Modified Turian-Yuan Model: Simulation of Heterogeneous Resistance in Municipal Sludge-Transportation Pipeline
Abstract
:1. Introduction
- C—volume concentration (%);
- J—hydraulic gradient of heterogeneous flow (%);
- g—acceleration of gravity (m/s2);
- vm—average velocity of solid-liquid mixture (m/s);
- D—internal diameter of pipeline (m);
- CD—resistance coefficient;
- δ—the ratio of solid particle density to clear water density;
- KD—coefficient.
- Kb—constant;
- q—concentration in the tube (%);
- vi—final settling velocity of single particle (m/s);
- ρs—density of particles (kg/m3); ρ—density of the water (kg/m3); g—acceleration of gravity (m/s2).
- i0—clear water hydraulic gradient (%);
- CV—sludge volumetric concentration (%), and the range of values is 0.008–0.04; CD—particle settling resistance coefficient; when 1000 < Red < 2 × 105, it is generally 0.4–0.43, of which Red is the particle Reynolds number;
- v—conveying velocity (m/s);
- g—acceleration of gravity (m/s2);
- D—pipe diameter (m);
- ρs—solid density (kg/m3);
- ρ—water density (kg/m3).
2. Materials and Methods
2.1. Experimental Sludge
2.2. Experimental Device
2.3. Experimental Scheme
3. Results and Discussion
3.1. Analysis on the Simulation Effect of the Modified Turian-Yuan Model
3.2. Analysis of Error Sources in the Modified Turian-Yuan Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Christian, F.I.; Aldo, T. Uncertainties in key transport variables in homogeneous slurry flows in pipelines. Miner. Eng. 2012, 32, 54–59. [Google Scholar]
- Luk, J.; Mohamadabadi, H.; Kumar, A. Pipeline transport of biomass: Experimental development of wheat straw slurry pressure loss gradients. Biomass Bioenerg. 2014, 64, 329–336. [Google Scholar] [CrossRef]
- Kania, J. Economics of coal transport by slurry pipeline versus unit train: A case study. Energ. Econ. 1984, 6, 131–138. [Google Scholar] [CrossRef]
- Feng, G.; Wang, Z.; Qi, T.; Du, X.; Guo, J.; Wang, H.; Shi, X.; Wen, X. Effect of velocity on flow properties and electrical resistivity of cemented coal gangue–fly ash backfill (CGFB) slurry in the pipeline. Powder Technol. 2022, 396, 191–209. [Google Scholar] [CrossRef]
- Huang, C.; Minev, P.; Luo, J.; Nandakumar, K. A phenomenological model for erosion of material in a horizontal slurry pipeline flow. Wear 2010, 269, 190–196. [Google Scholar] [CrossRef]
- Senapati, P.; Mishra, B.; Parida, A. Analysis of friction mechanism and homogeneity of suspended load for high concentration fly ash & bottom ash mixture slurry using rheological and pipeline experimental data. Powder Technol. 2013, 250, 154–163. [Google Scholar]
- Lahiri, S.; Ghanta, K. Development of an artificial neural network correlation for prediction of hold–up of slurry transport in pipelines. Chem. Eng. Sci. 2008, 63, 1497–1509. [Google Scholar] [CrossRef]
- Xu, J.; Yao, Y.; Yan, H.; Zhou, N.; Su, H.; Li, M.; Liu, S.; Wang, H. Experimental study of pipeline pressure loss laws with large–size gangue slurry during the process of industrial–grade annular pipe transportation. Constr. Build. Mater. 2024, 436, 136993. [Google Scholar] [CrossRef]
- Chen, L.; Duan, Y.; Liu, M.; Zhao, C. Slip flow of coal water slurries in pipelines. Fuel 2010, 89, 1119–1126. [Google Scholar] [CrossRef]
- Samuel, F.; Jozef, S.; Changirwa, R. Oil sands slurry and waste recycling mechanics in a flexible pipeline system. Resour. Conserv. Recy. 2003, 39, 33–50. [Google Scholar]
- Li, M.; He, Y.; Jiang, R.; Zhang, J.; Zhang, H.; Liu, W.; Liu, Y. Analysis of minimum specific energy consumption and optimal transport concentration of slurry pipeline transport systems. Particuology 2022, 66, 38–47. [Google Scholar] [CrossRef]
- Matoušek, V. Research developments in pipeline transport of settling slurries. Powder Technol. 2005, 156, 43–51. [Google Scholar] [CrossRef]
- Durand, R. The Hydraulic Transportation of Coal and Other Materials in Pipes; Colloge of National Coal Board: Buckinghamshire, UK, 1952; pp. 123–130. [Google Scholar]
- Newitt, D.M.; Richardson, J.F. Hydraulic Conveying of Solids. Nature 1955, 175, 800–801. [Google Scholar] [CrossRef]
- Cirpka, O.A.; Schwede, R.L.; Luo, J.; Dentz, M. Concentration statistics for mixing-controlled reactive transport in random heterogeneous media. J. Contam. Hydrol. 2008, 98, 61–74. [Google Scholar] [CrossRef]
- Ghanta, K.C.; Purohit, N.K. Pressure drop prediction in hydraulic transport of bi-dispersed particles of coal and copper ore in pipeline. Can. J. Chem. Eng. 1999, 77, 127–131. [Google Scholar] [CrossRef]
- Shook, C.A.; Daniel, S.M. A variable–density model of the pipeline flow of suspensions. Can. J. Chem. Eng. 1969, 47, 196–200. [Google Scholar] [CrossRef]
- Sundqvist, A.; Sellgren, A.; Addie, G. Pipeline friction losses of coarse sand slurries: Comparison with a design model. Powder Technol. 1996, 89, 9–18. [Google Scholar] [CrossRef]
- Wilson, K.C.; Clift, R.; Addie, G.R.; Maffett, J. Effect of broad particle grading on slurry stratification ratio and scale-up. Powder Technol. 1990, 61, 165–172. [Google Scholar] [CrossRef]
- Christian, F.I. A cost perspective for long distance ore pipeline water and energy utilization. Part I: Optimal base values. Int. J. Miner. Process. 2013, 122, 1–12. [Google Scholar]
- Christian, F.I.; Santiago, M.; Aldo, T. A cost perspective for long distance ore pipeline water and energy utilization. Part II: Effect of input parameter variability. Int. J. Miner. Process. 2013, 122, 54–58. [Google Scholar]
- Lahiri, S.K.; Ghanta, K.C. Prediction of Pressure Drop of Slurry Flow in Pipeline by Hybrid Support Vector Regression and Genetic Algorithm Model. Chin. J. Chem. Eng. 2008, 16, 841–848. [Google Scholar] [CrossRef]
- Matoušek, V. Pressure drops and flow patterns in sand-mixture pipes. Exp. Therm. Fluid Sci. 2002, 26, 693–702. [Google Scholar] [CrossRef]
- Matoušek, V. Predictive model for frictional pressure drop in settling-slurry pipe with stationary deposit. Powder Technol. 2009, 192, 367–374. [Google Scholar] [CrossRef]
- Matoušek, V.; Krupička, J. One-dimensional modeling of concentration distribution in pipe flow of combined-load slurry. Powder Technol. 2014, 260, 42–51. [Google Scholar] [CrossRef]
- Kaushal, D.R.; Kimihiko, S.; Takeshi, T.; Funatsu, K.; Tomita, Y. Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry. Int. J. Multiphas. Flow 2005, 31, 809–823. [Google Scholar] [CrossRef]
- Kaushal, D.R.; Thinglas, T.; Tomita, Y.; Kuchii, S.; Tsukamoto, H. CFD modeling for pipeline flow of fine particles at high concentration. Int. J. Multiphas. Flow 2012, 43, 85–100. [Google Scholar] [CrossRef]
- Kaushal, D.R.; Tomita, Y. Experimental investigation for near-wall lift of coarser particles in slurry pipeline using γ-ray densitometer. Powder Technol. 2007, 172, 177–187. [Google Scholar] [CrossRef]
- Kaushal, D.R.; Tomita, Y.; Dighade, R.R. Concentration at the pipe bottom at deposition velocity for transportation of commercial slurries through pipeline. Powder Technol. 2002, 125, 89–101. [Google Scholar] [CrossRef]
- Kaushal, D.R.; Kumar, A.; Tomita, Y.; Kuchii, S.; Tsukamoto, H. Flow of mono-dispersed particles through horizontal bend. Int. J. Multiphas. Flow 2013, 52, 71–91. [Google Scholar] [CrossRef]
- Kaushal, D.R.; Tomita, Y. Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries. Int. J. Multiphas. Flow 2002, 28, 1697–1717. [Google Scholar] [CrossRef]
- Fangary, Y.S.; Abdel ghani, A.S.; El haggard, S.M.; Williams, R.A. The effect of fine particles on slurry transport processes. Miner. Eng. 1997, 10, 427–439. [Google Scholar] [CrossRef]
- Schaan, J.; Sumner, R.J.; Gillies, R.G.; Shook, C.A. The effect of particle shape on pipeline friction for Newtonian slurries of fine particles. Can. J. Chem. Eng. 2010, 78, 717–725. [Google Scholar] [CrossRef]
- Langhaar, H.L.; Boresi, A.P.; Miller, R.E. Periodic excitation of a finite linear viscoelastic solid. Nucl. Eng. Des. 1974, 30, 349–368. [Google Scholar] [CrossRef]
- Langhaar, H.L.; Boresi, A.P. Periodic response of a viscoelastic cooling tower. Nucl. Eng. Des. 1972, 22, 95–123. [Google Scholar]
- Turian, R.M.; Yuan, T. Flow of Slurries in Pipelines. AIChE J. 1977, 23, 232–243. [Google Scholar] [CrossRef]
- Roco, M.C.; Shook, C.A. Computational method for coal slurry pipelines with heterogeneous size distribution. Powder Technol. 1984, 39, 159–176. [Google Scholar] [CrossRef]
- Lu, H.; Chen, L.; Wang, J.; Zhang, X.; Li, G.; Wang, J.; Chen, W.; Yan, B. Using a Modified Turian-Yuan Model to Enhance Heterogeneous Resistance in Municipal Sludge Transportation Pipeline. ACS Omega 2021, 6, 7199–7211. [Google Scholar] [CrossRef]
- Keska, J.K. Experimental investigation of spatial concentration spectra of a solid in a slurry in horizontal pipeline flow. Flow Meas. Instrum. 1994, 5, 155–163. [Google Scholar] [CrossRef]
- Nosrati, A.; Addai–Mensah, J.; Skinner, W. Rheological behavior of muscovite clay slurries: Effect of water quality and solution speciation. Int. J. Miner. Process. 2012, 102–103, 89–98. [Google Scholar] [CrossRef]
- Sun, H.F.; Cao, C.L.; Song, Y.P. Application of laser particle size and shape analyzer in testing grain sizes of sandy deposits. Mar. Geol. Quat. Geol. 2015, 35, 185–192. [Google Scholar]
- Zheng, Z.S.; Qu, X.H. Fractal characteristics and fractal dimension of PIM powder particles. China Mech. Eng. 2003, 14, 436–439. [Google Scholar]
No. | Moisture Content (%) | Volumetric Concentration (%) | ρ (kg/m3) | μ (mPa⋅s) | ν (10−6 m2/s) |
---|---|---|---|---|---|
1 | 99.08 | 0.92 | 1001.56 | 1.257 | 1.255 |
2 | 98.2 | 1.76 | 1003.34 | 1.324 | 1.319 |
3 | 97.88 | 2.12 | 1004.57 | 1.643 | 1.636 |
4 | 97.5 | 2.45 | 1005.78 | 1.951 | 1.940 |
5 | 97.02 | 2.98 | 1006.31 | 2.378 | 2.363 |
Particle Size (μm) | Cumulative Content Before Conveying (%) | Cumulative Content After Conveying (%) |
---|---|---|
45.00 | 23.26 | 24.14 |
75.00 | 42.15 | 43.26 |
100.0 | 56.89 | 58.91 |
200.0 | 87.17 | 89.22 |
300.0 | 93.55 | 94.31 |
400.0 | 95.60 | 96.73 |
500.0 | 97.07 | 97.95 |
600.0 | 98.29 | 99.36 |
700.0 | 99.72 | 99.89 |
800.0 | 100.00 | 100.00 |
Indicator | Value Before Conveying | Value After Conveying |
---|---|---|
EQPC | 56.885 | 45.587 |
FERET_MAX | 67.047 | 51.526 |
FERET_MIN | 53.973 | 46.745 |
FERET_MEAN | 61.208 | 48.023 |
Sphericity | 0.886 | 0.902 |
Aspect ratio | 0.805 | 0.857 |
Convexity | 0.932 | 0.929 |
Image number | 139 | 187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, X.; Yan, B.; Lu, H. Modified Turian-Yuan Model: Simulation of Heterogeneous Resistance in Municipal Sludge-Transportation Pipeline. Processes 2025, 13, 1760. https://doi.org/10.3390/pr13061760
Wang J, Li X, Yan B, Lu H. Modified Turian-Yuan Model: Simulation of Heterogeneous Resistance in Municipal Sludge-Transportation Pipeline. Processes. 2025; 13(6):1760. https://doi.org/10.3390/pr13061760
Chicago/Turabian StyleWang, Jian, Xuemei Li, Bojiao Yan, and Hai Lu. 2025. "Modified Turian-Yuan Model: Simulation of Heterogeneous Resistance in Municipal Sludge-Transportation Pipeline" Processes 13, no. 6: 1760. https://doi.org/10.3390/pr13061760
APA StyleWang, J., Li, X., Yan, B., & Lu, H. (2025). Modified Turian-Yuan Model: Simulation of Heterogeneous Resistance in Municipal Sludge-Transportation Pipeline. Processes, 13(6), 1760. https://doi.org/10.3390/pr13061760