Dynamic Energy Absorption Performance of Titanium Slag Reinforced Concrete: An Experimental and Numerical Simulation-Based Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Concrete Mix Proportion
2.1.2. Specimen Preparation Process
2.1.3. Experimental Apparatus
2.2. Methods
2.2.1. Data Preprocessing
2.2.2. Energy and Energy Absorption Ratio Calculation
2.2.3. Model Establishment
3. Results
3.1. SHPB Impact Test Results
3.1.1. Impact Energy Absorption Characteristics of Titanium Slag Concrete
3.1.2. Dynamic Filtering Effect on Titanium Coarse Concrete Energy Absorption
3.1.3. Energy Absorption of Titanium-Optimized Concrete Under Different Loading Rates
3.1.4. Energy Absorption Characteristics Between Adjacent Slag Pores
3.2. Numerical Simulation Results
3.2.1. Finite Difference Simulation of Titanium Slag Concrete
3.2.2. Finite Difference Simulation of Titanium Slag Concrete Without Air Voids
3.2.3. FDM Simulation of Single Slag Particle Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shu, Y.; Wang, G.; Lu, W.; Chen, M.; Yan, P.; Wang, Y. Stability Assessment Method of Damaged Concrete Gravity Dams Subjected to Penetration Explosion. Eng. Struct. 2022, 267, 114683. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Z.; Chen, Y.; Li, S.; Li, L.; Chen, L.; Huang, C.; Yang, Q. Study on the Damage Effect of 12.7 Mm Armour Piercing Incendiary Projectile Penetrating Aramid Reinforced Concrete Slab. Comput. Struct. 2025, 312, 107706. [Google Scholar] [CrossRef]
- Shu, Y.; Wang, G.; Lu, W.; Chen, M.; Lv, L.; Chen, Y. Damage Characteristics and Failure Modes of Concrete Gravity Dams Subjected to Penetration and Explosion. Eng. Fail. Anal. 2022, 134, 106030. [Google Scholar] [CrossRef]
- Anas, S.M.; Alam, M.; Umair, M. Reinforced Cement Concrete (RCC) Shelter and Prediction of Its Blast Loads Capacity. Mater. Today Proc. 2023, 74, 547–568. [Google Scholar] [CrossRef]
- Huang, X.; Yue, Y.; Zhu, B.; Chen, Y. Failure Analysis of Underground Concrete Silo under Near-Field Soil Explosion. Tunn. Undergr. Space Technol. 2024, 147, 105696. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Q.; Lu, X.; Wang, J. Numerical Study on Dynamic Behaviors of NRC Slabs in Containment Dome Subjected to Close-in Blast Loading. Thin-Walled Struct. 2019, 135, 269–284. [Google Scholar] [CrossRef]
- Liu, J.; Wei, J.; Li, J.; Su, Y.; Wu, C. A Comprehensive Review of Ultra-High Performance Concrete (UHPC) Behaviour under Blast Loads. Cem. Concr. Compos. 2024, 148, 105449. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Hao, H.; Liu, Z. Post-Blast Capacity of Ultra-High Performance Concrete Columns. Eng. Struct. 2017, 134, 289–302. [Google Scholar] [CrossRef]
- Yan, J.; Liu, Y.; Yan, J.; Yan, Z.; Xu, Y.; Gao, C.; Huang, F. Collapse of Concrete Target Subjected to Embedded Explosion of Shelled Explosive. Eng. Fail. Anal. 2024, 161, 108298. [Google Scholar] [CrossRef]
- Gao, C.; Kong, X.; Fang, Q. Experimental and Numerical Investigation on the Attenuation of Blast Waves in Concrete Induced by Cylindrical Charge Explosion. Int. J. Impact Eng. 2023, 174, 104491. [Google Scholar] [CrossRef]
- Li, X.; Miao, T.; Liu, T.; Chen, R.; Yu, A. Acoustic Emission Evaluation and Localization Correction of Concrete Damage Considering Stress Levels. Case Stud. Constr. Mater. 2025, 22, e04281. [Google Scholar] [CrossRef]
- Foglar, M.; Hajek, R.; Fladr, J.; Pachman, J.; Stoller, J. Full-Scale Experimental Testing of the Blast Resistance of HPFRC and UHPFRC Bridge Decks. Constr. Build. Mater. 2017, 145, 588–601. [Google Scholar] [CrossRef]
- Wang, G.; Shu, Y.; Lu, W.; Chen, M.; Pan, X.; Lu, A. Damage Prediction of Concrete Gravity Dams Subjected to Penetration Explosion. Eng. Fail. Anal. 2023, 143, 106855. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Hao, H. Investigation of Ultra-High Performance Concrete Slab and Normal Strength Concrete Slab under Contact Explosion. Eng. Struct. 2015, 102, 395–408. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, C.; Yin, T.; Jia, J.; Yu, J.; Song, J. Blast Resistant Performance and Damage Mechanism of Steel Reinforced Concrete Beams under Contact Explosion. Eng. Struct. 2024, 315, 118472. [Google Scholar] [CrossRef]
- Kang, G.; Zhang, Y.; Xie, X.; Gu, W. Investigation of Blasting Effects and Mechanisms on Concrete Frustums under Side-Contact Explosions. Def. Technol. 2025, S2214914725000807. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, Y.; Wang, Z.; Li, S.; Wei, W.; Huang, C. Study on the Failure Effect of Aramid Reinforced Concrete Slab under Localized Blast Loading. Structures 2024, 63, 106292. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Wang, S.; Zhang, W.; Ji, X.; Zhang, B. Effect of High-Strength Rebar and Ultra-High-Performance Concrete on Blast Resistance of Slabs under Contact Explosion Loads. Int. J. Impact Eng. 2025, 198, 105230. [Google Scholar] [CrossRef]
- Ma, K.; Ren, F.; Huang, H.; Yang, X.; Zhang, F. Experimental Investigation on the Dynamic Mechanical Properties and Energy Absorption Mechanism of Foam Concrete. Constr. Build. Mater. 2022, 342, 127927. [Google Scholar] [CrossRef]
- Liu, X.; Huang, F.; Zheng, A. Investigation of Foam Concrete’s Mechanical Properties and Multi-Scale Damage Evolution Characteristics under Uniaxial Loading. Constr. Build. Mater. 2024, 430, 136503. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Kunhanandan Nambiar, E.K.; Indu Siva Ranjani, G. A Classification of Studies on Properties of Foam Concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Yang, Y.; Kong, X.; Fang, Q. Non-Dimensional Analysis on Blast Wave Propagation in Foam Concrete: Minimum Thickness to Avoid Stress Enhancement. Def. Technol. 2023, 36, 30–46. [Google Scholar] [CrossRef]
- Falliano, D.; De Domenico, D.; Ricciardi, G.; Gugliandolo, E. Experimental Investigation on the Compressive Strength of Foamed Concrete: Effect of Curing Conditions, Cement Type, Foaming Agent and Dry Density. Constr. Build. Mater. 2018, 165, 735–749. [Google Scholar] [CrossRef]
- Das, N.; Nanthagopalan, P. State-of-the-Art Review on Ultra High Performance Concrete—Ballistic and Blast Perspective. Cem. Concr. Compos. 2022, 127, 104383. [Google Scholar] [CrossRef]
- Richardson, A.; Coventry, K.; Lamb, T.; Mackenzie, D. The Addition of Synthetic Fibres to Concrete to Improve Impact/Ballistic Toughness. Constr. Build. Mater. 2016, 121, 612–621. [Google Scholar] [CrossRef]
- Xu, J.; Wu, C.; Xiang, H.; Su, Y.; Li, Z.-X.; Fang, Q.; Hao, H.; Liu, Z.; Zhang, Y.; Li, J. Behaviour of Ultra High Performance Fibre Reinforced Concrete Columns Subjected to Blast Loading. Eng. Struct. 2016, 118, 97–107. [Google Scholar] [CrossRef]
- Yi, N.-H.; Kim, J.-H.J.; Han, T.-S.; Cho, Y.-G.; Lee, J.H. Blast-Resistant Characteristics of Ultra-High Strength Concrete and Reactive Powder Concrete. Constr. Build. Mater. 2012, 28, 694–707. [Google Scholar] [CrossRef]
- Li, H.; Chen, W.; Hao, H. Performance of Reinforced Concrete Slabs Subjected to Simultaneous Fire and Blast Loads. Eng. Struct. 2024, 311, 118133. [Google Scholar] [CrossRef]
- Zheng, R.; Gao, G.; Yu, Z.; Wang, B.; Zhou, A.; Song, Q.; Bao, J. Dynamic Mechanical Properties of Fiber-Reinforced Lightweight Aggregate Concrete Exposed to High Temperature. J. Build. Eng. 2025, 103, 112161. [Google Scholar] [CrossRef]
- Huang, S.; Wang, K.; Wang, H.; Lv, L.; Zhang, T.; Tang, W.; Zou, Z.; Tang, S. Comprehensive Utilization of Titanium-Bearing Blast Furnace Slag by H2SO4 Roasting and Stepwise Precipitation. Chin. J. Chem. Eng. 2025, 80, 24–37. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Shen, J.; Zhu, H.; Wang, J. Feasibility of High Titanium Heavy Slag Used as Aggregates for Asphalt Mixtures. J. Clean. Prod. 2023, 411, 137332. [Google Scholar] [CrossRef]
- Venkataramu, V.; Reddy, B.V.V. Properties of Concrete with Processed Granulated Blast-Furnace Slag as Fine Aggregate. Proc. Inst. Civ. Eng. Constr. Mater. 2024, 178, 1–16. [Google Scholar] [CrossRef]
- Xiaoying, L.; Jun, L.; Zhongyuan, L.; Li, H.; Jiakun, C. Preparation and Properties of Reactive Powder Concrete by Using Titanium Slag Aggregates. Constr. Build. Mater. 2020, 234, 117342. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Lu, Z.; Hou, L.; Li, X.; Zhang, C.; Li, R.; Deng, Y.; Zheng, X. Hydration and Performances of Ordinary Portland Cement Containing Metakaolin and Titanium Slag. Constr. Build. Mater. 2024, 415, 135056. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, C.; Zhang, S.; Guo, C.; Liu, S.; Li, M.; Wu, Y. Effect and Mechanism of Calcination on Improving the Hydration Activity of Titanium Extraction Slag. Constr. Build. Mater. 2024, 447, 138144. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, J.; Zhang, C.; Li, S.; An, N. Study on Optimization and Mechanism of Mechanical Activation Process of Titanium-Bearing Blast Furnace Slag. J. Mater. Res. Technol. 2022, 19, 3130–3144. [Google Scholar] [CrossRef]
- GB/T 50266-2013; Standard for Test Methods of Engineering Rock Mass. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2013. (In Chinese)
- Fan, L.F.; Wong, L.N.Y.; Ma, G.W. Experimental Investigation and Modeling of Viscoelastic Behavior of Concrete. Constr. Build. Mater. 2013, 48, 814–821. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Sun, J. Mechanical Behavior and Fracture Mechanisms of High-Strength Concrete Incorporating Porous Titanium Slag Aggregate. J. Mater. Res. Technol. 2025, 36, 6075–6087. [Google Scholar] [CrossRef]
- Cibelli, A.; Ferrara, L.; Di Luzio, G. A Combined Numerical and Experimental Study on the Mechanical Aging of High Slag Content High Performance Concrete. J. Build. Eng. 2024, 98, 111294. [Google Scholar] [CrossRef]
- Baoyi, L.; Yuping, D.; Yuefang, Z.; Shunhua, L. Electromagnetic Wave Absorption Properties of Cement-Based Composites Filled with Porous Materials. Mater. Des. 2011, 32, 3017–3020. [Google Scholar] [CrossRef]
- Xie, S.; Ji, Z.; Yang, Y.; Hou, G.; Wang, J. Electromagnetic Wave Absorption Enhancement of Carbon Black/Gypsum Based Composites Filled with Expanded Perlite. Compos. Part B Eng. 2016, 106, 10–19. [Google Scholar] [CrossRef]
- Saleem, M.H.; Abdul-Hamead, A.A.; Othman, F.M. Effect of Furnace Slag on the Electromagnetic Shielding Properties of Fiber Reinforced Concrete. Mater. Today Proc. 2022, 52, 582–587. [Google Scholar] [CrossRef]
- Si, T.; Xie, S.; Ji, Z.; Ma, C.; Wu, Z.; Wu, J.; Wang, J. Synergistic Effects of Carbon Black and Steel Fibers on Electromagnetic Wave Shielding and Mechanical Properties of Graphite/Cement Composites. J. Build. Eng. 2022, 45, 103561. [Google Scholar] [CrossRef]
- Zhou, C.; Yuan, M.; Di, X.; Qiu, S.; Liang, M.; Luo, Y.; Zou, H. Tunable 1T-Phase MoS2/CNT Reinforced Carbon Foams for Enhanced Low-Frequency Electromagnetic Wave Absorption. Chem. Eng. J. 2025, 512, 162574. [Google Scholar] [CrossRef]
- Lu, S.; Xu, J.-Y.; Bai, E.-L.; Luo, X. Effect of Particles with Different Mechanical Properties on the Energy Dissipation Properties of Concrete. Constr. Build. Mater. 2017, 144, 502–515. [Google Scholar] [CrossRef]
- Nian, W.; Subramaniam, K.V.L.; Andreopoulos, Y. Experimental Investigation on Blast Response of Cellular Concrete. Int. J. Impact Eng. 2016, 96, 105–115. [Google Scholar] [CrossRef]
- Han, J.; Fan, H. Dynamic Properties of Low-Density Expandable Polystyrene Concrete Materials. Def. Technol. 2025, 43, 94–108. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Y.; Fan, H.; Jin, F. Investigation of Low-Velocity Impact Behaviors of Foamed Concrete Material. Compos. Part B Eng. 2019, 162, 491–499. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, S.; Li, X.; Pan, L.; Cao, Z.; Shuai, B.; Shen, C.; Zhao, Z. Impact Splitting Tensile Properties and Microstructural Analysis of Polypropylene Fiber Reinforced Coral Seawater Concrete. Constr. Build. Mater. 2025, 471, 140747. [Google Scholar] [CrossRef]
- Feng, S.; Zhou, Y.; Wang, Y.; Lei, M. Experimental Research on the Dynamic Mechanical Properties and Damage Characteristics of Lightweight Foamed Concrete under Impact Loading. Int. J. Impact Eng. 2020, 140, 103558. [Google Scholar] [CrossRef]
- Feng, S.; Zhou, Y.; Li, Q.M. Damage Behavior and Energy Absorption Characteristics of Foamed Concrete under Dynamic Load. Constr. Build. Mater. 2022, 357, 129340. [Google Scholar] [CrossRef]
- Ma, H.; Yue, C.; Yu, H.; Mei, Q.; Chen, L.; Zhang, J.; Zhang, Y.; Jiang, X. Experimental Study and Numerical Simulation of Impact Compression Mechanical Properties of High Strength Coral Aggregate Seawater Concrete. Int. J. Impact Eng. 2020, 137, 103466. [Google Scholar] [CrossRef]
- Otoo, S.L.; Shi, Z.; Li, Q.; Wu, Y.; Lai, G.; Amu-Darko, J.N.O.; Deng, C.; Li, S.; Chen, W. Utilization of Titanium Slag in Cement Grout for Gamma Radiation Shielding: Hydration, Microstructure, Mechanical Properties and Gamma-Ray Attenuation Performance. Constr. Build. Mater. 2023, 402, 133031. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, H.; Xu, G.; Cui, G. Review on Utilization of Ti-Bearing Blast Furnace Slag from the Past Decade: Whole-Component Utilization and Ti Component Recovery. Chem. Eng. J. 2025, 514, 163115. [Google Scholar] [CrossRef]
- Narayanan, N.; Ramamurthy, K. Microstructural Investigations on Aerated Concrete. Cem. Concr. Res. 2000, 30, 457–464. [Google Scholar] [CrossRef]
- Panesar, D.K. Cellular Concrete Properties and the Effect of Synthetic and Protein Foaming Agents. Constr. Build. Mater. 2013, 44, 575–584. [Google Scholar] [CrossRef]
- Lei, M.; Liu, Z.; Wang, F. Review of Lightweight Cellular Concrete: Towards Low-Carbon, High-Performance and Sustainable Development. Constr. Build. Mater. 2024, 429, 136324. [Google Scholar] [CrossRef]
- Chen, C.; Chen, X. Experimental Study of Fracture Damage Characteristics in Steel Slag Porous Concrete Based on Acoustic Emission Technique. Constr. Build. Mater. 2024, 456, 139127. [Google Scholar] [CrossRef]
- Lang, L.; Duan, H.; Chen, B. Properties of Pervious Concrete Made from Steel Slag and Magnesium Phosphate Cement. Constr. Build. Mater. 2019, 209, 95–104. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, M.; Yang, F.; Zhang, W. A Novel Hydrophilic Modification Method of EPS Particles: Conception Design and Performances in Concrete. Cem. Concr. Compos. 2023, 142, 105199. [Google Scholar] [CrossRef]
- Zhu, Y.; Rong, Z.; Jiang, Q.; Shi, J. Influence Mechanisms of Porous Aggregate Morphology, Maximum Size and Optimized Gradation on Ultra-High Performance Concrete with Ferrochrome Slag. Cem. Concr. Compos. 2025, 157, 105890. [Google Scholar] [CrossRef]
- Kong, J.; Cong, G.; Ni, S.; Sun, J.; Guo, C.; Chen, M.; Quan, H. Recycling of Waste Oyster Shell and Recycled Aggregate in the Porous Ecological Concrete Used for Artificial Reefs. Constr. Build. Mater. 2022, 323, 126447. [Google Scholar] [CrossRef]
- Kuo, W.-T.; Wang, H.-Y.; Shu, C.-Y.; Su, D.-S. Engineering Properties of Controlled Low-Strength Materials Containing Waste Oyster Shells. Constr. Build. Mater. 2013, 46, 128–133. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, J.; Poon, C. Enhanced Performance and Sustainability of Foam Concrete Through Shale Aggregate Integration. Constr. Build. Mater. 2025, 479, 141442. [Google Scholar] [CrossRef]
- Narayanan, N.; Ramamurthy, K. Structure and Properties of Aerated Concrete: A Review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Y.; Wang, X.; Zhao, Z.; Ma, G. Energy Absorption of Graded Foam Subjected to Blast: A Theoretical Approach. Mater. Des. 2015, 84, 351–358. [Google Scholar] [CrossRef]
- Agar Ozbek, A.S.; Pedersen, R.R.; Weerheijm, J.; Van Breugel, K. Mesoscopic Modeling of the Impact Behavior and Fragmentation of Porous Concrete. Cem. Concr. Compos. 2019, 102, 116–133. [Google Scholar] [CrossRef]
- Agar Ozbek, A.S.; Weerheijm, J.; Schlangen, E.; Van Breugel, K. Dynamic Behavior of Porous Concretes under Drop Weight Impact Testing. Cem. Concr. Compos. 2013, 39, 1–11. [Google Scholar] [CrossRef]
- Chica, L.; Alzate, A. Cellular Concrete Review: New Trends for Application in Construction. Constr. Build. Mater. 2019, 200, 637–647. [Google Scholar] [CrossRef]
- Ma, G.W.; Ye, Z.Q. Analysis of Foam Claddings for Blast Alleviation. Int. J. Impact Eng. 2007, 34, 60–70. [Google Scholar] [CrossRef]
- Guruprasad, S.; Mukherjee, A. Layered Sacrificial Claddings under Blast Loading Part I—Analytical Studies. Int. J. Impact Eng. 2000, 24, 957–973. [Google Scholar] [CrossRef]
- Guruprasad, S.; Mukherjee, A. Layered Sacrificial Claddings under Blast Loading Part II—Experimental Studies. Int. J. Impact Eng. 2000, 24, 975–984. [Google Scholar] [CrossRef]
- Zhou, H.; Ren, H.; Yi, Z.; Wu, X.; Nie, X.; Zhang, H. Anti-Blast Performance of Multilayer Protective Structure with Different Sacrificial Claddings. Eng. Fail. Anal. 2025, 171, 109336. [Google Scholar] [CrossRef]
- Kostopoulos, V.; Kalimeris, G.D.; Giannaros, E. Blast Protection of Steel Reinforced Concrete Structures Using Composite Foam-Core Sacrificial Cladding. Compos. Sci. Technol. 2022, 230, 109330. [Google Scholar] [CrossRef]
- Wu, K.; Shao, Z.; Qin, S. A Solution for Squeezing Deformation Control in Tunnels Using Foamed Concrete: A Review. Constr. Build. Mater. 2020, 257, 119539. [Google Scholar] [CrossRef]
- Tan, X.; Chen, W.; Liu, H.; Chan, A.H.C.; Tian, H.; Meng, X.; Wang, F.; Deng, X. A Combined Supporting System Based on Foamed Concrete and U-Shaped Steel for Underground Coal Mine Roadways Undergoing Large Deformations. Tunn. Undergr. Space Technol. 2017, 68, 196–210. [Google Scholar] [CrossRef]
- Oren, O.H.; Gholampour, A.; Gencel, O.; Ozbakkaloglu, T. Physical and Mechanical Properties of Foam Concretes Containing Granulated Blast Furnace Slag as Fine Aggregate. Constr. Build. Mater. 2020, 238, 117774. [Google Scholar] [CrossRef]
- Shettima, A.U.; Hussin, M.W.; Ahmad, Y.; Mirza, J. Evaluation of Iron Ore Tailings as Replacement for Fine Aggregate in Concrete. Constr. Build. Mater. 2016, 120, 72–79. [Google Scholar] [CrossRef]
- Zelić, J. Properties of Concrete Pavements Prepared with Ferrochromium Slag as Concrete Aggregate. Cem. Concr. Res. 2005, 35, 2340–2349. [Google Scholar] [CrossRef]
- Wong, T.L.X.; Mohd Hasan, M.R.; Peng, L.C. Recent Development, Utilization, Treatment and Performance of Solid Wastes Additives in Asphaltic Concrete Worldwide: A Review. J. Traffic Transp. Eng. Engl. Ed. 2022, 9, 693–724. [Google Scholar] [CrossRef]
- Li, Q.; Ding, H.; Rahman, A.; He, D. Evaluation of Basic Oxygen Furnace (BOF) Material into Slag-Based Asphalt Concrete to Be Used in Railway Substructure. Constr. Build. Mater. 2016, 115, 593–601. [Google Scholar] [CrossRef]
- Pang, B.; Zhou, Z.; Cheng, X.; Du, P.; Xu, H. ITZ Properties of Concrete with Carbonated Steel Slag Aggregate in Salty Freeze-Thaw Environment. Constr. Build. Mater. 2016, 114, 162–171. [Google Scholar] [CrossRef]
- Prasittisopin, L.; Termkhajornkit, P.; Kim, Y.H. Review of Concrete with Expanded Polystyrene (EPS): Performance and Environmental Aspects. J. Clean. Prod. 2022, 366, 132919. [Google Scholar] [CrossRef]
- Shang, D.; Wang, M.; Xia, Z.; Hu, S.; Wang, F. Incorporation Mechanism of Titanium in Portland Cement Clinker and Its Effects on Hydration Properties. Constr. Build. Mater. 2017, 146, 344–349. [Google Scholar] [CrossRef]
- Liu, G.; Li, M.; Zhang, S.; Zhang, Z.; Wu, Y. Strengthening Effect and Mechanism of Titanium Extraction Slag on the Mechanical Property of Calcium Aluminate Cement. Ceram. Int. 2023, 49, 30326–30334. [Google Scholar] [CrossRef]
- Zhou, L.; Peng, T.; Sun, H.; Wang, S. Thermodynamics Analysis and Experiments on Ti-Bearing Blast Furnace Slag Leaching Enhanced by Sulfuric Acid Roasting. RSC Adv. 2022, 12, 34990–35001. [Google Scholar] [CrossRef]
- Yan, G.; Hu, J.; Chen, M.; Ma, Y.; Huang, H.; Zhang, Z.; Wei, J.; Shi, C.; Yu, Q. Performance Evaluation of Reinforced Slag-Fly Ash-Ceramic Waste Powders Ternary Geopolymer Concrete under Chloride Ingress Environment. Constr. Build. Mater. 2025, 478, 141447. [Google Scholar] [CrossRef]
Group | Mix Proportions (by Weight) |
---|---|
CM | cement/sand/water/superplasticizer = 1:2.04:0.33:0.01 |
TC | cement/sand/titanium slag/water/superplasticizer = 1:2.04:10 (pieces):0.33:0.01 |
TO | cement/sand/coarse aggregate/fine aggregate/water/superplasticizer = 1:1.88:2.02:0.78:0.44:0.02 |
Material Name | Bulk Modulus (GPa) | Poisson’s Ratio | |
---|---|---|---|
Cement Paste | 2000 | 21.43 | 0.15 |
Titanoslag | 2739 | 22.22 | 0.2 |
Paste–Titanoslag Interface | 2500 | 26.04 | 0.18 |
Air | 1.204 | 0.00014 | 0.3 |
Specimen Number | Peak Stress (MPa) | Energy Absorption Rate |
---|---|---|
CM-1 | 19.48 | 0.2637 |
CM-2 | 20.04 | 0.2509 |
TC-1 | 20.33 | 0.3177 |
TC-2 | 19.86 | 0.3155 |
TO-1 | 20.96 | 0.3322 |
TO-2 | 20.80 | 0.2815 |
Specimen Number | Peak Stress (MPa) | Energy Absorption Rate |
---|---|---|
TC-1 | 20.33 | 0.3177 |
TC-2 | 19.86 | 0.3155 |
TC-3 | 24.52 | 0.3225 |
TC-4 | 26.99 | 0.3102 |
TC-5 | 31.03 | 0.3281 |
Specimen Number | Peak Stress (MPa) | Energy Absorption Rate |
---|---|---|
TO-1 | 20.96 | 0.3322 |
TO-2 | 20.80 | 0.2815 |
TO-3 | 22.08 | 0.3002 |
TO-4 | 28.95 | 0.2972 |
TO-5 | 29.11 | 0.2861 |
Specimen Number | Peak Stress Attenuation Rate | Energy Absorption Rate |
---|---|---|
TC-1 | 0.1432 | 0.2356 |
TC-2 | 0.1406 | 0.2021 |
TC-3 | 0.1543 | 0.2154 |
TC-4 | 0.1485 | 0.2213 |
TC-5 | 0.1472 | 0.2312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Li, H.; Zhao, X.; Sun, H.; Luo, Y.; Wang, M.; Gao, W. Dynamic Energy Absorption Performance of Titanium Slag Reinforced Concrete: An Experimental and Numerical Simulation-Based Study. Processes 2025, 13, 1877. https://doi.org/10.3390/pr13061877
Wang S, Li H, Zhao X, Sun H, Luo Y, Wang M, Gao W. Dynamic Energy Absorption Performance of Titanium Slag Reinforced Concrete: An Experimental and Numerical Simulation-Based Study. Processes. 2025; 13(6):1877. https://doi.org/10.3390/pr13061877
Chicago/Turabian StyleWang, Shang, Hangjie Li, Xiuye Zhao, Haoxiong Sun, Yuqin Luo, Meng Wang, and Weiting Gao. 2025. "Dynamic Energy Absorption Performance of Titanium Slag Reinforced Concrete: An Experimental and Numerical Simulation-Based Study" Processes 13, no. 6: 1877. https://doi.org/10.3390/pr13061877
APA StyleWang, S., Li, H., Zhao, X., Sun, H., Luo, Y., Wang, M., & Gao, W. (2025). Dynamic Energy Absorption Performance of Titanium Slag Reinforced Concrete: An Experimental and Numerical Simulation-Based Study. Processes, 13(6), 1877. https://doi.org/10.3390/pr13061877