Optimized High-Pressure Ultrasonic-Microwave-Assisted Extraction of Gingerol from Ginger: Process Design and Performance Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Test Method
2.2.1. Determination of Extraction Rate of Gingerol
2.2.2. Different Extraction Methods of Gingerol
2.2.3. Optimization of Extraction Process Parameters by HP-UMAE
2.2.4. Antioxidant Activity of Gingerol In Vitro
Determination of DPPH Radical Scavenging Rate
Determination of Radical Scavenging Rate of ABTS
2.2.5. Determination of Polyphenols by HPLC
2.2.6. Morphology Test of Ginger Powder
3. Results and Discussion
3.1. Effect of Different Extraction Methods on the Extraction Rate of Gingerol
3.2. Effects of Different Extraction Methods on Antioxidant Activity
3.3. Effects of Different Extraction Methods on the Content of Gingerol
3.4. Effects of Different Extraction Methods on Cell Structure of Ginger
3.5. Optimization of Processing Parameters for HP-UMAE
3.5.1. Effect of Solid–Liquid Ratio on Extraction Rate and Gingerol Antioxidant Capacity In Vitro
3.5.2. Effect of Temperature on Extraction Rate and Antioxidant Capacity of Gingerol In Vitro
3.5.3. Effect of Microwave Power on Extraction Rate and Antioxidant Capacity of Gingerol In Vitro
3.5.4. Effect of Ultrasonic Power on Extraction Rate and Antioxidant Capacity of Gingerol In Vitro
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yücel, Ç.; Karatoprak, G.Ş.; Açıkara, Ö.B.; Akkol, E.K.; Barak, T.H.; Sobarzo-Sánchez, E.S.; Aschner, M.; Shirooie, S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front. Pharmacol. 2022, 13, 902551. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lin, E.; Xiao, R.; Li, Z.; Liu, B.; Wang, J. Structural Characteristic, Strong Antioxidant, and Anti-Gastric Cancer Investigations on an Oleoresin from Ginger (Zingiber officinale var. roscoe). Foods 2024, 13, 1498. [Google Scholar] [CrossRef] [PubMed]
- Sebe, M.; Senoura, S.; Miura, K.; Kobayashi, W.; Yano, N.; Yamauchi, G.; Harada, K.; Fukuyama, Y.; Kubo, M.; Murakami, K. Antibacterial Activity of Banglene Extracted from Indonesian Ginger “Bangle” Against Porphyromonas gingivalis. Int. J. Mol. Sci. 2025, 26, 1787. [Google Scholar] [CrossRef] [PubMed]
- Yanzhang, R.P.; Yan, M.Y.; Yang, Z.J.; Zhang, H.J.; Yu, Y.; Li, X.P.; Shen, R.F.; Chu, X.; Han, S.Y.; Zhang, Z.L.; et al. Ginger extract inhibits c-MET activation and suppresses osteosarcoma in vitro and in vivo. Cancer Cell Int. 2025, 25, 130. [Google Scholar] [CrossRef]
- Ezez, D.; Tefera, M. Effects of solvents on total phenolic content and antioxidant activity of ginger extracts. J. Chem. 2021, 2021, 6635199. [Google Scholar] [CrossRef]
- Jorge-Montalvo, P.; Vílchez-Perales, C.; Visitación-Figueroa, L. Evaluation of antioxidant capacity, structure, and surface morphology of ginger (Zingiber officinale) using different extraction methods. Heliyon 2023, 9, e16516. [Google Scholar] [CrossRef]
- Garza-Cadena, C.; Ortega-Rivera, D.M.; Machorro-García, G.; Gonzalez-Zermeño, E.M.; Homma-Dueñas, D.; Castro-Muñoz, R. A comprehensive review on Ginger (Zingiber officinale) as a potential source of nutraceuticals for food formulations: Towards the polishing of gingerol and other present biomolecules. Food Chem. 2023, 413, 135629. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, M.; Yerena-Prieto, B.J.; Carrera, C.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; García-Alvarado, M.Á.; Palma, M.; Rodríguez-Jimenes, G.C.; Barbero, G.F. Determination of Gingerols and Shogaols Content from Ginger (Zingiber officinale Rosc.) through Microwave-Assisted Extraction. Agronomy 2023, 13, 2288. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Wang, Y.; La, M.; Mian, R.; He, L.; Suonan, J.; Zou, D. An efficient strategy for large-scale preparation of low polarity gingerols directly from ginger crude extract by high-speed countercurrent chromatography with different rotation mode. J. Sep. Sci. 2023, 46, 2300320. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, M.; Yerena-Prieto, B.J.; Carrera, C.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; García-Alvarado, M.Á.; Palma, M.; Rodríguez-Jimenes, G.C.; Barbero, G.F. Optimization of an ultrasound-assisted extraction method for the extraction of gingerols and shogaols from ginger (Zingiber officinale). Agronomy 2023, 13, 1787. [Google Scholar] [CrossRef]
- Peng, L.Q.; Cao, J.; Du, L.J.; Zhang, Q.D.; Xu, J.J.; Chen, Y.B.; Shi, Y.T.; Li, R.R. Rapid ultrasonic and microwave-assisted micellar extraction of zingiberone, shogaol and gingerols from gingers using biosurfactants. J. Chromatogr. A 2017, 1515, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Han, L.; Shi, B. Microwave-assisted extraction of flavonoids from Radix Astragali. Sep. Purif. Technol. 2008, 62, 614–618. [Google Scholar] [CrossRef]
- Jaapar, S.Z.S.; Morad, N.A.; Iwai, Y.; Nordin, M.F.M. Effects of processing parameters in the sonic assisted water extraction (SAWE) of 6-gingerol. Ultrason. Sonochem. 2017, 38, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Žitek, T.; Kučuk, N.; Postružnik, V.; Leitgeb, M.; Knez, Ž.; Primožič, M.; Marevci, M.K. Synergistic effect of supercritical and ultrasound-assisted ginger (Zingiber officinale Roscoe) extracts. Plants 2022, 11, 2872. [Google Scholar] [CrossRef]
- Alexandre, E.M.; Araújo, P.; Duarte, M.F.; Freitas, V.; Pintado, M.; Saraiva, J.A. High-pressure assisted extraction of bioactive compounds from industrial fermented fig by-product. J. Food Sci. Technol. 2017, 54, 2519–2531. [Google Scholar] [CrossRef]
- GB/T 39100-2020; Determination of antioxidant activity for polypeptides—DPPH and ABTS methods. Standardization Administration of China: Beijing, China, 2020.
- Farahmandfar, R.; Esmaeilzadeh Kenari, R.; Asnaashari, M.; Shahrampour, D.; Bakhshandeh, T. Bioactive compounds, antioxidant and antimicrobial activities of Arum maculatum leaves extracts as affected by various solvents and extraction methods. Food Sci. Nutr. 2019, 7, 465–475. [Google Scholar] [CrossRef]
- Tranquilino-Rodríguez, E.; Martínez-Flores, H.E.; Rodiles-López, J.O.; Dios Figueroa-Cárdenas, J.D.; Pérez-Sánchez, R.E. Optimization in the extraction of polyphenolic compounds and antioxidant activity from Opuntia ficus-indica using response surface methodology. J. Food Process Preserv. 2020, 44, e14485. [Google Scholar] [CrossRef]
- Mareček, V.; Mikyška, A.; Hampel, D.; Čejka, P.; Neuwirthová, J.; Malachová, A.; Cerkal, R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal Sci. 2017, 73, 40–45. [Google Scholar] [CrossRef]
- Petrovici, A.R.; Anghel, N.; Dinu, M.V.; Spiridon, I. Dextran-chitosan composites: Antioxidant and anti-inflammatory properties. Polymer 2023, 15, 1980. [Google Scholar] [CrossRef]
- Entezari, M.H.; Pétrier, C. A combination of ultrasound and oxidative enzyme: Sono-biodegradation of substituted phenols. Ultrason. Sonochem. 2003, 10, 241–246. [Google Scholar] [CrossRef]
- Svitelska, G.V.; Gallios, G.P.; Zouboulis, A.I. Sonochemical decomposition of natural polyphenolic compound (condensed tannin). Chemosphere 2004, 56, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Yang, B.; Wu, Q.J.; Luo, Y.X.; Yang, Q.; Wei, X.Y.; Kan, J.Q. High-pressure ultrasonic-assisted extraction of polysaccharides from Hovenia dulcis: Extraction, structure, antioxidant activity and hypoglycemic. Int. J. Biol. Macromol. 2019, 137, 676–687. [Google Scholar] [CrossRef]
- Hu, Q.; He, Y.; Wang, F.; Wu, J.; Ci, Z.; Chen, L.; Xu, R.; Yang, M.; Lin, J.; Han, L.; et al. Microwave technology: A novel approach to the transformation of natural metabolites. Chin. Med. 2021, 16, 1–22. [Google Scholar] [CrossRef]
- Mahmudati, N.; Wahyono, P.; Djunaedi, D. Antioxidant activity and total phenolic content of three varieties of Ginger (Zingiber officinale) in decoction and infusion extraction method. J. Phys. Conf. Ser. 2020, 1567, 022028. [Google Scholar] [CrossRef]
- Sulejmanović, M.; Panić, M.; Redovniković, I.R.; Milić, N.; Drljača, J.; Damjanović, A.; Vidović, S. Sustainable isolation of ginger (Zingiber officinale) herbal dust bioactive compounds with favorable toxicological profile employing natural deep eutectic solvents (NADES). Food Chem. 2025, 464, 141545. [Google Scholar] [CrossRef]
- Huyen, T.T.; Quoc, L.P.T. Optimization of microwave-assisted extraction of phenolic compounds from ginger (Zingiber officinale Rosc.) using response surface methodology. Herba Pol. 2020, 66, 19–27. [Google Scholar] [CrossRef]
- Jia, X.L.; Aziz, Z.; Bi, Y.X.; He, C.F.; Tang, M.; Dong, K. Analysis of influencing factors of two methods for evaluating antioxidant activity in vitro: DPPH and ABTS. Dly. Chem Ind. 2024, 54, 866–872. [Google Scholar]
- Wołosiak, R.; Drużyńska, B.; Derewiaka, D.; Piecyk, M.; Majewska, E.; Ciecierska, M.; Worobiej, E.; Pakosz, P. Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays-A practical approach. Molecules 2021, 27, 50. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef]
- Dugasani, S.; Pichika, M.R.; Nadarajah, V.D.; Balijepalli, M.K.; Tandra, S.; Korlakunta, J.N. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J. Ethnopharmacol. 2010, 127, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Thilakarathna, R.C.N.; Siow, L.F.; Tang, T.K.; Lee, Y.Y. A review on application of ultrasound and ultrasound assisted technology for seed oil extraction. J. Food Sci. Technol. 2023, 60, 1222–1236. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.H.; Chen, G.J.; Wang, Z.R.; Kan, J.Q. A comparison of a polysaccharide extracted from ginger (Zingiber officinale) stems and leaves using different methods: Preparation, structure characteristics, and biological activities. Int. J. Biol. Macromol. 2020, 151, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.H.; Zhong, W.T.; Yang, C.M.; Zhang, Y.Z.; Yang, D.S. Study on anthocyanins from Lycium ruthenicum Murr via ultrasonic microwave synergistic extraction and its antioxidant properties. Front. Sustain. Food Syst. 2022, 6, 1052499. [Google Scholar] [CrossRef]
- Belwal, T.; Dhyani, P.; Bhatti, D.; Rawal, R.S.; Pande, V. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chem. 2016, 207, 115–124. [Google Scholar] [CrossRef]
- Liao, J.Q.; Zheng, N.; Qu, B.D. An improved ultrasonic-assisted extraction method by optimizing the ultrasonic frequency for enhancing the extraction efficiency of lycopene from tomatoes. Food Anal. Methods 2016, 9, 2288–2298. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. Microwave-assisted extraction of pectin from grape pomace. Sci. Rep. 2022, 12, 12722. [Google Scholar] [CrossRef]
- Arafat, Y.; Altemimi, A.; Ibrahim, S.A.; Badwaik, L.S. Valorization of sweet lime peel for the extraction of essential oil by solvent free microwave extraction enhanced with ultrasound pretreatment. Molecules 2020, 25, 4072. [Google Scholar] [CrossRef]
- Vuong Hoai, T.; Nguyen Cao, P.; Phan Le Thao, M.; Do, T.D.; Hoang Minh, N.; Ha, H.K.P.; Mai Thanh, P.; Nguyen Huu, H. Ultrasound-Assisted Enzymatic Extraction of Adenosine from Vietnamese Cordyceps militaris and Bioactivity Analysis of the Extract. J. Chem. 2020, 2020, 1487654. [Google Scholar] [CrossRef]
- Khoang, L.T.; Huyen, H.T.T.; Chung, H.V.; Duy, L.X.; Toan, T.Q.; Bich, H.T.; Minh, P.T.H.; Pham, D.T.N.; Hien, T.T. Optimization of total saponin extraction from Polyscias fruticosa roots using the ultrasonic-assisted method and response surface methodology. Processes 2022, 10, 2034. [Google Scholar] [CrossRef]
Variable | Variable Level | Evaluating Indicator |
---|---|---|
Solid- to-liquid ratio | 1:35, 1:45, 1:55, 1:65, 1:75 | Extraction rate, Antioxidant activity |
Extraction temperature | 80 °C, 90 °C, 100 °C, 110 °C, 120 °C | |
Ultrasonic power | 600 W, 800 W, 1000 W, 1200 W, 1400 W | |
Microwave power | 600 W, 700 W, 800 W, 900 W, 1000 W |
Ingredient | Regression Equation | Correlation Coefficient |
---|---|---|
6-G | y = 2.0367 × 10−4x − 0.3678 | 0.9992 |
8-G | y = 9.6331 × 10−5x − 0.0523 | 0.9999 |
6-S | y = 1.9851 × 10−4x − 0.6842 | 0.9998 |
10-G | y = 1.5185 × 10−4x − 0.6500 | 0.9998 |
Extraction Method | Optimal Conditions | Extraction Percentage | References |
---|---|---|---|
Leaching extraction | solvent: water, solid-to-liquid ratio: 1:25, extraction time: 10 min, extraction temperature: 100 °C | 12.25 mg/g | [26] |
UAE | solvent: 100% ethanol, solid-to-liquid ratio: 0.302 g ginger sample/20 mL solvent, extraction time: 10 min, extraction temperature: 60 °C, ultrasonic amplitude: 51.8%, ultrasonic period: 0.458 s−1 | 19.11 mg/g–24.49 mg/g | [10] |
solvent: malic acid–glucose (MA: GLC) in a ratio of 1:1, solid-to-liquid ratio: 1:20, extraction time: 2 min, extraction temperature: keep it below 30 °C, and use ice bath to control the temperature, ultrasonic amplitude: 20% | 6-gingerol: 1.90 ± 0.05 mg/g 6-shogaol: 0.20 ± 0.00 mg/g | [27] | |
MAE | solvent: 87% ethanol aqueous solution, solid- to-liquid ratio: 0.431 g ginger sample/20 mL solvent, extraction time: 5 min, extraction temperature: 100 °C, microwave power: 800 W | 15.84 mg/g | [8] |
solvent: 60% ethanol, solid- to-liquid ratio: 1:48.6, extraction time: 1 min | 27.89 ± 1.99mg GAE/g | [28] |
Extraction Method | 6-G (mg/L) | 8-G (mg/L) | 10-G (mg/L) | 6-S (mg/L) | Total Capacity (mg/L) |
---|---|---|---|---|---|
Leaching extraction | 12.93 | 0.32 | 1.68 | 3.56 | 18.49 |
UAE | 12.25 | 0.16 | 1.50 | 3.22 | 17.13 |
Reflux extraction | 11.95 | 0.29 | 1.75 | 3.66 | 17.65 |
MAE | 13.21 | 0.24 | 1.58 | 3.47 | 18.50 |
UMAE | 13.90 | 0.37 | 1.91 | 4.08 | 20.26 |
HP-UMAE | 14.29 | 0.38 | 1.95 | 4.32 | 20.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yang, S.; Li, W.; Li, X.; Lai, X.; Li, X.; Xiong, W.; Zhang, B. Optimized High-Pressure Ultrasonic-Microwave-Assisted Extraction of Gingerol from Ginger: Process Design and Performance Evaluation. Processes 2025, 13, 2149. https://doi.org/10.3390/pr13072149
Zhang Y, Yang S, Li W, Li X, Lai X, Li X, Xiong W, Zhang B. Optimized High-Pressure Ultrasonic-Microwave-Assisted Extraction of Gingerol from Ginger: Process Design and Performance Evaluation. Processes. 2025; 13(7):2149. https://doi.org/10.3390/pr13072149
Chicago/Turabian StyleZhang, Yang, Siyi Yang, Wensi Li, Xiaoyan Li, Xiangqin Lai, Xiang Li, Wuwan Xiong, and Bo Zhang. 2025. "Optimized High-Pressure Ultrasonic-Microwave-Assisted Extraction of Gingerol from Ginger: Process Design and Performance Evaluation" Processes 13, no. 7: 2149. https://doi.org/10.3390/pr13072149
APA StyleZhang, Y., Yang, S., Li, W., Li, X., Lai, X., Li, X., Xiong, W., & Zhang, B. (2025). Optimized High-Pressure Ultrasonic-Microwave-Assisted Extraction of Gingerol from Ginger: Process Design and Performance Evaluation. Processes, 13(7), 2149. https://doi.org/10.3390/pr13072149