Conversion of Biomass to Energy-Rich Gas by Catalyzed Pyrolysis in a Sealed Pressure Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Mass Balance of the Process
3.2. Composition and Properties of Pyrolysis Gas
3.3. Composition and Properties of Biochar
4. Discussion
4.1. Composition of Bio-Oil
4.2. Possibilities of Reuse or Regeneration of Catalyst Used
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, K.; Zeidan, H.; Amar, R.B. Evaluation of the use of agricultural waste materials as low-cost and eco-friendly sorbents to remove dyes from water: A review. Desalin. Water Treat. 2023, 302, 231–252. [Google Scholar] [CrossRef]
- Mustafa, A.; Faisal, S.; Singh, J.; Rezki, B.; Kumar, K.; Moholkar, V.S.; Kutlu, O.; Aboulmagd, A.; Thabet, H.K.; El-Bahy, Z.M.; et al. Converting lignocellulosic biomass into valuable end products for decentralized energy solutions: A comprehensive overview. Sustain. Energy Technol. Assess. 2024, 72, 104065. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Meier, D.; Radlein, D. An Overview of Fast Pyrolysis of Biomass. Org. Geochem. 1999, 30, 1479–1493. [Google Scholar] [CrossRef]
- Karkach, B.; Tahiri, M.; Haibi, A.; Bouya, M.; Kifani-Sahban, F. Review on Fast Pyrolysis of Biomass for Biofuel Production from Date Palm. Appl. Sci. 2023, 13, 10463. [Google Scholar] [CrossRef]
- Al Arni, S. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energy 2018, 124, 197–201. [Google Scholar] [CrossRef]
- Ardolino, F.; Cardamone, G.F.; Parrillo, F.; Arena, U. Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective. Renew. Sustain. Energy Rev. 2021, 139, 110588. [Google Scholar] [CrossRef]
- Altıkat, A.; Alma, M.H.; Altıkat, A.; Bilgili, M.E.; Altıkat, S. A Comprehensive Study of Biochar Yield and Quality Concerning Pyrolysis Conditions: A Multifaceted Approach. Sustainability 2024, 16, 937. [Google Scholar] [CrossRef]
- Betancourt, P.; Rives, A.; Hubaut, R.; Scott, C.E.; Goldwasser, J. A study of the ruthenium–alumina system. Appl. Catal. A Gen. 1998, 170, 307–314. [Google Scholar] [CrossRef]
- Alshammari, H.M.; Alotaibi, M.H.; Aldosari, O.F.; Alsolami, A.S.; Alotaibi, N.A.; Alzahrani, Y.A.; Alhumaimess, M.S.; Alotaibi, R.L.; El-Hiti, G.A. A Process for Hydrogen Production from the Catalytic Decomposition of Formic Acid over Iridium—Palladium Nanoparticles. Materials 2021, 14, 3258. [Google Scholar] [CrossRef] [PubMed]
- ČSN ISO 16948; Tuhá Biopaliva-Stanovení Obsahu Celkového Uhlíku, Vodíku a Dusíku. Technor: Hradec Králové, Czech Republic, 2016.
- ČSN ISO 16994; Tuhá Biopaliva-Stanovení Obsahu Celkové Síry a Celkového Chloru. Technor: Hradec Králové, Czech Republic, 2017.
- ČSN EN ISO 18122; Tuhá Biopaliva-Stanovení Popela. Technor: Hradec Králové, Czech Republic, 2023.
- ČSN EN ISO 18134-2; Tuhá Biopaliva-Stanovení Obsahu Vody. Technor: Hradec Králové, Czech Republic, 2024.
- Zhao, M.; Zhao, L.; Zhao, X.-Y.; Cao, J.-P.; Maruyama, K.-I. Pd-Based Nano-Catalysts Promote Biomass Lignin Conversion into Value-Added Chemicals. Materials 2023, 16, 5198. [Google Scholar] [CrossRef] [PubMed]
- Onwudili, J.A.; Williams, P.T. Hydrogen and methane selectivity during alkaline supercritical water gasification of biomass with ruthenium-alumina catalyst. Appl. Catal. B Environ. 2013, 132–133, 70–79. [Google Scholar] [CrossRef]
- Jewell, L.L.; Davis, B.H. Review of absorption and adsorption in the hydrogen–palladium system. Appl. Catal. A Gen. 2006, 310, 1–15. [Google Scholar] [CrossRef]
- Saha, D.; Deng, S. Hydrogen Adsorption on Ordered Mesoporous Carbons Doped with Pd, Pt, Ni, and Ru. Langmuir 2009, 25, 12550–12560. [Google Scholar] [CrossRef] [PubMed]
- Kingman, F. Adsorption of Hydrogen on Charcoal. Nature 1931, 127, 742. [Google Scholar] [CrossRef]
- Rangel, M.C.; Mayer, F.M.; Carvalho, M.S.; Saboia, G.; Andrade, A.M. Selecting Catalysts for Pyrolysis of Lignocellulosic Biomass. Biomass 2023, 3, 31–63. [Google Scholar] [CrossRef]
- DePablo, R.S.; Harrington, D.E.; Bramstedt, W.R. Ruthenium Recovery Process. U.S. Patent No. US4132569A, 2 January 1979. [Google Scholar]
- Applicant BASF AG. Recycling of Ruthenium from an Used Ruthenium Catalyst Comprises Treating the Catalyst Containing Ruthenium Oxide in a Hydrogen Stream and Treating the Carrier Material Containing Ruthenium Metal with Hydrochloric Acid. Patent No. DE102005061954A1, 5 July 2007. [Google Scholar]
- Liu, X.; Lan, R. Method for Recycling Ruthenium from Ruthenium-Containing Waste. Patent No. CN101519732A, 10 August 2011. [Google Scholar]
- Vinayakumar, K.; Palliyarayil, A.; Prakash, P.S.; Nandakumar, S.; Kumar, N.S.; Sil, S. Studies on the deactivation and activation of palladium impregnated carbon catalyst for environmental applications. Mater. Today Proc. 2020, 31 Pt 4, 631–639. [Google Scholar] [CrossRef]
- Liu, S.; Martin-Martinez, M.; Álvarez-Montero, M.A.; Arevalo-Bastante, A.; Rodriguez, J.J.; Gómez-Sainero, L.M. Recycling of Gas Phase Residual Dichloromethane by Hydrodechlorination: Regeneration of Deactivated Pd/C Catalysts. Catalysts 2019, 9, 733. [Google Scholar] [CrossRef]
Water | Ash | VM | FC | H | C | Sorg | N | O | |
---|---|---|---|---|---|---|---|---|---|
AS | 4.87 | 2.30 | 81.53 | 11.30 | 7.78 | 56.08 | 0.17 | 6.63 | 22.17 |
WS | 7.86 | 2.60 | 71.53 | 18.02 | 5.88 | 48.50 | 0.05 | 1.30 | 33.81 |
Lignin | Cellulose | Hemicellulose | Extractives | |
---|---|---|---|---|
AS | 31.33 | 25.37 | 29.45 | 11.44 |
WS | 48.07 | 25.71 | 22.07 | 2.33 |
Waste | Catalyst | Biochar | Bio-Oil | Water | Total Gas |
---|---|---|---|---|---|
AS | without | 36 | 12 | 25 | 27 |
Ru/Al2O3 | 36 | 13 | 23 | 28 | |
Pd/C | 32 | 12 | 23 | 33 | |
WS | without | 40 | 5 | 28 | 26 |
Ru/Al2O3 | 43 | 12 | 20 | 25 | |
Pd/C | 35 | 3 | 27 | 35 |
Waste | Catalyst | CH4 | C2H4 | C2H6 | C3H6 | C3H8 | ΣC4 | ΣC5 | N2 | CO | CO2 | H2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
- | 21.35 | 0.02 | 0.05 | 0.00 | 0.01 | 0.01 | 0.01 | 0.28 | 41.97 | 0.17 | 36.13 | |
AS | Ru/Al2O3 | 62.95 | 0.05 | 0.26 | 0.01 | 0.02 | 0.02 | 0.01 | 0.09 | 16.86 | 6.44 | 13.29 |
Pd/C | 1.66 | 0.02 | 0.38 | 0.04 | 0.17 | 0.01 | 0.07 | 1.33 | 7.41 | 6.50 | 72.41 | |
- | 30.85 | 0.01 | 0.02 | 0.00 | 0.02 | 0.02 | 0.02 | 3.96 | 22.50 | 0.16 | 42.44 | |
WS | Ru/Al2O3 | 69.94 | 0.03 | 0.11 | 0.00 | 0.01 | 0.01 | 0.00 | 0.41 | 8.22 | 6.59 | 14.68 |
Pd/C | 0.09 | 0.03 | 0.08 | 0.01 | 0.04 | 0.01 | 0.03 | 0.02 | 22.67 | 2.06 | 74.96 |
Waste | Catalyst | CH4 (vol.%) | H2 (vol.%) | HHV (MJ m−3) | LHV (MJ m−3) | d (kg m−3) |
---|---|---|---|---|---|---|
AS | Ru/Al2O3 | 62.95 | 13.29 | 29.22 | 26.47 | 0.81 |
Pd/C | 1.66 | 72.41 | 11.48 | 9.93 | 0.33 | |
WS | Ru/Al2O3 | 69.94 | 14.68 | 30.88 | 27.84 | 0.76 |
Pd/C | 0.09 | 74.96 | 12.65 | 11.16 | 0.40 |
Waste | Water | Ash | VM | FC | Stotal | C | H | N | Sorg | O | HHV | LHV |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AS | 2.18 | 2.99 | 8.65 | 86.18 | 0.07 | 91.27 | 2.80 | 1.84 | 0.06 | 4.03 | 34.97 | 34.36 |
WS | 2.05 | 2.48 | 9.41 | 86.06 | 0.03 | 90.09 | 2.76 | 1.25 | 0.03 | 5.87 | 34.18 | 33.58 |
Catalysts | Without | Ru/Al2O3 | Pd/C |
---|---|---|---|
Compounds | wt.% | ||
Acetic acid | 3.47 | 0.00 | 7.35 |
Alkylphenols | 1.83 | 0.00 | 3.22 |
Methoxyphenols | 8.23 | 14.51 | 15.87 |
Methyl palmitate | 0.00 | 3.52 | 2.70 |
Methyl stearate | 25.38 | 27.08 | 26.83 |
Methyl arachidate | 0.00 | 0.52 | 0.00 |
Alkyl phthalates | 0.00 | 0.01 | 0.00 |
Hydroquinone | 1.81 | 1.93 | 1.67 |
Aliphatic hydrocarbons C9–C17 | 31.56 | 23.09 | 15.45 |
Aliphatic hydrocarbons C18–C31 | 8.02 | 8.12 | 7.55 |
Alkyl cyclohexanes | 0.00 | 0.11 | 0.00 |
Alkyl benzenes | 0.21 | 4.96 | 0.24 |
Naphthalenes | 0.00 | 0.59 | 0.00 |
Sum | 80.51 | 84.43 | 80.88 |
Biomass | Catalyst | Test No. | 1 | 2 | 3 | 4 | 5 | Average | SD |
---|---|---|---|---|---|---|---|---|---|
WS | Ru/Al2O3 | biochar | 41.35 | 44.29 | 41.71 | 42.45 | 45.24 | 43.01 | 1.51 |
bio-oil | 12.46 | 11.34 | 12.12 | 12.73 | 12.17 | 12.16 | 0.47 | ||
water | 20.05 | 20.96 | 18.06 | 20.09 | 23.03 | 20.44 | 1.61 | ||
total gas | 26.91 | 25.07 | 24.87 | 24.33 | 25.55 | 25.34 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straka, P.; Cihlář, J. Conversion of Biomass to Energy-Rich Gas by Catalyzed Pyrolysis in a Sealed Pressure Reactor. Processes 2025, 13, 1692. https://doi.org/10.3390/pr13061692
Straka P, Cihlář J. Conversion of Biomass to Energy-Rich Gas by Catalyzed Pyrolysis in a Sealed Pressure Reactor. Processes. 2025; 13(6):1692. https://doi.org/10.3390/pr13061692
Chicago/Turabian StyleStraka, Pavel, and Jaroslav Cihlář. 2025. "Conversion of Biomass to Energy-Rich Gas by Catalyzed Pyrolysis in a Sealed Pressure Reactor" Processes 13, no. 6: 1692. https://doi.org/10.3390/pr13061692
APA StyleStraka, P., & Cihlář, J. (2025). Conversion of Biomass to Energy-Rich Gas by Catalyzed Pyrolysis in a Sealed Pressure Reactor. Processes, 13(6), 1692. https://doi.org/10.3390/pr13061692