Computational Fluid Dynamics and Population Balance Model Enhances the Smart Manufacturing and Performance Optimization of an Innovative Precipitation Reactor
Abstract
1. Introduction
2. Materials and Methods
Flow Field and Turbulence Model and Simulation Setup
3. Population Balance Model
4. Results
- (i)
- Effect of the reactant concentration
- (ii)
- Effect of the nozzle’s orientation and position
5. Discussion
6. Conclusions
7. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics |
PBM | Population Balance Model |
References
- Tai, C.M.; Li, R.K. Studies on the impact fracture behaviour of flame retardant polymeric material. Mater. Des. 2001, 22, 15–19. [Google Scholar] [CrossRef]
- Béarat, H.; McKelvy, M.J.; Chizmeshya, A.V.; Sharma, R.; Carpenter, R.W. Magnesium hydroxide dehydroxylation/carbonation reaction processes: Implications for carbon dioxide mineral sequestration. J. Am. Ceram. Soc. 2002, 85, 742–748. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Guo, S. Structure and properties of polypropylene composites filled with magnesium hydroxide. J. Appl. Polym. Sci. 2006, 102, 4943–4951. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, F.; Tao, Z.; Gao, F.; Chen, J. Removal of nickel ions from wastewater by Mg(OH)2/MgO nanostructures embedded in Al2O3 membranes. J. Alloys Compd. 2006, 426, 281–285. [Google Scholar] [CrossRef]
- Gui, H.; Zhang, X.; Dong, W.; Wang, Q.; Gao, J.; Song, Z.; Lai, J.; Liu, Y.; Huang, F.; Qiao, J. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites. Polymer 2007, 48, 2537–2541. [Google Scholar] [CrossRef]
- Kakaraniya, S.; Kari, C.; Verma, R.; Mehra, A. Gas absorption in slurries of fine particles: SO2-Mg(OH)2-MgSO3 system. Ind. Eng. Chem. Res. 2007, 46, 1904–1913. [Google Scholar] [CrossRef]
- Cao, H.; Zheng, H.; Yin, J.; Lu, Y.; Wu, S.; Wu, X.; Li, B. Mg(OH)2 complex nanostructures with superhydrophobicity and flame retardant effects. J. Phys. Chem. C 2010, 114, 17362–17368. [Google Scholar] [CrossRef]
- Sierra-Fernandez, A.; Gomez-Villalba, L.S.; Milosevic, O.; Fort, R.; Rabanal, M.E. Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method. Ceram. Int. 2014, 40, 12285–12292. [Google Scholar] [CrossRef]
- Song, X.; Tong, K.; Sun, S.; Sun, Z.; Yu, J. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer. Front. Chem. Sci. Eng 2013, 7, 130–138. [Google Scholar] [CrossRef]
- Mullin, J.W. Crystallization; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Mersmann, A. Crystallization Technology Handbook; Marcel Dekker: New York, NY, USA, 2001; p. 832. [Google Scholar]
- Baldyga, J.; Podgorska, W.; Pohorecki, R. Mixing-precipitation model with application to double feed semibatch precipitation. Chem. Eng. Sci. 1995, 50, 1281–1300. [Google Scholar] [CrossRef]
- Marchisio, D.L.; Barresi, A.A.; Fox, R.O. Simulation of Turbulent Precipitation in a Semi-batch Taylor-Couette Reactor Using CFD. AIChE J. 2001, 47, 664–676. [Google Scholar] [CrossRef]
- Marchisio, D.L.; Barresi, A.A.; Garbero, M. Nucleation, growth, and agglomeration in barium sulfate turbulent precipitation. AIChE J. 2002, 48, 2039–2050. [Google Scholar] [CrossRef]
- Orlewski, P.M.; Mazzotti, M. Modeling of Mixing-Precipitation Processes: Agglomeration. Chem. Eng. Technol. 2020, 43, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Danckwerts, P. The effect of incomplete mixing on homogeneous reactions. Chem. Eng. Sci. 1958, 8, 93–102. [Google Scholar] [CrossRef]
- Becker, G.W.; Larson, M.A. Mixing Effects in Continuous Crystallization. In Crystallization from Solutions and Melts; Palermo, J.A., Larson, M.A., Eds.; Springer: Boston, MA, USA, 1969; pp. 14–23. [Google Scholar] [CrossRef]
- Battaglia, G.; Romano, S.; Raponi, A.; Volpe, F.; Bellanca, L.; Ciofalo, M.; Marchisio, D.; Cipollina, A.; Micale, G.; Tamburini, A. Mixing phenomena in circular and rectangular cross-sectional T-mixers: Experimental and numerical assessment. Chem. Eng. Res. Des. 2024, 201, 228–241. [Google Scholar] [CrossRef]
- Schikarski, T.; Trzenschiok, H.; Peukert, W.; Avila, M. Inflow boundary conditions determine T-mixer efficiency. React. Chem. Eng. 2019, 4, 559–568. [Google Scholar] [CrossRef]
- Schikarski, T.; Avila, M.; Trzenschiok, H.; Güldenpfennig, A.; Peukert, W. Quantitative modeling of precipitation processes. Chem. Eng. J. 2022, 444, 136195. [Google Scholar] [CrossRef]
- Shiea, M.; Querio, A.; Buffo, A.; Boccardo, G.; Marchisio, D. CFD-PBE modelling of continuous Ni-Mn-Co hydroxide co-precipitation for Li-ion batteries. Chem. Eng. Res. Des. 2022, 177, 461–472. [Google Scholar] [CrossRef]
- Raponi, A.; Romano, S.; Battaglia, G.; Buffo, A.; Vanni, M.; Cipollina, A.; Marchisio, D. Computational Modeling of Magnesium Hydroxide Precipitation and Kinetics Parameters Identification. Cryst. Growth Des. 2023, 23, 4748–4759. [Google Scholar] [CrossRef]
- Raponi, A.; Marchisio, D. Deep learning for kinetics parameters identification: A novel approach for multi-variate optimization. Chem. Eng. J. 2024, 489, 151149. [Google Scholar] [CrossRef]
- Raponi, A.; Achermann, R.; Romano, S.; Trespi, S.; Mazzotti, M.; Cipollina, A.; Buffo, A.; Vanni, M.; Marchisio, D. Population balance modelling of magnesium hydroxide precipitation: Full validation on different reactor configurations. Chem. Eng. J. 2023, 477, 146540. [Google Scholar] [CrossRef]
- Battaglia, G.; Ventimiglia, L.; Vicari, F.; Tamburini, A.; Cipollina, A.; Micale, G. Characterization of Mg(OH)2 powders produced from real saltworks bitterns at a pilot scale. Powder Technol. 2024, 443, 119918. [Google Scholar] [CrossRef]
- Bevacqua, M.; Vassallo, F.; Cipollina, A.; Micale, G.; Tamburini, A.; Papapetrou, M.; Vicari, F. Reactor and Process for the Precipitation of a Solid Product, (ResourSEAs Srl), IT202100012473A. 2021. Available online: https://patents.google.com/patent/WO2022238913A1/en (accessed on 2 February 2024).
- Maniscalco, F.; Buffo, A.; Marchisio, D.; Vanni, M. Numerical simulation of bubble columns: LES turbulence model and interphase forces blending approach. Chem. Eng. Res. Des. 2021, 173, 1–14. [Google Scholar] [CrossRef]
- Pope, S. Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows. New J. Phys. 2004, 6, 35. [Google Scholar] [CrossRef]
- David, R.; Marchal, P.; Klein, J.P.; Villermaux, J. Crystallization and precipitation engineering-III. A discrete formulation of the agglomeration rate of crystals in a crystallization process. Chem. Eng. Sci. 1991, 46, 205–213. [Google Scholar] [CrossRef]
- Marchisio, D.L.; Pikturna, J.T.; Fox, R.O.; Vigil, R.D.; Barresi, A.A. Quadrature Method of Moments for Population-Balance Equations. AlChE J. 2003, 49, 1266–1276. [Google Scholar] [CrossRef]
- Romano, S.; Trespi, S.; Achermann, R.; Battaglia, G.; Raponi, A.; Marchisio, D.; Mazzotti, M.; Micale, G.; Cipollina, A. The Role of Operating Conditions in the Precipitation of Magnesium Hydroxide Hexagonal Platelets Using NaOH Solutions. Cryst. Growth Des. 2023, 23, 6491–6505. [Google Scholar] [CrossRef]
Boundary | Velocity | Pressure | Turbulence Fields |
---|---|---|---|
Inlet | Flowrate | Neumann | Correlation |
Outlet | Neumann | 0 | Neumann |
Inner tube | No-slip | Neumann | Wall function |
Outer tube | No-slip | Neumann | Wall function |
Propeller (stationary) | No-slip | Neumann | Wall function |
Nozzles | Flowrate | Neumann | Correlation |
Parameter value | 301 | 57 | ||||||
Units | - | - | - | - |
0.005 | 0.01 | 0.02 | |
---|---|---|---|
0.1 | 0.976 | 0.952 | 0.909 |
0.3 | 0.992 | 0.984 | 0.968 |
0.6 | 0.996 | 0.992 | 0.984 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raponi, A.; Fida, D.; Vicari, F.; Cipollina, A.; Marchisio, D. Computational Fluid Dynamics and Population Balance Model Enhances the Smart Manufacturing and Performance Optimization of an Innovative Precipitation Reactor. Processes 2025, 13, 1721. https://doi.org/10.3390/pr13061721
Raponi A, Fida D, Vicari F, Cipollina A, Marchisio D. Computational Fluid Dynamics and Population Balance Model Enhances the Smart Manufacturing and Performance Optimization of an Innovative Precipitation Reactor. Processes. 2025; 13(6):1721. https://doi.org/10.3390/pr13061721
Chicago/Turabian StyleRaponi, Antonello, Diego Fida, Fabrizio Vicari, Andrea Cipollina, and Daniele Marchisio. 2025. "Computational Fluid Dynamics and Population Balance Model Enhances the Smart Manufacturing and Performance Optimization of an Innovative Precipitation Reactor" Processes 13, no. 6: 1721. https://doi.org/10.3390/pr13061721
APA StyleRaponi, A., Fida, D., Vicari, F., Cipollina, A., & Marchisio, D. (2025). Computational Fluid Dynamics and Population Balance Model Enhances the Smart Manufacturing and Performance Optimization of an Innovative Precipitation Reactor. Processes, 13(6), 1721. https://doi.org/10.3390/pr13061721