Adsorption and Photo(electro)catalysis for Micropollutant Degradation at the Outlet of Wastewater Treatment Plants: Bibliometric Analysis and Challenges to Implementation
Abstract
1. Introduction
2. Emerging Micropollutants: Pollutant Levels, Source, Fate, and Risks
2.1. Current Status of Micropollutants: Global Concentration Levels
2.1.1. The Global Distribution of Micropollutants: Example of 17β-Estradiol (E2)
2.1.2. Geographical Disparities and Their Implications
Europe: Pollutant Diversity
Asia: China and Other Nations
Africa: A Potential Hotspot Location
Implications of Geographical Disparities
2.2. Sources, Effects, and Fate
Class | Example | Source | Pollutant Levels (Concentration) | Fate a | Effects b | Reference |
---|---|---|---|---|---|---|
Pharmaceutical contaminants | Antibiotic resistance genes (ARGs): tetracycline; sulfonamide; bacitracin | WWTPs and animal feces | Jiulong River, China: Bacitracin (22.8% of the total ARGs), multidrug (20.7%), sulfonamide (15.2%) and tetracycline (10.9%) were the dominant ARG types. | Class 1 integrons are genetic elements that carry a variable set of antibiotic resistance genes. Horizontal gene transfer via Class 1 integrons (intI1) | ARGs facilitate the spread of antibiotic resistance, increasing risks to human health and disrupting microbial ecosystems | [21] |
Sulfamethoxazole, tetracycline, and bisphenol A | Industrial wastewater (chemical, pharmaceutical) plants | The pollutant levels were not disclosed. | Pharmaceutical contaminants undergo co-metabolic degradation, driven by carbon-induced enzyme/EPS production | Treatment reduces their persistence and bioaccumulation in the environment | [31] | |
Atenolol, propranolol, venlafaxine, citalopram, metoprolol, iohexol, and diclofenac | Stormwater and combined sewer overflow | Bjergmarken WWTPs (Roskilde, Denmark): Metropolol 1.9 ± 0.3 μg L−1 Iohexol 3.9 ± 2.1 μg L−1 Diclofenac 0.5 ± 0.1 μg L−1 Ibuprofen 0.2 ± 0.1 μg L−1 | Five-day biochemical oxygen demand (BOD 5) and biofilter materials influence pharmaceutical degradation pathways | Analysis can be used to determine whether compounds are biodegraded, adsorbed, or converted into metabolites | [22] | |
Endocrine-disrupting chemicals (EDCs) | Steroid hormones: 17β-estradiol (E2) | Hospital and veterinary clinic effluents and treatment plants | Europe: 0.1–85 ng L−1 China: 44.5 ng L−1 Africa: 0.2–4.3 ng L−1 | The adsorption of E2 was inhibited due to interactions with dissolved organic compounds and the negatively charged surfaces of nanotubes | In aquatic organisms, E2 exposure may lead to adverse effects such as inhibited plant growth | [23] |
Bisphenols (BPA, BPAF, BPS, DHBP and BPB) | BPA was the predominant BP in both water and sediment samples | Beibu Gulf, South China Sea: BPA 5.26 to 12.04 ng L−1 (water) and 0.56 to 5.22 ng g−1 (sediment) BPAF 0.44–0.60 ng L−1 (water) and 0.08–0.66 ng g−1 (sediment) BPS: 0.07–0.63 ng L−1 (water) | BPs in the Beibu Gulf show sediment partitioning (high log Koc *), with BPA being dominant | BPs display stronger binding in marine versus freshwater systems | [32] | |
Microplastic particles (MPs) | Black fibres | Greywater/river and fishing | South of Caspian Sea, Iran: 15 units kg−1 (sediments) 710 units m−3 (water) | MPs are widespread in the Caspian Sea, especially fibres | This highlights the urgency of addressing marine MP pollution to protect ecosystems and human health | [33] |
Fragments (main ingredient) and fibres | WWTPs | WWTPs, Madrid (Spain): 12.8 ± 6.3 particles/L 183 ± 84 particles/g (sludge) | WWTPs remove most MPs. However, residuals MPs in effluent and sludge contribute to river and soil contamination | Residual MPs pose risks to aquatic and terrestrial ecosystems, potentially impacting biodiversity, soil health, and human food safety | [25] | |
Artificial sweeteners | Acesulfame | WWTPs | The pollutant levels were not disclosed. | Acesulfame K is a stable, persistent compound that resists degradation during wastewater treatment, making it a reliable tracer for identifying wastewater contamination in surface and groundwater | Acesulfame K concentrations in aquatic environments are generally low and pose minimal ecological risk | [26] |
Low-calorie sweeteners (LCS): acesulfame (ACE), sucralose (SUC), saccharin (SAC), cyclamate (CYC), aspartame (ASP), neotame (NEO), and stevioside (STV) | WWTPs | WWTPs, Metropolitan region of Campinas (São Paulo State, Brazil): CYC 1–138 μg L−1 ACE 89 μg L−1 (median) SAC 55 μg L−1(median) SUC 11–42 μg L−1 NEO; ASP; STV: not detected. | CYC and SAC are readily biodegraded, whereas ACE and SUC persist. Due to its stability, SUC serves as an effective tracer for wastewater contamination | Current low-calorie sweetener (LCS) concentrations in Brazilian surface waters pose minimal ecological risk, but continued monitoring is necessary to assess their potential cumulative impacts over time | [28] | |
Pesticides | Mecoprop (herbicides and fungicides) | Agriculture and surface runoff | The pollutant levels were not disclosed. | Due to its widespread use and relatively high concentrations, mecoprop is proposed as an indicator of urban runoff, though regional variations in pesticide use may affect its reliability | Mecoprop’s utility as an indicator is mainly confined to urban areas, limiting its broader applicability in diverse land-use settings | [26] |
Diazinon (organophosphates) | Agriculture and surface runoff | WWTPs of Torroella, Girona, Northeastern Spain: Diazinon 479–607 ng L−1 (influent) 61–93 ng L−1 (effluent) | Diazinon has been frequently detected at the highest concentrations among pesticides in urban wastewater, indicating significant use and persistence | Diazinon enters urban waterways via effluent from sewage treatment plants, contributing to environmental contamination and potential ecological risks | [34] | |
Atrazine, nicotine, dinoterb, bentazone, and deethylatrazine (DEA) | Aquifers (groundwater/surface water) | The pollutant levels were not disclosed. | Micropollutants such as thiamethoxam and carbendazim persist in groundwater due to their high leaching potential (GUS index **) and resistance to degradation, highlighting the need for long-term monitoring | Compounds with the highest environmental and human health risks are often those detected least frequently, underscoring the importance of monitoring low-occurrence but high-risk contaminants | [27] | |
Perfluorocarbures (PFCs) | Perfluoroalkyl carboxylates (PFCA), especially perfluorooctanoate (PFOA), perfluorohexanoate (PFHpA), perfluorooctane sulfonate (PFOS), and PFC conversion products | Sedimentation was the major sink for PFCs | Marina Reservoir, Singapore: PFCs 4700 ng kg−1 (Sediment). PFOS was dominant PFCs | Urban stormwater runoff introduces PFCs into reservoirs, with suspended solids (SSs) facilitating their transport and leading to significant sediment accumulation. PFOS and 6:2 FtS are predominant due to their strong affinity for sediments | Sediment-bound PFCs threaten benthic ecosystems, while stratification and SS dynamics influence their distribution and bioavailability | [29] |
Perfluoroalkyl substances (PFASs) | Rivers; drinking water sources (reservoirs and groundwater) Location: Qingdao (China) | Qingdao, China: PFASs:28.3–292.2 ng L−1; PFB: 256 ng L−1 (max); PFOA: 72.4 ng L−1 (max); PFBA: 41.6 ng L−1 (max); | PFASs are prevalent in Qingdao’s rivers, particularly in suburban and rural areas, with contamination flowing into Jiaozhou Bay. Lower but detectable levels are also found in drinking water reservoirs and tap water | While immediate human health risks are considered low, ecological impacts and concerns over chronic exposure warrant continuous monitoring | [30] |
2.3. Ecotoxicological Risk Assessment
3. Systematic Analysis of Micropollutant Removal Technologies
4. Photo(electro)catalysis
4.1. Material Limitations
4.2. Reactor Design and Optimization
4.3. Actual Wastewater Complexity
5. Adsorption
5.1. Material Limitations
5.2. Technological Challenges
5.3. Actual Wastewater’s Complexity
5.4. Economic and Regulatory Obstacles
6. Bibliometric Analysis of Nanomaterials
6.1. Methodology
6.2. Trends in Nano-Adsorbents
- MOFs
- Biochar
- -
- Bibliometric analysis
6.3. Trends in Photo(electro)catalysts
7. Technological Advancements
7.1. Critical Analysis of Implementation Challenges
7.1.1. Adsorption
7.1.2. Photo(electro)catalysis
7.1.3. Systemic Limitations
7.2. Research Gaps and Future Directions
7.2.1. Innovative Materials
7.2.2. Process Optimization
7.3. Concrete Proposals for Overcoming Limitations
7.3.1. AI-Driven Advancements
7.3.2. Environmental and Economical Benefit Analysis
7.3.3. Policy and Industry Collaboration
8. Conclusions and Future Scope
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, A.; Ali, J.; Jamil, S.U.U.; Zahra, N.; Tayaba, T.B.; Iqbal, M.J.; Waseem, H. Chapter 22—Removal of micropollutants. In Environmental Micropollutants; Hashmi, M.Z., Wang, S., Ahmed, Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 443–461. [Google Scholar]
- Fanourakis, S.K.; Peña-Bahamonde, J.; Bandara, P.C.; Rodrigues, D.F. Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse. npj Clean Water 2020, 3, 1. [Google Scholar] [CrossRef]
- Kandie, F.J.; Krauss, M.; Beckers, L.-M.; Massei, R.; Fillinger, U.; Becker, J.; Liess, M.; Torto, B.; Brack, W. Occurrence and risk assessment of organic micropollutants in freshwater systems within the Lake Victoria South Basin, Kenya. Sci. Total Environ. 2020, 714, 136748. [Google Scholar] [CrossRef] [PubMed]
- Almazrouei, B.; Islayem, D.; Alskafi, F.; Catacutan, M.K.; Amna, R.; Nasrat, S.; Sizirici, B.; Yildiz, I. Steroid hormones in wastewater: Sources, treatments, environmental risks, and regulations. Emerg. Contam. 2023, 9, 100210. [Google Scholar] [CrossRef]
- Cardenas, M.A.R.; Ali, I.; Lai, F.Y.; Dawes, L.; Thier, R.; Rajapakse, J. Removal of micropollutants through a biological wastewater treatment plant in a subtropical climate, Queensland-Australia. J. Environ. Health Sci. Eng. 2016, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Menger, F.; Ahrens, L.; Wiberg, K.; Gago-Ferrero, P. Suspect screening based on market data of polar halogenated micropollutants in river water affected by wastewater. J. Hazard. Mater. 2021, 401, 123377. [Google Scholar] [CrossRef]
- Terry, L.G.; Summers, R.S. Biodegradable organic matter and rapid-rate biofilter performance: A review. Water Res. 2018, 128, 234–245. [Google Scholar] [CrossRef]
- Zhao, L.; Deng, J.; Sun, P.; Liu, J.; Ji, Y.; Nakada, N.; Qiao, Z.; Tanaka, H.; Yang, Y. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Sci. Total Environ. 2018, 627, 1253–1263. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Delegan, N.; El Khakani, M.A. Removal of chlortetracycline from spiked municipal wastewater using a photoelectrocatalytic process operated under sunlight irradiations. Sci. Total Environ. 2014, 466, 300–305. [Google Scholar] [CrossRef]
- Voigt, M.; Wirtz, A.; Hoffmann-Jacobsen, K.; Jaeger, M. Prior art for the development of a fourth purification stage in wastewater treatment plant for the elimination of anthropogenic micropollutants—A short-review. AIMS Environ. Sci. 2020, 7, 69–98. [Google Scholar] [CrossRef]
- Du, B.; Fan, G.; Yu, W.; Yang, S.; Zhou, J.; Luo, J. Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective. Environ. Pollut. 2020, 267, 115405. [Google Scholar] [CrossRef]
- Tiedeken, E.J.; Tahar, A.; McHugh, B.; Rowan, N.J. Monitoring, sources, receptors, and control measures for three European Union watch list substances of emerging concern in receiving waters—A 20 year systematic review. Sci. Total Environ. 2017, 574, 1140–1163. [Google Scholar] [CrossRef]
- Finckh, S.; Carmona, E.; Borchardt, D.; Büttner, O.; Krauss, M.; Schulze, T.; Yang, S.; Brack, W. Mapping chemical footprints of organic micropollutants in European streams. Environ. Int. 2024, 183, 108371. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Wang, Z.; Sun, K.; Wen, Z.; Xue, H. Screening and risk assessment of priority organic micropollutants for control in reclaimed water in China. J. Hazard. Mater. 2025, 491, 137883. [Google Scholar] [CrossRef] [PubMed]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A review on emerging pollutants in the water environment: Existences, health effects and treatment processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Kleywegt, S.; Pileggi, V.; Yang, P.; Hao, C.; Zhao, X.; Rocks, C.; Thach, S.; Cheung, P.; Whitehead, B. Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada—Occurrence and treatment efficiency. Sci. Total Environ. 2011, 409, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; Van Der Ploeg, M.; Van De Zee, S.E.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- K’Oreje, K.O.; Vergeynst, L.; Ombaka, D.; De Wispelaere, P.; Okoth, M.; Van Langenhove, H.; Demeestere, K. Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 2016, 149, 238–244. [Google Scholar] [CrossRef]
- Oluwalana, A.E.; Musvuugwa, T.; Sikwila, S.T.; Sefadi, J.S.; Whata, A.; Nindi, M.M.; Chaukura, N. The screening of emerging micropollutants in wastewater in Sol Plaatje Municipality, Northern Cape, South Africa. Environ. Pollut. 2022, 314, 120275. [Google Scholar] [CrossRef]
- Ngubane, N.P.; Naicker, D.; Ncube, S.; Chimuka, L.; Madikizela, L.M. Determination of naproxen, diclofenac and ibuprofen in Umgeni estuary and seawater: A case of northern Durban in KwaZulu–Natal Province of South Africa. Reg. Stud. Mar. Sci. 2019, 29, 100675. [Google Scholar] [CrossRef]
- Hu, A.; Wang, H.; Li, J.; Mulla, S.I.; Qiu, Q.; Tang, L.; Rashid, A.; Wu, Y.; Sun, Q.; Yu, C.-P. Homogeneous selection drives antibiotic resistome in two adjacent sub-watersheds, China. J. Hazard. Mater. 2020, 398, 122820. [Google Scholar] [CrossRef]
- Nord, N.B.; Bester, K. Can the removal of pharmaceuticals in biofilters be influenced by short pulses of carbon? Sci. Total Environ. 2020, 707, 135901. [Google Scholar] [CrossRef] [PubMed]
- Georgin, J.; Franco, D.S.P.; Manzar, M.S.; Meili, L.; El Messaoudi, N. A critical and comprehensive review of the current status of 17β-estradiol hormone remediation through adsorption technology. Environ. Sci. Pollut. Res. 2024, 31, 24679–24712. [Google Scholar] [CrossRef]
- Catenza, C.J.; Farooq, A.; Shubear, N.S.; Donkor, K.K. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. Chemosphere 2021, 268, 129273. [Google Scholar] [CrossRef]
- Edo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut. 2020, 259, 113837. [Google Scholar] [CrossRef] [PubMed]
- Jekel, M.; Dott, W.; Bergmann, A.; Dünnbier, U.; Gnirß, R.; Haist-Gulde, B.; Hamscher, G.; Letzel, M.; Licha, T.; Lyko, S. Selection of organic process and source indicator substances for the anthropogenically influenced water cycle. Chemosphere 2015, 125, 155–167. [Google Scholar] [CrossRef]
- Becker, R.W.; Araújo, D.S.; Jachstet, L.A.; Ruiz-Padillo, A.; do Amaral, B.; de Souza, J.E.; Müller Athayde, C.d.V.; Athayde, G.B.; Sirtori, C. Classifying micropollutants by environmental risk in groundwater using screening analysis associated to a hybrid multicriteria method combining (Q)SAR tools, fuzzy AHP and ELECTRE. Sci. Total Environ. 2023, 892, 164588. [Google Scholar] [CrossRef] [PubMed]
- Alves, P.d.C.C.; Rodrigues-Silva, C.; Ribeiro, A.R.; Rath, S. Removal of low-calorie sweeteners at five Brazilian wastewater treatment plants and their occurrence in surface water. J. Environ. Manag. 2021, 289, 112561. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Gin, K.Y.-H.; Reinhard, M.; Liu, C. Occurrence, fate, and fluxes of perfluorochemicals (PFCs) in an urban catchment: Marina Reservoir, Singapore. Water Sci. Technol. 2012, 66, 2439–2446. [Google Scholar] [CrossRef]
- Lu, G.; Shao, P.; Zheng, Y.; Yang, Y.; Gai, N. Perfluoroalkyl Substances (PFASs) in Rivers and Drinking Waters from Qingdao, China. Int. J. Environ. Res. Public Health 2022, 19, 5722. [Google Scholar] [CrossRef]
- Vo, H.N.P.; Ngo, H.H.; Guo, W.; Nguyen, K.H.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Liu, Y.; Ding, A.; Bui, X.T. Micropollutants cometabolism of microalgae for wastewater remediation: Effect of carbon sources to cometabolism and degradation products. Water Res. 2020, 183, 115974. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, S.-K.; Wu, Q.; Pan, C.-G. Bisphenol analogues in water and sediment from the Beibu Gulf, South China Sea: Occurrence, partitioning and risk assessment. Sci. Total Environ. 2023, 857, 159445. [Google Scholar] [CrossRef] [PubMed]
- Nematollahi, M.J.; Moore, F.; Keshavarzi, B.; Vogt, R.D.; Saravi, H.N.; Busquets, R. Microplastic particles in sediments and waters, south of Caspian Sea: Frequency, distribution, characteristics, and chemical composition. Ecotoxicol. Environ. Saf. 2020, 206, 111137. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Ricart, M.; Köck-Schulmeyer, M.; Guasch, H.; Bonnineau, C.; Proia, L.; de Alda, M.L.; Sabater, S.; Barceló, D. Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration–reverse osmosis (MF–RO) pilot plant. J. Hazard. Mater. 2015, 282, 165–173. [Google Scholar] [CrossRef]
- Drakvik, E.; Altenburger, R.; Aoki, Y.; Backhaus, T.; Bahadori, T.; Barouki, R.; Brack, W.; Cronin, M.T.D.; Demeneix, B.; Bennekou, S.H. Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environ. Int. 2020, 134, 105267. [Google Scholar] [CrossRef] [PubMed]
- Brus, A.; Perrodin, Y. Identification, assessment and prioritization of ecotoxicological risks on the scale of a territory: Application to WWTP discharges in a geographical area located in northeast Lyon, France. Chemosphere 2017, 189, 340–348. [Google Scholar] [CrossRef]
- Loiseau, E.; Junqua, G.; Roux, P.; Bellon-Maurel, V. Environmental assessment of a territory: An overview of existing tools and methods. J. Environ. Manag. 2012, 112, 213–225. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Liu, H.; Wang, Z.; Giesy, J.P. Ecotoxicological risk assessment of metal cocktails based on maximum cumulative ratio during multi-generational exposures. Water Res. 2021, 200, 117274. [Google Scholar] [CrossRef]
- Boonstra, H.; de Baat, M.L.; van der Meer, F.; Besselink, H.; Roessink, I.; Kraak, M.H.S. Capturing temporal variation in aquatic ecotoxicological risks: Chemical-versus effect-based assessment. Sci. Total Environ. 2025, 967, 178797. [Google Scholar] [CrossRef]
- Backhaus, T.; Karlsson, M. Screening level mixture risk assessment of pharmaceuticals in STP effluents. Water Res. 2014, 49, 157–165. [Google Scholar] [CrossRef]
- Liu, J.; Lu, G.; Yang, H.; Dang, T.; Yan, Z. Ecological impact assessment of 110 micropollutants in the Yarlung Tsangpo River on the Tibetan Plateau. J. Environ. Manag. 2020, 262, 110291. [Google Scholar] [CrossRef]
- Azaroff, A.; Miossec, C.; Lanceleur, L.; Guyoneaud, R.; Monperrus, M. Priority and emerging micropollutants distribution from coastal to continental slope sediments: A case study of Capbreton Submarine Canyon (North Atlantic Ocean). Sci. Total Environ. 2020, 703, 135057. [Google Scholar] [CrossRef] [PubMed]
- Nure, J.F.; Nkambule, T.T.I. The recent advances in adsorption and membrane separation and their hybrid technologies for micropollutants removal from wastewater. J. Ind. Eng. Chem. 2023, 126, 92–114. [Google Scholar] [CrossRef]
- Younas, F.; Mustafa, A.; Farooqi, Z.U.; Wang, X.; Younas, S.; Mohy-Ud-Din, W.; Ashir Hameed, M.; Mohsin Abrar, M.; Maitlo, A.A.; Noreen, S.; et al. Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. Water 2021, 13, 215. [Google Scholar] [CrossRef]
- Deemter, D.; Oller, I.; Amat, A.M.; Malato, S. Advances in membrane separation of urban wastewater effluents for (pre)concentration of microcontaminants and nutrient recovery: A mini review. Chem. Eng. J. Adv. 2022, 11, 100298. [Google Scholar] [CrossRef]
- Kaswan, V.; Kaur, H. A comparative study of advanced oxidation processes for wastewater treatment. Water Pract. Technol. 2023, 18, 1233–1254. [Google Scholar] [CrossRef]
- Li, W.; Zhao, W.; Zhu, H.; Li, Z.-J.; Wang, W. State of the art in the photochemical degradation of (micro) plastics: From fundamental principles to catalysts and applications. J. Mater. Chem. A 2023, 11, 2503–2527. [Google Scholar] [CrossRef]
- Xie, A.; Jin, M.; Zhu, J.; Zhou, Q.; Fu, L.; Wu, W. Photocatalytic Technologies for Transformation and Degradation of Microplastics in the Environment: Current Achievements and Future Prospects. Catalysts 2023, 13, 846. [Google Scholar] [CrossRef]
- Alulema-Pullupaxi, P.; Espinoza-Montero, P.J.; Sigcha-Pallo, C.; Vargas, R.; Fernández, L.; Peralta-Hernández, J.M.; Paz, J.L. Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review. Chemosphere 2021, 281, 130821. [Google Scholar] [CrossRef]
- Peleyeju, M.G.; Arotiba, O.A. Recent trend in visible-light photoelectrocatalytic systems for degradation of organic contaminants in water/wastewater. Environ. Sci. Water Res. Technol. 2018, 4, 1389–1411. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Q.; Huang, H.; Mao, L.; Liu, M.; Zhang, X.; Wei, Y. Recent progress and advances in the environmental applications of MXene related materials. Nanoscale 2020, 12, 3574–3592. [Google Scholar] [CrossRef]
- Li, J.; Yuan, H.; Zhang, W.; Jin, B.; Feng, Q.; Huang, J.; Jiao, Z. Advances in Z-scheme semiconductor photocatalysts for the photoelectrochemical applications: A review. Carbon Energy 2022, 4, 294–331. [Google Scholar] [CrossRef]
- Iervolino, G.; Zammit, I.; Vaiano, V.; Rizzo, L. Limitations and prospects for wastewater treatment by UV and visible-light-active heterogeneous photocatalysis: A critical review. In Heterogeneous Photocatalysis: Recent Advances; Springer: Berlin/Heidelberg, Germany, 2020; pp. 225–264. [Google Scholar]
- Mousset, E.; Dionysiou, D.D. Photoelectrochemical reactors for treatment of water and wastewater: A review. Environ. Chem. Lett. 2020, 18, 1301–1318. [Google Scholar] [CrossRef]
- Mei, J.; Gao, X.; Zou, J.; Pang, F. Research on Photocatalytic Wastewater Treatment Reactors: Design, Optimization, and Evaluation Criteria. Catalysts 2023, 13, 974. [Google Scholar] [CrossRef]
- Boodhoo, K. Spinning Disc Technology for Intensified Continuous Flow Processing: An Overview of Recent Progress and Future Prospects. Chem. Eng. Process.-Process Intensif. 2025, 212, 110265. [Google Scholar] [CrossRef]
- Gaulhofer, F.; Metzger, M.; Peschl, A.; Ziegenbalg, D. Enhancing mass transport to accelerate photoreactions and enable scale-up. React. Chem. Eng. 2024, 9, 1845–1858. [Google Scholar] [CrossRef]
- Keil, F.J. Molecular modelling for reactor design. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 201–227. [Google Scholar] [CrossRef]
- Jamil, Q.; Rana, K.B.; Matoh, L. A CFD Study on Optimization of Mass Transfer and Light Distribution in a Photocatalytic Reactor with Immobilized Photocatalyst on Spheres. Water 2024, 16, 1828. [Google Scholar] [CrossRef]
- Kumari, P.; Bahadur, N.; Conlan, X.A.; Zeng, X.; Kong, L.; O’Dell, L.A.; Sadek, A.; Merenda, A.; Dumée, L.F. Stimuli-responsive heterojunctions based photo-electrocatalytic membrane reactors for reactive filtration of persistent organic pollutants. Chem. Eng. J. 2023, 452, 139374. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, H.; Shi, L.; Wu, Z.; Zhang, S.; Wang, S.; Sun, H. Photocatalysis coupling with membrane technology for sustainable and continuous purification of wastewater. Sep. Purif. Technol. 2024, 329, 125225. [Google Scholar] [CrossRef]
- McMichael, S.; Fernández-Ibáñez, P.; Byrne, J.A. A review of photoelectrocatalytic reactors for water and wastewater treatment. Water 2021, 13, 1198. [Google Scholar] [CrossRef]
- Canonica, S.; Schönenberger, U. Inhibitory Effect of Dissolved Organic Matter on the Transformation of Selected Anilines and Sulfonamide Antibiotics Induced by the Sulfate Radical. Environ. Sci. Technol. 2019, 53, 11783–11791. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, H.; Chen, Q.; Li, J.; Wang, P. Preparation and characterization of palladium nano-crystallite decorated TiO2 nano-tubes photoelectrode and its enhanced photocatalytic efficiency for degradation of diclofenac. J. Hazard. Mater. 2013, 254–255, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; Bai, J.; Dong, Y.; Li, L.; Zhou, B. The Inhibition Effect of Tert-Butyl Alcohol on the TiO2 Nano Assays Photoelectrocatalytic Degradation of Different Organics and Its Mechanism. Nano-Micro Lett. 2016, 8, 221–231. [Google Scholar] [CrossRef]
- Akple, M.S.; Low, J.; Qin, Z.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J.; Liu, S. Nitrogen-doped TiO2 microsheets with enhanced visible light photocatalytic activity for CO2 reduction. Chin. J. Catal. 2015, 36, 2127–2134. [Google Scholar] [CrossRef]
- Xing, X.; Du, Z.; Zhuang, J.; Wang, D. Removal of ciprofloxacin from water by nitrogen doped TiO2 immobilized on glass spheres: Rapid screening of degradation products. J. Photochem. Photobiol. A Chem. 2018, 359, 23–32. [Google Scholar] [CrossRef]
- Albrbar, A.J.; Djokić, V.; Bjelajac, A.; Kovač, J.; Ćirković, J.; Mitrić, M.; Janaćković, D.; Petrović, R. Visible-light active mesoporous, nanocrystalline N,S-doped and co-doped titania photocatalysts synthesized by non-hydrolytic sol-gel route. Ceram. Int. 2016, 42, 16718–16728. [Google Scholar] [CrossRef]
- Mishra, P.; Patnaik, S.; Parida, K. An overview of recent progress on noble metal modified magnetic Fe3O4 for photocatalytic pollutant degradation and H2 evolution. Catal. Sci. Technol. 2019, 9, 916–941. [Google Scholar] [CrossRef]
- Mazivila, S.J.; Santos, J.L.M. A review on multivariate curve resolution applied to spectroscopic and chromatographic data acquired during the real-time monitoring of evolving multi-component processes: From process analytical chemistry (PAC) to process analytical technology (PAT). TrAC Trends Anal. Chem. 2022, 157, 116698. [Google Scholar] [CrossRef]
- Issa Hamoud, H.; Wolski, L.; Pankin, I.; Bañares, M.A.; Daturi, M.; El-Roz, M. In situ and Operando Spectroscopies in Photocatalysis: Powerful Techniques for a Better Understanding of the Performance and the Reaction Mechanism. Top. Curr. Chem. 2022, 380, 37. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, B.; Ji, C.; Tang, L.; Huang, B.; Feng, L.; Feng, Y. Insight into electrochemically boosted trace Co(II)-PMS catalytic process: Sustainable Co(IV)/Co(III)/Co(II) cycling and side reaction blocking. J. Hazard. Mater. 2023, 448, 130905. [Google Scholar] [CrossRef]
- Tran, H.N. Adsorption Technology for Water and Wastewater Treatments. Water 2023, 15, 2857. [Google Scholar] [CrossRef]
- Devarajan, Y. Nanomaterials-Based Wastewater Treatment: Addressing Challenges and Advancing Sustainable Solutions. BioNanoScience 2025, 15, 149. [Google Scholar]
- Ukhurebor, K.E.; Hossain, I.; Pal, K.; Jokthan, G.; Osang, F.; Ebrima, F.; Katal, D. Applications and contemporary issues with adsorption for water monitoring and remediation: A facile review. Top. Catal. 2024, 67, 140–155. [Google Scholar] [CrossRef]
- Jiao, W.; Xu, W.; Cheng, J.; Zhou, C.; Li, H. Porous Organic Frame Materials for Adsorption and Removal of Pesticide Contaminants: A Review. ACS Agric. Sci. Technol. 2024, 4, 1163–1178. [Google Scholar] [CrossRef]
- Subrahmanian, S.; Sundararaman, S.; Kasivelu, G. Carbon and metal based magnetic porous materials—Role in drug removal: A Comprehensive review. Chemosphere 2024, 361, 142533. [Google Scholar] [CrossRef]
- Satyam, S.; Patra, S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024, 10, e29573. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.; Bassyouni, M.; Abdel-Kader, R.F.; Elhenawy, Y.; Said, L.A.; Abdel-Hamid, S.M.S. Artificial Intelligence for Predicting the Performance of Adsorption Processes in Wastewater Treatment: A Critical Review. In Engineering Solutions Toward Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2023; pp. 153–173. [Google Scholar]
- Alam, G.; Ihsanullah, I.; Naushad, M.; Sillanpää, M. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chem. Eng. J. 2022, 427, 130011. [Google Scholar] [CrossRef]
- Wang, J.-H.; Zhao, X.-L.; Guo, Z.-W.; Yan, P.; Gao, X.; Shen, Y.; Chen, Y.-P. A full-view management method based on artificial neural networks for energy and material-savings in wastewater treatment plants. Environ. Res. 2022, 211, 113054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tooker, N.B.; Mueller, A.V. Enabling wastewater treatment process automation: Leveraging innovations in real-time sensing, data analysis, and online controls. Environ. Sci. Water Res. Technol. 2020, 6, 2973–2992. [Google Scholar] [CrossRef]
- Shamshad, J.; Rehman, R.U. Innovative approaches to sustainable wastewater treatment: A comprehensive exploration of conventional and emerging technologies. Environ. Sci. Adv. 2025, 4, 189–222. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Ahmadi, S.; Ghosh, S.; Khan, M.S.; Othmani, A.; Khanday, W.A.; Gökkuş, Ö.; Osagie, C.; Ahmaruzzaman, M.; Mishra, S.R.; et al. Sustainable remediation technologies for removal of pesticides as organic micro-pollutants from water environments: A review. Appl. Surf. Sci. Adv. 2024, 19, 100558. [Google Scholar] [CrossRef]
- Alimohammadi, P.; Shahabi Nejad, M.; Miroliaei, M.R.; Sheibani, H. Oriented growth of copper & nickel-impregnated δ-MnO2 nanofilaments anchored onto sulfur-doped biochar template as hybrid adsorbents for removing phenolic compounds by adsorption-oxidation process. Chem. Eng. Process.-Process Intensif. 2022, 176, 108971. [Google Scholar] [CrossRef]
- Antonelli, R.; Malpass, G.R.P.; da Silva, M.G.C.; Vieira, M.G.A. Hybrid process of adsorption and electrochemically based green regeneration of bentonite clay for ofloxacin and ciprofloxacin removal. Environ. Sci. Pollut. Res. 2023, 30, 53648–53661. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.; Dong, H.; Li, Y.; Xiao, J.; Xiang, S.; Dong, Q.; Hou, X. Insights into the correlation between different adsorption/oxidation/catalytic performance and physiochemical characteristics of Fe-Mn oxide-based composites. J. Hazard. Mater. 2022, 439, 129631. [Google Scholar] [CrossRef]
- Venn, R.A. The Removal of Azo Dyes Using the Nyex® RosaloxTM Coupled Adsorption and Electrochemical Oxidation Process. Master’s Thesis, University of Manchester, Oxford, UK, 2023. [Google Scholar]
- Shukla, P. Combined Adsorption and Oxidation Technique for Waste Water Treatment: Potential Application in Permeable Reactive Barrier. Ph.D. Thesis, Curtin University of Technology, Perth, Australia, 2010. [Google Scholar]
- Bartolacci, F.; Caputo, A.; Soverchia, M. Sustainability and financial performance of small and medium sized enterprises: A bibliometric and systematic literature review. Bus. Strategy Environ. 2020, 29, 1297–1309. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, S.G.; Chang, C.C. Emerging pollutants—Part II: Treatment. Water Environ. Res. 2019, 91, 1390–1401. [Google Scholar] [CrossRef]
- Lim, T.-T.; Yap, P.-S.; Srinivasan, M.; Fane, A.G. TiO2/AC composites for synergistic adsorption-photocatalysis processes: Present challenges and further developments for water treatment and reclamation. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1173–1230. [Google Scholar] [CrossRef]
- Buthiyappan, A.; Abdul Aziz, A.R.; Wan Daud, W.M.A. Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev. Chem. Eng. 2016, 32, 1–47. [Google Scholar] [CrossRef]
- Mushtaq, F.; Asani, A.; Hoop, M.; Chen, X.Z.; Ahmed, D.; Nelson, B.J.; Pané, S. Highly efficient coaxial TiO2-PtPd Tubular nanomachines for photocatalytic water purification with multiple locomotion strategies. Adv. Funct. Mater. 2016, 26, 6995–7002. [Google Scholar] [CrossRef]
- Aba-Guevara, C.G.; Medina-Ramírez, I.E.; Hernández-Ramírez, A.; Jáuregui-Rincón, J.; Lozano-Álvarez, J.A.; Rodríguez-López, J.L. Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light. Ceram. Int. 2017, 43, 5068–5079. [Google Scholar] [CrossRef]
- Khataee, A.; Kıranşan, M.; Karaca, S.; Sheydaei, M. Photocatalytic ozonation of metronidazole by synthesized zinc oxide nanoparticles immobilized on montmorillonite. J. Taiwan Inst. Chem. Eng. 2017, 74, 196–204. [Google Scholar] [CrossRef]
- Su, H.; Yu, C.; Zhou, Y.; Gong, L.; Li, Q.; Alvarez, P.J.; Long, M. Quantitative structure–activity relationship for the oxidation of aromatic organic contaminants in water by TAML/H2O2. Water Res. 2018, 140, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Soubh, A.M.; Baghdadi, M.; Abdoli, M.A.; Aminzadeh, B. Zero-valent iron nanofibers (ZVINFs) immobilized on the surface of reduced ultra-large graphene oxide (rULGO) as a persulfate activator for treatment of landfill leachate. J. Environ. Chem. Eng. 2018, 6, 6568–6579. [Google Scholar] [CrossRef]
- Kociołek-Balawejder, E.; Stanisławska, E.; Jacukowicz-Sobala, I.; Mazur, P. Cuprite-doped macroreticular anion exchanger obtained by reduction of the Cu(OH)2 deposit. J. Environ. Chem. Eng. 2019, 7, 103198. [Google Scholar] [CrossRef]
- Zhang, B.; Ji, J.; Liu, X.; Li, C.; Yuan, M.; Yu, J.; Ma, Y. Rapid adsorption and enhanced removal of emodin and physcion by nano zirconium carbide. Sci. Total Environ. 2019, 647, 57–65. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, S.; Ma, F.; Xu, Y. Synergistic effects and kinetics of rGO-modified TiO2 nanocomposite on adsorption and photocatalytic degradation of humic acid. J. Environ. Manag. 2019, 235, 293–302. [Google Scholar] [CrossRef]
- Sun, J.; Feng, S.; Feng, S. Hydrothermally synthesis of MWCNT/N-TiO2/UiO-66-NH2 ternary composite with enhanced photocatalytic performance for ketoprofen. Inorg. Chem. Commun. 2020, 111, 107669. [Google Scholar] [CrossRef]
- Ramasamy, B.; Pratihary, N.; Sekar, K.; Das, T. Cobalt promoted bifunctional graphene composite (Co@pGSC) for heterogeneous peroxymonosulfate activation. Chem. Eng. J. 2020, 399, 125752. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, G.; Yan, J.; Zhao, L.; Zhou, X.; Wang, H.; Feng, Y.; Guo, Y.; Wu, J.; Chen, W. The decolorization of methyl orange by persulfate activated with natural vanadium-titanium magnetite. Appl. Surf. Sci. 2020, 509, 144886. [Google Scholar] [CrossRef]
- Mei, Y.; Qi, Y.; Li, J.; Deng, X.; Ma, S.; Yao, T.; Wu, J. Construction of yolk/shell Fe3O4@MgSiO3 nanoreactor for enhanced Fenton-like reaction via spatial separation of adsorption sites and activation sites. J. Taiwan Inst. Chem. Eng. 2020, 113, 363–371. [Google Scholar] [CrossRef]
- Tang, B.; Dai, Y.; Sun, Y.; Chen, H.; Wang, Z. Graphene and MOFs co-modified composites for high adsorption capacity and photocatalytic performance to remove pollutant under both UV- and visible-light irradiation. J. Solid State Chem. 2020, 284, 121215. [Google Scholar] [CrossRef]
- Kociołek-Balawejder, E.; Stanisławska, E.; Jacukowicz-Sobala, I.; Baszczuk, A.; Jasiorski, M. Deposition of spherical and bracelet-like Cu2O nanoparticles within the matrix of anion exchangers via reduction of tetrachlorocuprate anions. J. Environ. Chem. Eng. 2020, 8, 103722. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Wang, J.; Song, Y. Photocatalytic removal of ibuprofen using euxti1-xO2-yNy/CoFe2O4 decorated on diatomaceous earth under visible light irradiation. J. Environ. Chem. Eng. 2020, 8, 104448. [Google Scholar] [CrossRef]
- He, W.; Zhu, Y.; Zeng, G.; Zhang, Y.; Wang, Y.; Zhang, M.; Long, H.; Tang, W. Efficient removal of perfluorooctanoic acid by persulfate advanced oxidative degradation: Inherent roles of iron-porphyrin and persistent free radicals. Chem. Eng. J. 2020, 392, 123640. [Google Scholar] [CrossRef]
- Xiong, T.; Ye, Y.; Luo, B.; Shen, L.; Wang, D.; Fan, M.; Gong, Z. Facile fabrication of 3D TiO2-graphene aerogel composite with enhanced adsorption and solar light-driven photocatalytic activity. Ceram. Int. 2021, 47, 14290–14300. [Google Scholar] [CrossRef]
- Lou, X.; Wu, Y.-n.; Kabtamu, D.M.; Matović, L.; Zhang, Y.; Sun, X.; Schott, E.; Chu, W.; Li, F. Exploring UiO-66(Zr) frameworks as nanotraps for highly efficient removal of EDTA-complexed heavy metals from water. J. Environ. Chem. Eng. 2021, 9, 104932. [Google Scholar] [CrossRef]
- Mardiroosi, A.; Mahjoub, A.R.; Fakhri, H.; Boukherroub, R. Design and fabrication of a perylene dimiide functionalized g-C3N4@UiO-66 supramolecular photocatalyst: Insight into enhancing the photocatalytic performance. J. Mol. Struct. 2021, 1246, 131244. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, D.; Xu, W.; Fang, J.; Sun, J.; Liu, Z.; Chen, Y.; Liang, Y.; Fang, Z. Synergistic adsorption-photocatalytic degradation of different antibiotics in seawater by a porous g-C3N4/calcined-LDH and its application in synthetic mariculture wastewater. J. Hazard. Mater. 2021, 416, 126183. [Google Scholar] [CrossRef]
- Cong, Q.; Ren, M.; Zhang, T.; Cheng, F.; Qu, J. Graphene/β-cyclodextrin Membrane: Synthesis and Photoelectrocatalytic Degradation of Brominated Flame Retardants. ChemistrySelect 2021, 6, 8435–8445. [Google Scholar] [CrossRef]
- Qian, T.; Zhang, Y.; Cai, J.; Cao, W.; Liu, T.; Chen, Z.; Liu, J.; Li, F.; Zhang, L. Decoration of amine functionalized zirconium metal organic framework/silver iodide heterojunction on carbon fiber cloth as a filter-membrane-shaped photocatalyst for degrading antibiotics. J. Colloid Interface Sci. 2021, 603, 582–593. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Li, S.; Wang, L.; Huang, F.; Guan, R.; Li, J.; Jiao, Y.; Sun, J. Rapidly degradation of di-(2-ethylhexyl) phthalate by Z-scheme Bi2O3/TiO2@reduced graphene oxide driven by simulated solar radiation. Chemosphere 2021, 272, 129631. [Google Scholar] [CrossRef]
- Chen, L.; Peng, J.; Wang, F.; Liu, D.; Ma, W.; Zhang, J.; Hu, W.; Li, N.; Dramou, P.; He, H. ZnO nanorods/Fe3O4-graphene oxide/metal-organic framework nanocomposite: Recyclable and robust photocatalyst for degradation of pharmaceutical pollutants. Environ. Sci. Pollut. Res. 2021, 28, 21799–21811. [Google Scholar] [CrossRef]
- Kamandi, R.; Mahmoodi, N.M.; Kazemeini, M. Graphitic carbon nitride nanosheet/metal-organic framework heterostructure: Synthesis and pollutant degradation using visible light. Mater. Chem. Phys. 2021, 269, 124726. [Google Scholar] [CrossRef]
- Su, Y.; Li, S.; Jiang, G.; Zheng, Z.; Wang, C.; Zhao, S.; Cui, D.; Liu, Y.; Zhang, B.; Zhang, Z. Synergic removal of tetracycline using hydrophilic three-dimensional nitrogen-doped porous carbon embedded with copper oxide nanoparticles by coupling adsorption and photocatalytic oxidation processes. J. Colloid Interface Sci. 2021, 581, 350–361. [Google Scholar] [CrossRef]
- Chen, C.-X.; Yang, S.-S.; Ding, J.; Wang, G.-Y.; Zhong, L.; Zhao, S.-Y.; Zang, Y.-N.; Jiang, J.-Q.; Ding, L.; Zhao, Y. Non-covalent self-assembly synthesis of AQ2S@rGO nanocomposite for the degradation of sulfadiazine under solar irradiation: The indispensable effect of chloride. Appl. Catal. B: Environ. 2021, 298, 120495. [Google Scholar] [CrossRef]
- Bayantong, A.R.B.; Shih, Y.-J.; Dong, C.-D.; Garcia-Segura, S.; de Luna, M.D.G. Nickel ferrite nanoenabled graphene oxide (NiFe2O4@GO) as photoactive nanocomposites for water treatment. Environ. Sci. Pollut. Res. 2021, 28, 5472–5481. [Google Scholar] [CrossRef]
- Chabalala, M.B.; Al-Abri, M.Z.; Mamba, B.B.; Nxumalo, E.N. Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes. Chem. Eng. Res. Des. 2021, 169, 19–32. [Google Scholar] [CrossRef]
- Fattahi, A.; Arlos, M.J.; Bragg, L.M.; Liang, R.; Zhou, N.; Servos, M.R. Degradation of natural organic matter using Ag-P25 photocatalyst under continuous and periodic irradiation of 405 and 365 nm UV-LEDs. J. Environ. Chem. Eng. 2021, 9, 104844. [Google Scholar] [CrossRef]
- Chen, Y.; Su, R.; Wang, F.; Zhou, W.; Gao, B.; Yue, Q.; Li, Q. In-situ synthesis of CuS@carbon nanocomposites and application in enhanced photo-fenton degradation of 2, 4-DCP. Chemosphere 2021, 270, 129295. [Google Scholar] [CrossRef] [PubMed]
- Nada, A.A.; Orimolade, B.O.; El-Maghrabi, H.H.; Koiki, B.A.; Rivallin, M.; Bekheet, M.F.; Viter, R.; Damberga, D.; Lesage, G.; Iatsunskyi, I. Photoelectrocatalysis of paracetamol on Pd–ZnO/N-doped carbon nanofibers electrode. Appl. Mater. Today 2021, 24, 101129. [Google Scholar] [CrossRef]
- Aragaw, S.G.; Feysia, G.B.; Gultom, N.S.; Kuo, D.-H.; Abdullah, H.; Chen, X.; Zelekew, O.A. Synthesis of CuAl-layered double hydroxide/MgO2 nanocomposite catalyst for the degradation of organic dye under dark condition. Appl. Water Sci. 2022, 12, 140. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, H.; Zhang, D.; Zhang, L.; Zhu, C. Preparation of a ruthenium-modified composite electrode and evaluation of the degradation process and degradation mechanism of doxycycline at this electrode. J. Water Process Eng. 2022, 48, 102904. [Google Scholar] [CrossRef]
- Özkal, C.B. Synthesis of CuFe2O4-Ti and CuFe2O4-Ti-GO nanocomposite photocatalysts using green-synthesized CuFe2O4: Determination of photocatalytic activity, bacteria inactivation and antibiotic degradation potentials under visible light. J. Chem. Technol. Biotechnol. 2022, 97, 1842–1859. [Google Scholar] [CrossRef]
- Welter, N.; Leichtweis, J.; Silvestri, S.; Sánchez, P.I.Z.; Mejía, A.C.C.; Carissimi, E. Preparation of a new green composite based on chitin biochar and ZnFe2O4 for photo-Fenton degradation of Rhodamine B. J. Alloys Compd. 2022, 901, 163758. [Google Scholar] [CrossRef]
- Duan, C.; Wang, J.; Liu, Q.; Zhou, Y.; Zhou, Y. Efficient removal of Salbutamol and Atenolol by an electronegative silanized β-cyclodextrin adsorbent. Sep. Purif. Technol. 2022, 282, 120013. [Google Scholar] [CrossRef]
- Liao, X.; Li, T.-T.; Ren, H.-T.; Zhang, X.; Shen, B.; Lin, J.-H.; Lou, C.-W. Construction of BiOI/TiO2 flexible and hierarchical S-scheme heterojunction nanofibers membranes for visible-light-driven photocatalytic pollutants degradation. Sci. Total Environ. 2022, 806, 150698. [Google Scholar] [CrossRef]
- Ledezma-Espinoza, A.; Rodríguez-Quesada, L.; Araya-Leitón, M.; Avendaño-Soto, E.D.; Starbird-Perez, R. Modified cellulose/poly (3,4-ethylenedioxythiophene) composite as photocatalyst for the removal of sulindac and carbamazepine from water. Environ. Technol. Innov. 2022, 27, 102483. [Google Scholar] [CrossRef]
- Wu, J.-C.; Chuang, Y.-H.; Liou, S.Y.H.; Li, Q.; Hou, C.-H. In situ engineering of highly conductive TiO2/carbon heterostructure fibers for enhanced electrocatalytic degradation of water pollutants. J. Hazard. Mater. 2022, 429, 128328. [Google Scholar] [CrossRef]
- Wang, M.; Tan, G.; Ren, H.; Lv, L.; Xia, A. Enhancement mechanism of full-solar-spectrum catalytic activity of g-C3N4-x/Bi/Bi2O2 (CO3)1-x (Br, I) x heterojunction: The roles of plasma Bi and oxygen vacancies. Chem. Eng. J. 2022, 430, 132740. [Google Scholar] [CrossRef]
- Colpani, G.L.; Santos, V.F.; Zeferino, R.C.F.; Zanetti, M.; de Mello, J.M.M.; Silva, L.L.; Padoin, N.; Moreira, R.d.F.P.M.; Fiori, M.A.; Soares, C. Propranolol hydrochloride degradation using La@TiO2 functionalized with CMCD. J. Rare Earths 2022, 40, 579–585. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, P.; Yu, R.; Jiang, J.; Liang, R.; Liu, G. Cost-efficient collagen fibrous aerogel cross-linked by Fe (III)/silver nanoparticle complexes for simultaneously degrading antibiotics, eliminating antibiotic-resistant bacteria, and adsorbing heavy metal ions from wastewater. Sep. Purif. Technol. 2022, 303, 122209. [Google Scholar] [CrossRef]
- Cai, Z.; Hu, X.; He, H.; Li, T.; Yuan, H.; Zhang, Y.; Tan, B.; Wang, J. Hypercrosslinking porous polymer layers on TiO2-graphene photocatalyst: Enhanced adsorption of water pollutants for efficient degradation. Water Res. 2022, 227, 119341. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Pan, Y.; Yang, H. Enhanced photo-Fenton degradation of fluoroquinolones in water assisted by a 3D composite sponge complexed with a S-scheme MoS2/Bi2S3/BiVO4 ternary photocatalyst. Appl. Catal. B Environ. 2022, 315, 121580. [Google Scholar] [CrossRef]
- Singh, S.; Rawat, S.; Patidar, R.; Lo, S.-L. Development of Bi2WO6 and Bi2O3−ZnO heterostructure for enhanced photocatalytic mineralization of Bisphenol A. Water Sci. Technol. 2022, 86, 3248–3263. [Google Scholar] [CrossRef]
- Parsaei-Khomami, A.; Mousavi, M.; Habibi, M.M.; Shirzad, K.; Ghasemi, J.B.; Wang, L.; Yu, J.; Yu, H.; Li, X. Highly efficient visible light photoelectrochemical degradation of ciprofloxacin and azo dyes by novel TiO2/AgBiS2 photoelectrocatalyst. Solid State Sci. 2022, 134, 107044. [Google Scholar] [CrossRef]
- Chaubey, A.K.; Patel, M.; Pittman, C.U.; Mohan, D. Acetaminophen and trimethoprim batch and fixed-bed sorption on MgO/Al2O3-modified rice husk biochar. Colloids Surf. A Physicochem. Eng. Asp. 2023, 677, 132263. [Google Scholar] [CrossRef]
- Santos, W.D.C.; Teixeira, M.M.; Campos, I.R.; de Lima, R.B.; Mantilla, A.; Osajima, J.A.; de Menezes, A.S.; Manzani, D.; Rojas, A.; Alcântara, A.C.S. Photocatalytic degradation of ciprofloxacin using semiconductor derived from heterostructured ZIF-8-based materials. Microporous Mesoporous Mater. 2023, 359, 112657. [Google Scholar] [CrossRef]
- Tai, V.C.; Che, H.X.; Kong, X.Y.; Ho, K.C.; Ng, W.M. Decoding iron oxide nanoparticles from design and development to real world application in water remediation. J. Ind. Eng. Chem. 2023, 127, 82–100. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Lawal, I.M.; Ghfar, A.A.; Usman, A.K.; Yaro, N.S.A.; Noor, A.; Abioye, K.J.; Birniwa, A.H. Biochar-based geopolymer nanocomposite for COD and phenol removal from agro-industrial biorefinery wastewater: Kinetic modelling, microbial community, and optimization by response surface methodology. Chemosphere 2023, 339, 139620. [Google Scholar] [CrossRef]
- Xue, T.; Shao, F.; Miao, H.; Li, X. Porous polymer magnetic adsorbents for dye wastewater treatment. Environ. Sci. Pollut. Res. 2023, 30, 97147–97159. [Google Scholar] [CrossRef]
- Tuoi, N.T.; Nguyet, B.T.M.; Tuyen, T.N.; Khac Lieu, P.; Khieu, D.Q.; Van Hung, N. Dispersion of ZnO or TiO2 nanoparticles onto P. australis stem-derived biochar for highly efficient photocatalytic removal of doxycycline antibiotic under visible light irradiation. Mater. Res. Express 2024, 11, 095601. [Google Scholar] [CrossRef]
- Khodadoust, S.; Zeraatpisheh, F. Application of ZnS: Ni Loaded on Sponge-Activated Carbon as an Efficient Adsorbent for Dye Removal. Chem. Eng. Technol. 2024, 47, e202300561. [Google Scholar] [CrossRef]
- Chenarani, B.; Lotfollahi, M.N. Granulated graphene oxide-activated carbon for adsorptive removal of diclofenac sodium and ibuprofen in a continuous fixed-bed column. Mater. Chem. Phys. 2024, 322, 129506. [Google Scholar] [CrossRef]
- Sambo, G.s.N.; Adeola, A.O.; Muhammad, S.A. Oil palm waste-derived adsorbents for the sequestration of selected polycyclic aromatic hydrocarbon in contaminated aqueous medium. Appl. Water Sci. 2024, 14, 113. [Google Scholar] [CrossRef]
- López-Martínez, A.; Gamero-Melo, P.; Vargas-Gutiérrez, G.; Abdellaoui, Y. Application of the AHP-QFD methodology in the sustainability analysis of a trifunctional adsorbent for inorganic micropollutants from contaminated water. Sep. Purif. Technol. 2024, 351, 128027. [Google Scholar] [CrossRef]
- Barka, E.; Nika, M.C.; Galani, A.; Mamais, D.; Thomaidis, N.S.; Malamis, S.; Noutsopoulos, C. Evaluating an integrated nano zero-valent iron column system for emerging contaminants removal from different wastewater matrices—Identification of transformation products. Chemosphere 2024, 352, 141425. [Google Scholar] [CrossRef]
- Jiang, L.; Niu, J.; Zhang, Y.; Liu, H.; Huang, S.; Yuan, S.; Dong, G.; Bu, L.; Song, D.; Zhou, Q. High enrichment and sensitive measurement of seventeen phthalates in beverages with metal organic framework functionalized magnetic MXene nanocomposite based on magnetic solid phase extraction prior to gas chromatography-triple quadrupole mass spectrometry. Sep. Purif. Technol. 2024, 339, 126595. [Google Scholar] [CrossRef]
- Páez, C.A.; Contreras, M.S.; Léonard, A.; Blacher, S.; Olivera-Fuentes, C.G.; Pirard, J.-P.; Job, N. Effect of CO2 activation of carbon xerogels on the adsorption of methylene blue. Adsorption 2012, 18, 199–211. [Google Scholar] [CrossRef]
- Ip, A.W.M.; Barford, J.P.; McKay, G. A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char. Chem. Eng. J. 2010, 157, 434–442. [Google Scholar] [CrossRef]
- Cortés Arriagada, D.; Sanhueza, L.; Wrighton, K. Removal of 4-chlorophenol using graphene, graphene oxide, and a-doped graphene (A = N, B): A computational study. Int. J. Quantum Chem. 2013, 113, 1931–1939. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S.M.; Su, X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 2012, 368, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, L.; Zhu, Y. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 2012, 28, 8418–8425. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Liu, Y.-G.; Liu, S.-B.; Zeng, G.-M.; Jiang, L.-H.; Tan, X.-F.; Zhou, L.; Zeng, W.; Li, T.-T.; Yang, C.-P. Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 2017, 179, 20–28. [Google Scholar] [CrossRef]
- Tsubouchi, L.M.; de Almeida, E.A.; Santo, D.E.; Bona, E.; Pereira, G.L.; Jegatheesan, V.; Cardozo-Filho, L.; Peron, A.P.; Junior, O.V. Production and Characterization of Graphene Oxide for Adsorption Analysis of the Emerging Pollutant Butylparaben. Water 2024, 16, 3703. [Google Scholar] [CrossRef]
- Lowe, S.E.; Zhong, Y.L. Challenges of Industrial-Scale Graphene Oxide Production. In Graphene Oxide: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2016; pp. 410–431. [Google Scholar]
- Tofail, H.M.; Ghazi, R.; Ghaeb, F.A.; Dara, R.N.; Kebaili, I.; Boukhris, I.; Ding, H.; Rehman, Z.U. Modified g-C3N4 Photocatalysts for Clean Energy and Environmental Applications: A Review. Sustain. Energy Fuels 2025, 9, 2900–2927. [Google Scholar] [CrossRef]
- Cheng, P.; Han, K.; Chen, J. Recent Advances in Lead-Free Halide Perovskites for Photocatalysis. ACS Mater. Lett. 2023, 5, 60–78. [Google Scholar] [CrossRef]
- Matthews, T.; Mashola, T.A.; Adegoke, K.A.; Mugadza, K.; Fakude, C.T.; Adegoke, O.R.; Adekunle, A.S.; Ndungu, P.; Maxakato, N.W. Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification, and energy conversion applications. Coord. Chem. Rev. 2022, 467, 214600. [Google Scholar] [CrossRef]
- Binjhade, R.; Mondal, R.; Mondal, S. Continuous photocatalytic reactor: Critical review on the design and performance. J. Environ. Chem. Eng. 2022, 10, 107746. [Google Scholar] [CrossRef]
- Ahmad, R.; Liu, X.; Ilyas, H.N.; Hanphaiboon, P.; Wang, W.; Noman, M.; Pan, B.; Wang, Y. One-step synthesis of reduced graphene oxide/activated carbon composite for efficient removal of per- and polyfluoroalkyl substances from drinking water: Adsorption mechanisms and DFT study. Sep. Purif. Technol. 2025, 367, 132797. [Google Scholar] [CrossRef]
- Akhundi, A.; Zaker Moshfegh, A.; Habibi-Yangjeh, A.; Sillanpää, M. Simultaneous Dual-Functional Photocatalysis by g-C3N4-Based Nanostructures. ACS EST Engg. 2022, 2, 564–585. [Google Scholar] [CrossRef]
- Geitner, N.K.; Ogilvie Hendren, C.; Cornelis, G.; Kaegi, R.; Lead, J.R.; Lowry, G.V.; Lynch, I.; Nowack, B.; Petersen, E.; Bernhardt, E.; et al. Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environ. Sci. Nano 2020, 7, 13–36. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Ren, J.; Lin, X.; Han, T.; Liu, J.; Li, J. Predicting adsorption ability of adsorbents at arbitrary sites for pollutants using deep transfer learning. npj Comput. Mater. 2021, 7, 19. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, C.; Wang, S.; Wang, Q.; Reinhard, M.; Zhang, G.; Zhan, F.; Wang, H.; Skoien, D.; Kroll, T. Identifying a highly efficient molecular photocatalytic CO2 reduction system via descriptor-based high-throughput screening. Nat. Catal. 2025, 8, 126–136. [Google Scholar] [CrossRef]
- Dmitrieva, A.P.; Fomkina, A.; Tracey, C.; Ayati, A.; Romanenko, E.; Krivoshapkin, P.; Krivoshapkina, E.F. AI and ML for selecting viable electrocatalysts: Progress and perspectives. J. Mater. Chem. A 2024, 12, 31074–31102. [Google Scholar] [CrossRef]
- Ge, L.; Ke, Y.; Li, X. Machine learning integrated photocatalysis: Progress and challenges. Chem. Commun. 2023, 59, 5795–5806. [Google Scholar] [CrossRef]
- Lu, H.; Hou, L.; Zhang, Y.; Cao, X.; Xu, X.; Shang, Y. Pilot-scale and large-scale Fenton-like applications with nano-metal catalysts: From catalytic modules to scale-up applications. Water Res. 2024, 266, 122425. [Google Scholar] [CrossRef]
- Kunwar, P. Commercialization Challenges of Adsorbent Materials for Water and Wastewater Treatment. Master’s Thesis, University of Oulu, Oulu, Finland, 2022. [Google Scholar]
Method | Merits | Demerits |
---|---|---|
Ozone-based AOPs |
|
|
Fenton process |
|
|
TiO2 photocatalyst |
|
|
Electron beam |
|
|
Ultrasound |
|
|
Microwave |
|
|
Year | Nanoadsorbents | Reference |
---|---|---|
2011–2014 | Activated carbon; Titania | [91] |
Nanoparticles | [92] | |
2015–2018 | Heterogeneous | [93] |
Core–shell nanotubes | [94] | |
Co-doped Fe3+-TiO2−xNx catalyst | [95] | |
ZnO/MMT nanocomposite | [96] | |
Tetra-amido macrocyclic ligand (TAML)/hydrogen peroxide (H2O2) | [97] | |
Zero-valent iron nanofibers/reduced ultra-large graphene oxide (ZVINFs/rULGO) | [98] | |
2019 | Anion exchanger; Hybrid ion exchanger | [99] |
Nano zirconium carbide | [100] | |
reduced graphene oxide (rGO)—titanium dioxide (TiO2) nanocomposite | [101] | |
2020 | Ternary heterojunction MWCNT/N-TiO2/UiO-66-NH2 | [102] |
Cobalt-doped graphene powdered sand composite (Co@graphene) | [103] | |
Vanadium–titanium magnetite | [104] | |
Yolk/shell Fe3O4@MgSiO3 nanoreactor | [105] | |
Graphene oxide and MOFs co-modified composites | [106] | |
Spherical cuprous oxide nanoparticle-hybrid anion exchanger | [107] | |
EuxTi1-xO2-yNy/CoFe2O4 (Eu/N-doped titania coupled with cobalt ferrite) | [108] | |
Iron-porphyrin-loaded biochar (Fe (TPFPP)/BC) | [109] | |
2021 | Graphene aerogel composite | [110] |
UiO-66(Zr) | [111] | |
Perylene dimiide functionalized g-C3N4@UiO-66 supramolecular photocatalyst | [112] | |
Porous g-C3N4/calcined-LDH | [113] | |
Graphene/β-cyclodextrin membrane | [114] | |
Carbon fibre cloth-UiO-66-NH2/AgI | [115] | |
Z-scheme Bi2O3/TiO2@reduced graphene oxide | [116] | |
ZnO nanorods/Fe3O4-graphene oxide/metal–organic framework nanocomposite | [117] | |
g-C3N4/MOFs composite | [118] | |
Hydrophilic 3D N-doped carbon/CuO composites | [119] | |
AQ2S@rGO nanocomposite | [120] | |
Nickel ferrite nanoenabled graphene oxide (NiFe2O4@GO) | [121] | |
Cyclodextrin-modified polyacrylonitrile nanofiber membranes | [122] | |
Ag-P25 photocatalysts | [123] | |
CuS@carbon nanocomposites | [124] | |
Pd–ZnO/N-doped carbon nanofibers electrode | [125] | |
2022 | CuAl-layered double hydroxide/MgO2 nanocomposit | [126] |
Ruthenium-modified composite electrode | [127] | |
CuFe2O4-Ti and CuFe2O4-Ti-GO nanocomposite | [128] | |
Chitin biochar | [129] | |
An electronegative silanized β-cyclodextrin adsorbent | [130] | |
BiOI/TiO2 flexible and hierarchical S-scheme heterojunction nanofibers membranes | [131] | |
Modified cellulose/poly(3,4-ethylenedioxythiophene) composite | [132] | |
TiO2/carbon heterostructure fibres | [133] | |
g-C3N4-x/Bi/Bi2O2(CO3)₁-x(Br, I)x heterojunction | [134] | |
TiO2–La 0.05%–carboxymethyl-β-cyclodextrin (CMCD) | [135] | |
Collagen fibrous aerogel cross-linked by Fe (III)/silver nanoparticle complexes | [136] | |
Porous polymer layer on TiO2-graphene | [137] | |
Composite sponge | [138] | |
Bi2WO6 and Bi2O3-ZnO heterostructure | [139] | |
n-n heterojunction; TiO2/AgBiS2 | [140] | |
2023 | MgO/Al2O3- modified rice husk biochar | [141] |
Heterostructured zeolitic imidazolate framework (ZIF)-based materials | [142] | |
Iron oxide nanoparticles (IONPs) | [143] | |
Biochar-based geopolymer nanocomposite | [144] | |
Magnetic porous Fe3O4/HCP hybrid microparticles (HSF and HSVF) | [145] | |
2024 | TiO2/biochar; ZnO/biochar | [146] |
ZnS:Ni loaded on sponge-activated carbon | [147] | |
Granular graphene oxide-activated carbon (GGA) | [148] | |
Oil palm waste-derived adsorbents | [149] | |
Na-jarosite | [150] | |
Zero-valent iron nanoparticles (nZVI) | [151] | |
CoFe2O4@Ti3C2@MIL101(Cr) | [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Mahy, J.G.; Lambert, S.D. Adsorption and Photo(electro)catalysis for Micropollutant Degradation at the Outlet of Wastewater Treatment Plants: Bibliometric Analysis and Challenges to Implementation. Processes 2025, 13, 1759. https://doi.org/10.3390/pr13061759
Li Y, Mahy JG, Lambert SD. Adsorption and Photo(electro)catalysis for Micropollutant Degradation at the Outlet of Wastewater Treatment Plants: Bibliometric Analysis and Challenges to Implementation. Processes. 2025; 13(6):1759. https://doi.org/10.3390/pr13061759
Chicago/Turabian StyleLi, Yunzhi, Julien G. Mahy, and Stéphanie D. Lambert. 2025. "Adsorption and Photo(electro)catalysis for Micropollutant Degradation at the Outlet of Wastewater Treatment Plants: Bibliometric Analysis and Challenges to Implementation" Processes 13, no. 6: 1759. https://doi.org/10.3390/pr13061759
APA StyleLi, Y., Mahy, J. G., & Lambert, S. D. (2025). Adsorption and Photo(electro)catalysis for Micropollutant Degradation at the Outlet of Wastewater Treatment Plants: Bibliometric Analysis and Challenges to Implementation. Processes, 13(6), 1759. https://doi.org/10.3390/pr13061759