Property Changes in Production of Hybrid Fresh Cheese Rich in Polyunsaturated Fatty Acids from Sacha Inchi (Plukenetia volubilis) Oil
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Raw Milk Analysis and Chemical Analysis
2.2.2. Fatty Acid Analysis
2.2.3. Sensory Analysis
2.2.4. Cheese Processing and Experiment Designs
2.2.5. Statistical Analysis
3. Results
3.1. Effect of Replacement of Milk Fat with Sacha Inchi Oil on Coagulation Properties and Yield of Fresh Hybrid Cheese Products
3.2. Effect of Replacement of Milk Fat with Sacha Inchi Oil on Nutritional Values and Fat Recovery in Hybrid Cheese Products
3.3. The Effect of the Replacement of Milk Fat with Sacha Inchi Oil on the Nutrition Properties of Fresh Cheese Products
3.3.1. Fatty Acid Profile of Sacha Inchi Oil
3.3.2. Effect of Replacement of Milk Fat with Sacha Inchi Oil on Fatty Acid Profiles and Cholesterol Level in Hybrid Fresh Cheese Products
3.4. Effect of Replacement of Milk Fat with Sacha Inchi Oil on Sensory Properties of Hybrid Fresh Cheese Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PUFA | Polyunsaturated fatty acid |
PCA | Principal component analysis |
References
- Nga, T.B.; Eiichi, K.; Phuong, T.M.T.; Cuong, H.T. Analysis of Fresh Milk Value Chain in North Viet Nam. In Food Value Chain in ASEAN: Case Studies Focusing on Local Producers; ERIA Research Project Report FY2018 no. 5; ERIA: Jakarta, India, 2019; pp. 87–115. [Google Scholar]
- Statista. Cheese-Vietnam. In Dairy Products & Egg, Statista Market Insights; Statista: Singapore, 2025; Available online: https://www.statista.com/outlook/cmo/food/dairy-products-eggs/cheese/vietnam (accessed on 20 May 2025).
- Syamala, A.; Dubey, K.; Salunke, P. Milk and Dairy Products Analogues. In Food Analogues: Emerging Methods and Challenges; Can, Ö.P., Göksel Saraç, M., Aslan Türker, D., Eds.; Springer: Cham, Switzerland, 2024; pp. 35–74. ISBN 978-3-031-69872-9. [Google Scholar]
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for Plant-Based Diets: Challenges and Innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Meitei, N.S.; Gajbhiye, P.U.; Raftery, M.J.; Ambatipudi, K. Comparative Analysis of Milk Triglycerides Profile between Jaffarabadi Buffalo and Holstein Friesian Cow. Metabolites 2020, 10, 507. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Fresh Cheese Products: Principals of Manufacture and Overview of Different Varieties. In Fundamentals of Cheese Science; Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H., Eds.; Springer: Boston, MA, USA, 2017; pp. 543–588. ISBN 978-1-4899-7681-9. [Google Scholar]
- Yang, R.; Zhang, L.; Li, P.; Yu, L.; Mao, J.; Wang, X.; Zhang, Q. A Review of Chemical Composition and Nutritional Properties of Minor Vegetable Oils in China. Trends Food Sci. Technol. 2018, 74, 26–32. [Google Scholar] [CrossRef]
- Van, Q.V.; Pham, T.N.Y.; Thi, T.N.; Van, M.N.; Le, V.T.; Vu, T.B.N.; Nguyen, T.B.H. Variation in Growth and Yield of Sacha Inchi (Plukenetia Volubilis L.) under Different Ecological Regions in Vietnam. J. Ecol. Eng. 2022, 23, 162–169. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, F.; Kakuda, Y. Sacha Inchi (Plukenetia volubilis L.): Nutritional Composition, Biological Activity, and Uses. Food Chem. 2018, 265, 316–328. [Google Scholar] [CrossRef]
- Vanegas-Azuero, A.-M.; Gutiérrez, L.-F. Physicochemical and Sensory Properties of Yogurts Containing Sacha Inchi (Plukenetia Volubilis L.) Seeds and β-Glucans from Ganoderma Lucidum. J. Dairy. Sci. 2018, 101, 1020–1033. [Google Scholar] [CrossRef] [PubMed]
- ISO 8968-1:2014; IDF 20-1:2014: Milk and Milk Products—Determination of Nitrogen Content. Part 1: Kjeldahl Principle and Crude Protein Calculation. International Standard Organization: Geneva, Switzerland, 2014. Available online: https://www.iso.org/standard/61020.html (accessed on 20 May 2025).
- ISO 19662:2018; IDF 238:2018: Milk—Determination of Fat Content—Acido-Butyrometric (Gerber Method). International Standard Organization: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/65935.html (accessed on 20 May 2025).
- Ministry of Science and Technology of Vietnam TCVN 7405:2018: Raw Fresh Milk. 2018. Available online: https://tieuchuan.vsqi.gov.vn/tieuchuan/view?sohieu=TCVN+7405%3A2018 (accessed on 20 May 2025).
- Ichihara, K.; Fukubayashi, Y. Preparation of Fatty Acid Methyl Esters for Gas-Liquid Chromatography. J. Lipid Res. 2010, 51, 635–640. [Google Scholar] [CrossRef] [PubMed]
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Standard Organization: Geneva, Switzerland, 2007. Available online: https://www.iso.org/standard/36385.html (accessed on 20 May 2025).
- ISO 11035:1994; Sensory Analysis—Identification and Selection of Descriptors for Establishing a Sensory Profile by a Multidimensional Approach. International Standard Organization: Geneva, Switzerland, 1994. Available online: https://www.iso.org/standard/19015.html (accessed on 20 May 2025).
- Nguyen, C.N.; Dinh, H.N.; Nguyen, T.T.; Nguyen, H.T.; Nguyen, T.T.; Hoang, G.; Chu, K.S.; Vu, T.T. Factors Affecting the Coagulation of Milk Protein during Quark Cheese Processing in Vietnam. Vietnam. J. Sci. Technol. Eng. 2024, 66, 104–110. [Google Scholar] [CrossRef]
- Amaral, G.V.; Silva, E.K.; Costa, A.L.R.; Alvarenga, V.O.; Cavalcanti, R.N.; Esmerino, E.A.; Guimarães, J.T.; Freitas, M.Q.; Sant’Ana, A.S.; Cunha, R.L.; et al. Whey-Grape Juice Drink Processed by Supercritical Carbon Dioxide Technology: Physical Properties and Sensory Acceptance. LWT-Food Sci. Technol. 2018, 92, 80–86. [Google Scholar] [CrossRef]
- Abbas, H.M.; El-Gawad, M.A.M.A.; Kassem, J.M.; Salama, M. Application of Fat Replacers in Dairy Products: A Review. Foods Raw Mater. 2024, 12, 319–333. [Google Scholar] [CrossRef]
- Ference, B.A.; Kastelein, J.J.P.; Ray, K.K.; Ginsberg, H.N.; Chapman, M.J.; Packard, C.J.; Laufs, U.; Oliver-Williams, C.; Wood, A.M.; Butterworth, A.S.; et al. Association of Triglyceride-Lowering LPL Variants and LDL-C–Lowering LDLR Variants with Risk of Coronary Heart Disease. JAMA 2019, 321, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.P.; Vaca, C.F.; Soto, E.J.; Vargas, J.R.; García, G.; Bañon, J.; Neira, E.F.; Tuesta, T. Sacha Inchi Oil (Plukenetia volubilis) Stabilized with Antioxidants for Addition in Fresh Cheese. Afr. J. Food Agric. Nutr. Dev. 2020, 20, 16638–16651. [Google Scholar] [CrossRef]
- Feeney, E.L.; Lamichhane, P.; Sheehan, J.J. The Cheese Matrix: Understanding the Impact of Cheese Structure on Aspects of Cardiovascular Health—A Food Science and a Human Nutrition Perspective. Int. J. Dairy. Technol. 2021, 74, 656–670. [Google Scholar] [CrossRef]
- Giha, V.; Ordoñez, M.J.; Villamil, R.A. How Does Milk Fat Replacement Influence Cheese Analogue Microstructure, Rheology, and Texture Profile? J. Food Sci. 2021, 86, 2802–2815. [Google Scholar] [CrossRef]
- Ramel, P.R.; Marangoni, A.G. Processed Cheese as a Polymer Matrix Composite: A Particle Toolkit for the Replacement of Milk Fat with Canola Oil in Processed Cheese. Food Res. Int. 2018, 107, 110–118. [Google Scholar] [CrossRef]
- Macit, S.; Sanlier, N. Palm Oil and Health. J. Tour. Gastron. Stud. 2014, 2, 13–20. [Google Scholar]
- Lourith, N.; Kanlayavattanakul, M.; Chaikul, P. Sacha Inchi: The Promising Source of Functional Oil for Anti-Aging Product. J. Oleo Sci. 2024, 73, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.-S. Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Dietary Sources, Metabolism, and Significance—A Review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Santa-María, C.; López-Enríquez, S.; la Paz, S.; Geniz, I.; Reyes-Quiroz, M.E.; Moreno, M.; Palomares, F.; Sobrino, F.; Alba, G. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients 2023, 15, 224. [Google Scholar] [CrossRef]
- Genet, B.M.L.; Sedó Molina, G.E.; Wätjen, A.P.; Barone, G.; Albersten, K.; Ahrné, L.M.; Hansen, E.B.; Bang-Berthelsen, C.H. Hybrid Cheeses—Supplementation of Cheese with Plant-Based Ingredients for a Tasty, Nutritious and Sustainable Food Transition. Fermentation 2023, 9, 667. [Google Scholar] [CrossRef]
- Kamath, R.; Basak, S.; Gokhale, J. Recent Trends in the Development of Healthy and Functional Cheese Analogues—A Review. LWT 2022, 155, 112991. [Google Scholar] [CrossRef]
- Craig, W.J.; Mangels, A.R.; Brothers, C.J. Nutritional Profiles of Non-Dairy Plant-Based Cheese Alternatives. Nutrients 2022, 14, 1247. [Google Scholar] [CrossRef] [PubMed]
No. | Analytical Parameters | Raw Milk | Vietnamese Standard (TCVN 7405:2018) |
---|---|---|---|
1 | Dry matter (%) | 12.9 ± 0.5 | ≥11.5 |
2 | Fat (%) | 4.0 ± 0.4 | ≥3.2 |
3 | Protein (%) | 3.1 ± 0.2 | ≥2.8 |
4 | Density (g/mL) | 1.027 | ≥1.026 |
5 | pH | 6.6 | - |
6 | Acidity (°T) | 15–17 | - |
Milk Fat Replacement (%) | |||||
---|---|---|---|---|---|
Control | 20 | 40 | 60 | 80 | |
Skim milk (kg) | 475.47 | 476.06 | 478.41 | 488.15 | 482.93 |
Cream (kg) | 26.33 | 20.19 | 14.09 | 8.10 | 1.94 |
Sacha inchi oil (kg) | 0.00 | 3.80 | 7.62 | 11.69 | 15.21 |
Sacha Inchi Oil Replacement in Raw Milk | ||||||
---|---|---|---|---|---|---|
No. | Parameters | Fresh Cheese | 20% | 40% | 60% | 80% |
1 | Curd coagulation time | 2′47 s | 2′47 s | 2′47 s | 2′47 s | 2′47 s |
2 | Curd obtained (%) | 16 | 18 | 16 | 17 | 17 |
3 | Fat/protein ratio | 1.64 ± 0.11 a | 1.57 ± 0.05 ab | 1.58 ± 0.07 ab | 1.46 ± 0.02 ab | 1.33 ± 0.02 b |
4 | Cheese yield (%) | 11.42 ± 0.54 a | 12.67 ± 0.86 a | 11.85 ± 0.58 a | 11.50 ± 0.16 a | 12.07 ± 0.00 a |
Fatty Acid | Effect of Replacement of Milk Fat with Sacha Inchi Oil on Fatty Acid Components of Cheese Fat | ||||
---|---|---|---|---|---|
Control | 20% | 40% | 60% | 80% | |
Butyric acid (C4:0) | 0.42 ± 0.02 | 0.58 ± 0.12 | 0.42 ± 0.11 | 0.53 ± 0.04 | 0.47 ± 0.05 |
Hexanoic (C6:0) | n.d | n.d | n.d | n.d | n.d |
Octanoic (C8:0) | n.d | n.d | n.d | n.d | n.d |
Decanoic (C10:0) | 1.16 ± 0.10 | 0.68 ± 0.05 | 1.02 ± 0.05 | 0.39 ± 0.34 | 0.20 ± 0.05 |
Undecanoic (C11:0) | 0.3 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 |
Lauric (C12:0) | 2.60 ± 0.08 | 2.67 ± 0.10 | 1.78 ± 0.08 | 0.63 ± 0.12 | 0.24 ± 0.08 |
Tridecanoic (C13:0) | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.01 | n.d | n.d |
Myristic (C14:0) | 10.24 ± 0.07 | 7.13 ± 0.20 | 7.10 ± 0.26 | 3.85 ± 0.22 | 1.50 ± 0.12 |
Miristoleic (C14:0, n5) | 1.05 ± 0.00 | 0.69 ± 0.05 | 0.66 ± 0.05 | 0.34 ± 0.00 | 0.09 ± 0.00 |
Pentadecanoic (C15:0) | 0.74 ± 0.10 | 0.48 ± 0.08 | 0.45 ± 0.10 | 0.19 ± 0.02 | 0.06 ± 0.00 |
Cis-10_pentadecenoic (15:1, cis n5) | 0.58 ± 0.00 | 0.38 ± 0.01 | 0.36 ± 0.08 | 0.14 ± 0.04 | 0.04 ± 0.00 |
Palmitic (C16:0) | 28.35 ± 1.22 | 19.67 ± 0.82 | 22.50 ± 1.13 | 22.50 ± 1.87 | 9.26 ± 011 |
Palmitoleic (C16:1, n7) | 1.71 ± 0.00 | 1.10 ± 0.00 | 1.13 ± 0.17 | 0.57 ± 0.04 | 0.27 ± 0.05 |
Heptadecanoic (C17:0) | 0.30 ± 0.00 | 0.18 ± 0.01 | 0.23 ± 0.01 | 0.20 ± 0.01 | n.d |
Cis-10_heptadecenoic (C17:1, cis n7) | 0.32 ± 0.02 | 0.20 ± 0.03 | 0.25 ± 0.01 | 0.11 ± 0.02 | 0.05 ± 0.00 |
Stearic (C18:0) | 8.05 ± 0.25 | 7.52 ± 0.50 | 7.37 ± 0.16 | 7.66 ± 0.25 | 3.30 ± 0.29 |
Elaidic (C18:1, trans n9) | 2.85 ± 0.23 | 1.79 ± 0.15 | 2.58 ± 0.12 | 2.26 ± 0.15 | 1.21 ± 0.13 |
Cis-9_oleic (OA, C18:1, cis ω-9) | 7.88 ± 0.36 | 11.47 ± 0.25 | 19.79 ± 0.37 | 16.23 ± 0.22 | 23.44 ± 0.13 |
Linolelaidic (C20:0) | n.d | n.d | n.d | n.d | n.d |
Linoleic (LA, C18:2, cis ω-6) | 6.44 ± 0.68 | 13.02 ± 0.00 | 21.02 ± 0.69 | 35.55 ± 0.73 | 41.75 ± 2.50 |
Arachidic (C20:0) | 0.10 ± 0.00 | 0.03 ± 0.00 | 0.33 ± 0.02 | 0.24 ± 0.06 | 0.25 ± 0.02 |
Gamma-linolenic (GLA, C18:3 ω-6) | n.d | n.d | n.d | n.d | n.d |
Cis-11-eicosanoic (C20:1 ω-9) | 0.12 ± 0.00 | 0.18 ± 0.02 | 0.23 ± 0.00 | 0.194 ± 0.06 | 0.13 ± 0.07 |
Linolenic (C18:3 ω-3) | 1.14 ± 0.06 | 0.85 ± 0.00 | 0.84 ± 0.06 | 1.64 ± 0.16 | 3.95 ± 0.44 |
Heneicosanoic (C21:0) | n.d | n.d | n.d | n.d | n.d |
Cis11,14-eicosadienoic (C21:2, cis-11,14) | 0.06 ± 0.00 | 0.05 ± 0.00 | 0.09 ± 0.00 | 0.08 ± 0.00 | 0.05 ± 0.02 |
Behenic (C22:0) | n.d | n.d | 0.29 ± 0.03 | 0.35 ± 0.05 | 0.18 ± 0.02 |
Cis-8,_11,_14-eicosatrienoic (DGLA, C20:3 ω-6) | n.d | n.d | n.d | 0.013 ± 0.00 | 0.01 ± 0.00 |
Cis-13-docosenoic (Erucic, C22:1 ω-9) | 0.03 ± 0.00 | n.d | 0.28 ± 0.02 | 0.36 ± 0.06 | 0.20 ± 0.03 |
Cis-11,_14,_17-eicosictraenoic (C20:3 ω-3) | n.d | n.d | n.d | n.d | n.d |
Tricosanoic (C23:0) | n.d | n.d | 0.010 | n.d | n.d |
Cis-5,_8,_11,_14-eicosictraenoic (C20:4 ω-3) | 0.08 ± 0.00 | 0.04 ± 0.00 | 0.05 ± 0.02 | n.d | n.d |
Cis-13,_16-docosadienoic (C22:2—cis 13,16) | n.d | n.d | n.d | n.d | n.d |
Lignoceric (C24:0) | n.d | n.d | 0.14 ± 0.04 | 0.13 ± 0.02 | 0.09 ± 0.00 |
Cis-5,_8,_11,_14,_17-eicosapentaenoic (EPA, C20:5 ω-3) | 0.03 ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.02 | n.d | n.d |
Nervoric (24:1 ω-9) | n.d | n.d | 0.14 ± 0.03 | 0.15 ± 0.02 | 0.08 ± 0.00 |
Cis-4,7,10,13,16,19-docosahexaeonic (DHA, C22:6 ω-3) | n.d | n.d | n.d | n.d | n.d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giang, H.; Nghia, N.C.; Son, C.K.; Ha, H.P.; Minh, B.Q.; Huong, L.Q.; Phuc, L.T.; Tuan, H.Q.; Son, V.H.; Trang, V.T. Property Changes in Production of Hybrid Fresh Cheese Rich in Polyunsaturated Fatty Acids from Sacha Inchi (Plukenetia volubilis) Oil. Processes 2025, 13, 1978. https://doi.org/10.3390/pr13071978
Giang H, Nghia NC, Son CK, Ha HP, Minh BQ, Huong LQ, Phuc LT, Tuan HQ, Son VH, Trang VT. Property Changes in Production of Hybrid Fresh Cheese Rich in Polyunsaturated Fatty Acids from Sacha Inchi (Plukenetia volubilis) Oil. Processes. 2025; 13(7):1978. https://doi.org/10.3390/pr13071978
Chicago/Turabian StyleGiang, Hoang, Nguyen Chinh Nghia, Chu Ky Son, Ho Phu Ha, Bui Quang Minh, Le Quang Huong, Le Tuan Phuc, Hoang Quoc Tuan, Vu Hong Son, and Vu Thu Trang. 2025. "Property Changes in Production of Hybrid Fresh Cheese Rich in Polyunsaturated Fatty Acids from Sacha Inchi (Plukenetia volubilis) Oil" Processes 13, no. 7: 1978. https://doi.org/10.3390/pr13071978
APA StyleGiang, H., Nghia, N. C., Son, C. K., Ha, H. P., Minh, B. Q., Huong, L. Q., Phuc, L. T., Tuan, H. Q., Son, V. H., & Trang, V. T. (2025). Property Changes in Production of Hybrid Fresh Cheese Rich in Polyunsaturated Fatty Acids from Sacha Inchi (Plukenetia volubilis) Oil. Processes, 13(7), 1978. https://doi.org/10.3390/pr13071978