Development of Real-Time Fire Detection Robotic System with Hybrid-Cascade Machine Learning Detection Structure
Abstract
1. Introduction
2. Materials and Methods
2.1. Robotic System Structure Design
2.2. Robotic System Hardware Design
2.3. Prototyping and Assembly of the Structure
2.4. System Architecture
2.4.1. Data Acquisition and Curation
2.4.2. Model Zoo and Training Strategy
2.4.3. Inference Fusion and Safe Distance Estimation
2.4.4. Cross-Validation and Model Selection
- YOLOv10 generates instantaneous flame/smoke box locations.
- The same frame is opened to the mask level in Mask R-CNN and the flame area is extracted.
- Consecutive frame sequences are streamed to ConvLSTM-FireNet and temporal consistency is checked.
- The powerful DenseNet module with dense feature transfer classifies complex patterns derived from the day/night spectrum and feeds the final decision threshold of the system.
YOLOv10—Single-Stage, NMS-Free Object Detection
- Ability to run in real time at 15–25 FPS on Raspberry Pi 4B;
- Captures small flame/smoke objects with high recall rate;
- Easy integration of the codebase with TFLite/ONNX quantization support.
Mask R-CNN—Two-Stage Instance Segmentation
- It extracts the flame/smoke boundary at the pixel level; area-based metrics such as percent fire area and safe approach radius can be calculated;
- The success of the RPN + mask scheme in eliminating false positives (e.g., sun glare) even in low light;
- Flexible design is expandable to multiple tasks (e.g., human–fire interaction detection).
ConvLSTM-FireNet—Spatio-Temporal Fire Dynamics Model
- Suppressing false alarms caused by spurious light/reflection with a temporal coherence filter;
- Ability to learn flame flicker in 10–15 fps streams from RGB and night vision cameras;
- Light enough to run on Raspberry Pi with only 6–8 MB of parameters.
DenseNet—Densely Connected Deep Feature Transfer
- Effective feature propagation reducing the risk of overfitting even with limited field data;
- Flexible block design seamlessly manages multi-channel inputs for RGB + IR fusion;
- Model size can be reduced to <15 MB after advanced compression (pruning).
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mishra, K.B.; Wehrstedt, K.D.; Krebs, H. Lessons Learned from Recent Fuel Storage Fires. Fuel Process. Technol. 2013, 107, 166–172. [Google Scholar] [CrossRef]
- Haukur, I.; Heimo, T.; Anders, L. Industrial fires An Overview. In Brandforsk Project 2010; SP Report 2010, Volume 17; Sp Technical Research Institute of Sweden: Boras, Sweden, 2010. [Google Scholar]
- Ronchi, E.; Gwynne, S.; Purser, D.; Colonna, P. Representation of the impact of smoke on agent walking speeds in evacuation models. Fire Technol. 2013, 49, 411–431. [Google Scholar] [CrossRef]
- Wright, M.; Cook, G.; Webber, G. The Effects of Smoke on People’s Walking Speeds Using Overhead Lighting and Way guidance Provision. In Proceedings of the 2nd International Symposium on Human Behaviour in Fire, London, UK, 26–28 March 2001; MIT: Boston, MA, USA, 2001; pp. 275–284. [Google Scholar]
- Bertram, C.; Evans, M.H.; Javaid, M.; Stafford, T.; Prescott, T. Sensory Augmentation with Distal Touch: The Tactile Helmet Project. Biomimetic and Biohybrid Systems. In Proceedings of the Second International Conference, Living Machines, London, UK, 29 July–2 August 2013; pp. 24–35. [Google Scholar]
- Geetha, S.; Abhishek, C.S.; Akshayanat, C.S. Machine vision-based fire detection techniques: A survey. Fire Technol. 2021, 57, 591–623. [Google Scholar] [CrossRef]
- Li, Y.; Shang, J.; Yan, M.; Ding, B.; Zhong, J. Real-time early indoor fire detection and localization on embedded platforms with fully convolutional one-stage object detection. Sustainability 2023, 15, 1794. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, W.H.; Kim, S.M. Development of iot-based real-time fire detection system using raspberry pi and fisheye camera. Appl. Sci. 2023, 13, 8568. [Google Scholar] [CrossRef]
- Dampage, U.; Bandaranayake, L.; Wanasinghe, R.; Kottahachchi, K.; Jayasanka, B. Forest fire detection system using wireless sensor networks and machine learning. Sci. Rep. 2022, 12, 46. [Google Scholar] [CrossRef]
- Sulthana, S.F.; Wise, C.T.A.; Ravikumar, C.V.; Anbazhagan, R.; Idayachandran, G.; Pau, G. Review study on recent developments in fire sensing methods. IEEE Access 2023, 11, 90269–90282. [Google Scholar] [CrossRef]
- Fonollosa, J.; Solórzano, A.; Marco, S. Chemical sensor systems and associated algorithms for fire detection: A review. Sensors 2018, 18, 553. [Google Scholar] [CrossRef]
- Alqourabah, H.; Muneer, A.; Fati, S.M. A smart fire detection system using IoT technology with automatic water sprinkler. Int. J. Electr. Comput. Eng. 2021, 11, 2088–8708. [Google Scholar] [CrossRef]
- de Venancio, P.V.A.; Lisboa, A.C.; Barbosa, A.V. An automatic fire detection system based on deep convolutional neural networks for low-power, resource-constrained devices. Neural Comput. Appl. 2022, 34, 15349–15368. [Google Scholar] [CrossRef]
- Celik, T.; Demirel, H. Fire detection in video sequences using a generic color model. Fire Saf. J. 2009, 44, 147–158. [Google Scholar] [CrossRef]
- Chen, J.; He, Y.; Wang, J. Multi-feature fusion based fast video flame detection. Build. Environ. 2010, 45, 1113–1122. [Google Scholar] [CrossRef]
- Qi, X.; Ebert, J. A computer vision based method for fire detection in color videos. Int. J. Imaging 2009, 2, 22–34. [Google Scholar]
- Ko, B.; Cheong, K.H.; Nam, J.Y. Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian Networks. Fire Saf. J. 2010, 45, 262–270. [Google Scholar] [CrossRef]
- Frizzi, S.; Kaabi, R.; Bouchouicha, M.; Ginoux, J.M.; Moreau, E.; Fnaiech, F. Convolutional neural network for video fire and smoke detection. In Proceedings of the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 877–882. [Google Scholar]
- Abdusalomov, A.; Baratov, N.; Kutlimuratov, A.; Whangbo, T.K. An improvement of the fire detection and classification method using YOLOv3 for surveillance systems. Sensors 2021, 21, 6519. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W. Image fire detection algorithms based on convolutional neural networks. Case Stud. Therm. Eng. 2020, 19, 100625. [Google Scholar] [CrossRef]
- Jayasingh, S.K.; Swain, S.; Patra, K.J.; Gountia, D. An experimental approach to detect forest fire using machine learning mathematical models and IoT. SN Comput. Sci. 2024, 5, 148. [Google Scholar] [CrossRef]
- Buriboev, A.S.; Rakhmanov, K.; Soqiyev, T.; Choi, A.J. Improving Fire Detection Accuracy through Enhanced Convolutional Neural Networks and Contour Techniques. Sensors 2024, 24, 5184. [Google Scholar] [CrossRef]
- Shaw, A. Autonomous Multi-Robot Exploration Strategies for 3D Environments with Fire Detection Capabilitie. arXiv 2024, arXiv:2411.15953. [Google Scholar]
- Sucuoglu, H.S.; Bogrekci, I.; Demircioglu, P. Development of mobile robot with sensor fusion fire detection unit. IFAC-PapersOnLine 2018, 51, 430–435. [Google Scholar] [CrossRef]
- Banerjee, S.; Das, R.; Rathinam, R.; Dhanalakshmi, R. Real-Time Fire Detection in Unmanned Ground Vehicles Integrating YoloV5 and AWS IoT. In Proceedings of the 2023 International Conference on System, Computation, Automation and Networking, Puducherry, India, 17–18 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Kong, L.; Li, J.; Guo, S.; Zhou, X.; Wu, D. Computer vision based early fire-detection and firefighting mobile robots oriented for onsite construction. J. Civ. Eng. Manag. 2024, 30, 720–737. [Google Scholar] [CrossRef]
- Ibitoye, O.T.; Ojo, A.O.; Bisirodipe, I.O.; Ogunlade, M.A.; Ogbodo, N.I.; Adetunji, O.J. A Deep Learning-Based Autonomous Fire Detection and Suppression Robot. In Proceedings of the IEEE 5th International Conference on Electro-Computing Technologies for Humanity (NIGERCON), Ado-Ekiti, Nigeria, 26–28 November 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–4. [Google Scholar]
- Nguyen, A.P.; Nguyen, N.X. Control Autonomous Mobile Robot for Firefighting Task. In Proceedings of the International Conference on Control, Robotics and Informatics (ICCRI), Danang, Vietnam, 26–28 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 37–41. [Google Scholar]
- Ullo, S.L.; Mohan, A.; Sebastianelli, A.; Ahamed, S.E.; Kumar, B.; Dwivedi, R.; Sinha, G.R. A new mask R-CNN-based method for improved landslide detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3799–3810. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J. Yolov10: Real-time end-to-end object detection. Proc. Adv. Neural Inf. Process. Syst. 2024, 37, 107984–108011. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- He, Y.; Sahma, A.; He, X.; Wu, R.; Zhang, R. FireNet: A Lightweight and Efficient Multi-Scenario Fire Object Detector. Remote Sens. 2024, 16, 4112. [Google Scholar] [CrossRef]
- Verlekar, T.T.; Bernardino, A. Video based fire detection using xception and conv-lstm. In Proceedings of the International symposium on visual computing, Venice, Italy, 22–29 October 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 277–285. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
Scene Type | Illumination | No. of Clips | Annotated Frames (BBox + Mask) | Fire Instances | Non-Fire Instances |
---|---|---|---|---|---|
Indoor | Daylight | 64 | 320 | 278 | 42 |
Indoor | Night | 58 | 290 | 249 | 41 |
Outdoor | Daylight | 70 | 350 | 284 | 66 |
Outdoor | Dusk | 52 | 260 | 222 | 38 |
Outdoor | Night | 66 | 330 | 276 | 54 |
Mixed (Indoor–Outdoor Transitions) | Day/Dusk/Night | 30 | 150 | 123 | 27 |
Total | - | 340 | 1700 | 1432 | 268 |
Stage | Model | Objective | Key Hyper- Parameters | Training Details |
---|---|---|---|---|
1 | YOLOv10-S [30] | Real-time coarse localization (BBox + cls) | SGD, lr = 0.01, batch = 64, warm-up = 3 epochs | 200 epochs on an RTX 4060 Ti; mAP0.5:0.95 = 54.7% |
2 | Mask R-CNN-R50-FPN [31] | Pixel-level fire mask | AdamW, lr = 1 × 10−4 8-GPU sync-BN | 140 epochs; mean IoU = 78.1% |
3 | ConvLSTM-FireNet [32,33] | Spatio-temporal verification and false alarm filter | clip = 8 frames, hidden = 256, drop = 0.3 | Trained with focal loss; F1↑ 6% vs. CNN baseline |
4 | DenseNet-121 (RGB + IR fused) [34] | Illumination-aware confidence re-scoring | lr = 5 × 10−4, cosine decay, mix-precision | 100 epochs; top 1 acc = 96.4% |
Model | Parameters (MB) | FPS | Precision (%) | Recall (%) | F1 (%) | IoU (%) |
---|---|---|---|---|---|---|
YOLOv10-S | 14.2 | 31.8 | 92.6 ± 0.8 | 89.4 ± 1.1 | 90.9 | 74.1 |
Mask R-CNN-R50 | 41.9 | 11.5 | 90.8 ± 1.2 | 91.7 ± 0.9 | 91.2 | 78.1 |
ConvLSTM-FireNet | 7.8 | 23.6 | 93.4 ± 0.7 | 94.2 ± 0.8 | 93.8 | 76.5 |
DenseNet-121 | 13.5 | 28.4 | 92.1 ± 0.9 | 92.0 ± 1.0 | 92.0 | 75.9 |
Hybrid-Cascade | 77.4 | 18.2 | 97.1 ± 0.5 | 96.3 ± 0.6 | 96.7 | 82.4 |
Configuration | Precision (%) | Recall (%) | F1 (%) | False Pos/h |
---|---|---|---|---|
YOLOv10 only | 86.9 | 95.2 | 90.9 | 3.10 |
+Mask R-CNN | 92.3 | 93.8 | 93.0 | 2.05 |
+ConvLSTM-FireNet | 95.6 | 93.2 | 94.4 | 1.62 |
+DenseNet-121 (Hybrid-Cascade) | 97.9 | 94.1 | 95.9 | 1.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sucuoglu, H.S. Development of Real-Time Fire Detection Robotic System with Hybrid-Cascade Machine Learning Detection Structure. Processes 2025, 13, 1712. https://doi.org/10.3390/pr13061712
Sucuoglu HS. Development of Real-Time Fire Detection Robotic System with Hybrid-Cascade Machine Learning Detection Structure. Processes. 2025; 13(6):1712. https://doi.org/10.3390/pr13061712
Chicago/Turabian StyleSucuoglu, Hilmi Saygin. 2025. "Development of Real-Time Fire Detection Robotic System with Hybrid-Cascade Machine Learning Detection Structure" Processes 13, no. 6: 1712. https://doi.org/10.3390/pr13061712
APA StyleSucuoglu, H. S. (2025). Development of Real-Time Fire Detection Robotic System with Hybrid-Cascade Machine Learning Detection Structure. Processes, 13(6), 1712. https://doi.org/10.3390/pr13061712