 mg/L | COD | [87] | |||
Synthetic dye solutions | O3 + bioreactor | 80 mg/L | Color, COD, biodegradability | [88] | ||
Tannery | 200 mg/L | COD, BOD | [89] | |||
Pulp and paper | Organics, hemicellulose, lignin, colored, toxic, and recalcitrant | Pulp and paper effluent | O3, O3/UV | Vary | Color, COD | [95] |
O3 | Up to 600 mg/L | COD | [96] | |||
Sludge | O3 + activated sludge | 45 g/g | AOX, EOX, chlorophenols | [98] | ||
Oil and gas | Hydrocarbons, metals, hydrogen sulfide, ammonia, phenols, high salinity, toxic, and hazardous | Oil refinery effluent | O3/UV | 2335 mg/L | COD, H2S | [100] |
O3/MnOx/GAC | Vary | COD, TOC | [101] | |||
O3, O3/H2O2 | Vary | COD, BOD5, H2S, toxicity, biodegradability, VOCs, etc. | [102] | |||
O3/UV/TiO2 | Vary | COD, phenol, H2S, oil and grease, ammonia, ecotoxicity | [103] | |||
Petroleum waste sludge | Microbubble O3 | Vary | TPH, TSS | [104,125] | ||
Oil sands process-affected water | O3 | Vary | Ecotoxicity | [105] | ||
Medical and Pharmaceutical | Contains various emerging contaminants such as pharmaceuticals, ARB and ARGs, viruses, disinfectants, and high BOD and COD | Hospital effluent | O3, O3/H2O2 | 55 mg/L | Cytostaic compounds (irinotecan, ifosfamide, cyclophosphamide, capecitabine) | [107] |
Sponge MBR + O3 | 3.3 mg/L | COD, antibiotics (norfloxacin, ciprofloxacin, ofloxacin, sulfamethoxazole, erythromycin, tetracycline, and trimethoprim) | [108] | |||
O3, O3/H2O2 | 10 mg/L | 33 pharmaceuticals | [109] | |||
O3, O3/UV/H2O2, O3/UV | 4.2 mg/L | COD | [111,112] | |||
Hospital laundry wastewater | O3, O3/UV, O3/TiO2, O3/TiO2/UV | Vary | COD, BOD5, E. coli, coliform | [110] | ||
Pharmaceutical manufacturing | O3 + aerobic biological treatment | Vary | BOD, COD, TOC | [113] | ||
Biological treatment + O3, O3/H2O2 | Vary | BOD, COD, TOC, carbamazepine, venlafaxine | [114] | |||
O3/H2O2 | 218 mg/L | COD, TOC | [115] | |||
O3, photolysis, UV/TiO2 | Vary | BOD, COD, ciprofloxacin | [116] | |||
Miscellaneous | Vary (often recalcitrant and toxic) | Pesticide production | O3, O3/Al2O3 | 3 g/L | COD, ammonia-N | [117] |
Cosmetics | Dissolved O3 flotation | 11 mg/L | BOD, COD, TSS, PPCPs | [118] | ||
Cigarette | O3, O3/H2O2, Fenton | Vary | COD, color | [120] | ||
Latex | O3, O3/UV | Vary | BOD, COD, total N, total P | [121] | ||
Cork | UF-O3–biological treatment | Vary | Biodegradability, toxicity | [122] | ||
Semiconductor | O3/H2O2, nano O3 | Vary | TOC, TMAH | [123] | ||
Electroplating | BAF-O3-BAF | Vary | Cyanide, COD, metals | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leontieff, D.A.; Ikehata, K.; Inanaga, Y.; Furukawa, S. Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications. Processes 2025, 13, 2331. https://doi.org/10.3390/pr13082331
Leontieff DA, Ikehata K, Inanaga Y, Furukawa S. Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications. Processes. 2025; 13(8):2331. https://doi.org/10.3390/pr13082331
Chicago/Turabian StyleLeontieff, Daniel A., Keisuke Ikehata, Yasutaka Inanaga, and Seiji Furukawa. 2025. "Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications" Processes 13, no. 8: 2331. https://doi.org/10.3390/pr13082331
APA StyleLeontieff, D. A., Ikehata, K., Inanaga, Y., & Furukawa, S. (2025). Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications. Processes, 13(8), 2331. https://doi.org/10.3390/pr13082331