Study on Rational Roadway Layout and Air Leakage Prevention in Shallow Close-Distance Coal Seam Mining
Abstract
:1. Introduction
2. Review
3. Numerical Modeling
4. Results
4.1. Optimal Roadway Layout
4.1.1. Rational Width of Section Coal Pillars in Upper-Seam Mining
4.1.2. Optimal Positioning of Lower-Seam Roadways
4.2. Fracture Development Patterns
4.2.1. Upper-Seam Mining
4.2.2. Lower-Seam Mining
5. Discussion
5.1. Fracture Development Control Measures
5.2. Settlement Characteristics
5.3. Field Application
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, Y.; Zhang, J.; Yang, T.; Wu, J.; Gao, S.; Sun, J. Study on the Bearing Structure of Key Strata and the Linkage Evolution Mechanism of Surface Subsidence in Shallow Coal Seam Mining. Appl. Sci. 2024, 14, 9608. [Google Scholar] [CrossRef]
- Ding, L.; Liu, Y. Three-dimensional physical simulation on overlying strata’s motion rule in shallow seam. Fresenius Environ. Bull. 2017, 26, 5314–5322. [Google Scholar]
- Bo, H.; Guo, G.; Li, H.; Wang, Y.; Jiang, Q.; Hu, S.; Zhang, F. Study on surface subsidence prediction method of shallow coal seam backfill-strip mining under the hard roof. Bull. Eng. Geol. Environ. 2023, 82, 281. [Google Scholar] [CrossRef]
- Jilo, N.Z.; Assefa, S.M.; Assefa, E. Numerical analysis of underground tunnel deformation: A case study of Midroc Lega-Dembi gold mine. Sci. Rep. 2024, 14, 7964. [Google Scholar] [CrossRef]
- Li, M.; Ye, L.; Feng, J.; Fang, Y.; Wen, H.; Wu, X. Failure mechanism and control technology of soft-rock roadways subjected to high structural stress. Front. Earth Sci. 2024, 12, 1473108. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Zhang, J.; Xu, J. Failure mechanisms of rheological coal roadway. Sustainability 2020, 12, 2885. [Google Scholar] [CrossRef]
- Wu, G.; Chen, W.; Jia, S.; Tan, X.; Zheng, P.; Tian, H.; Rong, C. Deformation characteristics of a roadway in steeply inclined formations and its improved support. Int. J. Rock Mech. Min. Sci. 2020, 130, 104324. [Google Scholar] [CrossRef]
- Xu, X.; He, F.; Li, X.; He, W. Research on mechanism and control of asymmetric deformation of gob side coal roadway with fully mechanized caving mining. Eng. Fail. Anal. 2020, 120, 105097. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, M.; Feng, L.; Chen, X. Optimization model of coal mine roadway layout system based on evidence theory and its application. In Proceedings of the 16th International Conference on Industrial Engineering and Engineering Management, Beijing, China, 21–23 October 2009; pp. 185–189. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, F.; Chen, S.; Yin, D.; Zhou, J.; Jie, Z.; Zou, Y. Asymmetric Deformation Mechanism of Roadway with Continuous Mining and Continuous Backfilling. Rock Mech. Rock Eng. 2023, 57, 2125–2142. [Google Scholar] [CrossRef]
- Wei, M.; Zhu, Y.; Wang, P.; Luo, Y.; Ren, H.; Li, P. Failure characteristics and stress field distribution law of roadway in downward mining of deep close distance coal seam. Sci. Rep. 2024, 14, 28735. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Han, Y.; Fan, W.; Song, Z.; Yu, H.; Zhang, J.; Zhang, H.; Liu, J. Study on stress distribution law of surrounding rock of roadway under the goaf and mechanism of pressure relief and impact reduction. Eng. Fail. Anal. 2024, 160, 108210. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, Z.; Wang, Y.; Wang, X.; Hui, Z. Study on the law of stress distribution in the presence of remaining coal pillar in a close-distance coal seam and the reasonable location of the roadway. Sci. Rep. 2025, 15, 8737. [Google Scholar] [CrossRef]
- Zhang, J.; He, Y.; Yang, T.; Bai, W.; Wu, J.; Zhuo, Q.; Gao, S. Coevolution mechanism and branch of pillar-overburden fissures in shallow coal seam mining. Energy Sci. Eng. 2023, 11, 1630–1642. [Google Scholar] [CrossRef]
- Ling, C.; Liu, B.; Zhang, C.; Teng, T.; Zhang, K.; Sun, B.; Zhou, J. Fractal characteristics of overburden rock fractures and their impact on ground fissures in Longwall coal mining. Fractal Fract. 2023, 7, 699. [Google Scholar] [CrossRef]
- Chen, Z.; Zou, Q.; Gao, S.; Zhan, J.; Chen, C.; Ran, Q.; Sun, X. Long-term evolution of overlying rock fractures in mined-out areas and its effect on gas flow conductivity. Fuel 2023, 353, 129213. [Google Scholar] [CrossRef]
- Zhu, H.; Fang, S.; Huo, Y.; Guo, J.; Wu, Y.; Hu, L. Study of the Dynamic Development Law of Overburden Breakage on Mining Faces. Sci. Rep. 2020, 10, 6555. [Google Scholar] [CrossRef]
- Pan, W.; Jiang, P.; Li, B.; Yang, Y. The Spatial Evolution Law and Water Inrush Mechanism of Mining-Induced Overburden in Shallow and Short Coal Seam Group. Sustainability 2022, 14, 5320. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Wang, Y.; Li, K.; Sun, J.; Zhou, A.; Du, F.; Guo, Y. Progressive failure analysis and fractures space model construction of overlying strata in shallow multi-seam overlapping mining. Eng. Fail. Anal. 2025, 173, 109462. [Google Scholar] [CrossRef]
- Xu, C.; Wang, K.; Guo, L.; Zhao, C.; Wang, Y.; Yang, Y.; Wu, S. Fractal characteristics of mining-induced overburden fracture development during fully mechanized coal mining. Environ. Earth Sci. 2024, 83, 113. [Google Scholar] [CrossRef]
- Wang, G.; Wu, M.; Wang, R.; Xu, H.; Song, X. Height of the mining-induced fractured zone above a coal face. Eng. Geol. 2016, 216, 140–152. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Y.; He, X.; Guo, J.; Yan, Y. Space-sky-surface integrated monitoring system for overburden migration regularity in shallow-buried high-intensity mining. Bull. Eng. Geol. Environ. 2020, 80, 1403–1417. [Google Scholar] [CrossRef]
- Shan, R.; Li, Z.; Wang, C.; Wei, Y.; Tong, X.; Liu, S.; Shan, Z. Study on the distribution characteristics of stress deviator in the surrounding rock when mining closely spaced coal seams. Environ. Earth Sci. 2021, 80, 602. [Google Scholar] [CrossRef]
- Wu, B.; Wang, X.; Bai, J.; Wu, W.; Zhu, X.; Li, G. Study on crack evolution mechanism of roadside backfill body in GOB-Side entry retaining based on UDEC trigon model. Rock Mech. Rock Eng. 2019, 52, 3385–3399. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Du, F.; Guo, Y.; Li, K.; Deng, Y. Evolution of the Overlying-Strata-Bearing structure and the permeability distribution of the broken interlayer in shallow multiseam mining. Int. J. Geomech. 2023, 23, 04023111. [Google Scholar] [CrossRef]
Property | Parameter | Mudstone | Sandy Mudstone | Fine-Grained Sandstone | Medium-Grained Sandstone | Coarse-Grained Sandstone | Siltstone | Coal |
---|---|---|---|---|---|---|---|---|
particle | Density (Kg/m3) | 2300 | 2400 | 2600 | 2500 | 2400 | 2400 | 1650 |
1.2 | ||||||||
/ | 1.3 | |||||||
(GPa) | 7.23 | 11.25 | 15.87 | 13.42 | 9.75 | 18.88 | 3.34 | |
0.5 | 0.5 | 0.6 | 0.5 | 0.5 | 0.55 | 0.45 | ||
2.0 | 2.0 | 1.8 | 1.8 | 2.0 | 1.7 | 2.15 | ||
bond | (GPa) | 7.23 | 11.25 | 15.87 | 13.42 | 9.75 | 18.88 | 3.34 |
(MPa) | 11.05 | 14.25 | 24.63 | 16.62 | 7.51 | 18.82 | 4.21 | |
(MPa) | 11.15 | 14.25 | 24.53 | 16.83 | 7.51 | 18.92 | 4.31 | |
2.0 | 2.0 | 1.8 | 1.8 | 2.0 | 1.7 | 2.15 | ||
35 | 35 | 40 | 35 | 35 | 40 | 42 |
Advancing Distance | Observation Indicators | Before Filling | After Filling | Drop |
---|---|---|---|---|
52 m | Interlayer fissure | 0.25–0.30 | 0.15–0.18 | 40–42% |
0 m | Vertical through passage | 0.35–0.40 | ≤0.20 | 43–50% |
Horizontal interlayer channel | 0.28–0.32 | 0.18–0.22 | 33–36% | |
87 m | Periodic break zone | 0.38–0.45 | 0.20–0.25 | 43–47% |
110 m | Activation area of old goaf | 0.40–0.50 | 0.18–0.22 | 55–60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y. Study on Rational Roadway Layout and Air Leakage Prevention in Shallow Close-Distance Coal Seam Mining. Processes 2025, 13, 1641. https://doi.org/10.3390/pr13061641
Liu Y. Study on Rational Roadway Layout and Air Leakage Prevention in Shallow Close-Distance Coal Seam Mining. Processes. 2025; 13(6):1641. https://doi.org/10.3390/pr13061641
Chicago/Turabian StyleLiu, Ying. 2025. "Study on Rational Roadway Layout and Air Leakage Prevention in Shallow Close-Distance Coal Seam Mining" Processes 13, no. 6: 1641. https://doi.org/10.3390/pr13061641
APA StyleLiu, Y. (2025). Study on Rational Roadway Layout and Air Leakage Prevention in Shallow Close-Distance Coal Seam Mining. Processes, 13(6), 1641. https://doi.org/10.3390/pr13061641