Spent Coffee Ground-Based Materials Evaluated by Methylene Blue Removal
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and SCG
2.2. Cleaning Procedures
2.2.1. Water Extraction
2.2.2. Accelerated Solvent Extraction (ASE)
2.2.3. Supercritical Fluid Extraction (SFE)
2.2.4. Ultrasound-Induced Cavitation Process (US)
2.3. Chemical Treatment
2.3.1. Acetylation
2.3.2. Acid Treatment
2.3.3. Basic Treatment
2.4. SCG-Based Materials Characterization
2.4.1. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.4.2. Scanning Electron Microscopy (SEM)
2.5. Methylene Blue Adsorption Test
3. Results and Discussion
3.1. Cleaning and Chemical Treatment Selection Overview
3.2. Attenuated Total Reflectance-Fourier Transformed Infrared Spectroscopy (ATR-FTIR)
3.3. Scanning Electron Microscopy (SEM)
3.4. Adsorption Isotherms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuccarese, M.; Brutti, S.; De Bonis, A.; Teghil, R.; Di Capua, F.; Mancini, I.M.; Masi, S.; Caniani, D. Sustainable Adsorbent Material Prepared by Soft Alkaline Activation of Spent Coffee Grounds: Characterisation and Adsorption Mechanism of Methylene Blue from Aqueous Solutions. Sustainability 2023, 15, 2454. [Google Scholar] [CrossRef]
- Franca, A.S.; Oliveira, L.S. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022, 11, 2064. [Google Scholar] [CrossRef] [PubMed]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of spent coffee grounds: A review. Food Bioprod. Process. 2018, 110, 104–119. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioproc. Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Akindolie, M.S.; Choi, H.J. Surface modification of spent coffee grounds using phosphoric acid for enhancement of methylene blue adsorption from aqueous solution. Water Sci. Technol. 2022, 85, 1218–1234. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Jabbari, V.; Islam, M.T.; Kim, H.; Hernandez-Viezcas, J.A.; Lin, Y.; Díaz-Moreno, C.A.; Lopez, J.; Gardea-Torresdey, J.; Noveron, J.C. Green synthesis of a highly efficient biosorbent for organic, pharmaceutical, and heavy metal pollutants removal: Engineering surface chemistry of polymeric biomass of spent coffee waste. J. Water Process Eng. 2018, 25, 309–319. [Google Scholar] [CrossRef]
- Rahimi, V.; Pimentel, C.H.; Gómez-Díaz, D.; Freire, M.S.; Lazzari, M.; González-Álvarez, J. Development and Characterization of Biomass-Derived Carbons for the Removal of Cu2+ and Pb2+ from Aqueous Solutions. C 2024, 11, 2. [Google Scholar] [CrossRef]
- Franca, A.S.; Oliveira, L.S.; Ferreira, M.E. Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 2009, 249, 267–272. [Google Scholar] [CrossRef]
- Safarik, I.; Horska, K.; Svobodova, B.; Safarikova, M. Magnetically modified spent coffee grounds for dyes removal. Eur. Food Res. Technol. 2012, 234, 345–350. [Google Scholar] [CrossRef]
- Campos, G.A.F.; Perez, J.P.H.; Block, I.; Sagu, S.T.; Celis, P.S.; Taubert, A.; Rawel, H.M. Preparation of Activated Carbons from Spent Coffee Grounds and Coffee Parchment and Assessment of Their Adsorbent Efficiency. Processes 2021, 9, 1396. [Google Scholar] [CrossRef]
- Brazil, T.R.; Gonçalves, M.; Anjos, E.G.R.D.; de Oliveira Junior, M.S.; Rezende, M.C. Microwave-assisted production of activated carbon in an adapted domestic oven from lignocellulosic waste. Biomass Convers. Biorefin. 2024, 14, 255–268. [Google Scholar] [CrossRef]
- Sukhbaatar, B.; Yoo, B.; Lim, J.-H. Metal-free high-adsorption-capacity adsorbent derived from spent coffee grounds for methylene blue. RSC Adv. 2021, 11, 5118–5127. [Google Scholar] [CrossRef]
- Namane, A.; Mekarzia, A.; Benrachedi, K.; Belhanechebensemra, N.; Hellal, A. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl and HPO. J. Hazard Mater. 2005, 119, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, A.; Rehman, R.; Imran, M.; Samin, G.; Jahangir, M.M.; Ali, S. Phytoremediative adsorption methodologies to decontaminate water from dyes and organic pollutants. RSC Adv. 2023, 13, 26455–26474. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Khan, M.; Ahmed, M.M.; Akhtar, M.N.; Sajid, M.; Riaz, N.N.; Asif, M.; Kashif, M.; Shabbir, B.; Ahmad, K.; Saeed, M.; et al. Fabrication of CuWO4@MIL-101 (Fe) nanocomposite for efficient OER and photodegradation of methylene blue. Heliyon 2024, 10, e40546. [Google Scholar] [CrossRef]
- Shah, H.U.R.; Ahmad, K.; Naseem, H.A.; Parveen, S.; Ashfaq, M.; Rauf, A.; Aziz, T. Water stable graphene oxide metal-organic frameworks composite (ZIF-67@GO) for efficient removal of malachite green from water. Food Chem. Toxicol. 2021, 154, 112312. [Google Scholar] [CrossRef]
- Russo, F.; Marino, T.; Galiano, F.; Gzara, L.; Gordano, A.; Organji, H.; Figoli, A. Tamisolve® NxG as an Alternative Non-Toxic Solvent for the Preparation of Porous Poly (Vinylidene Fluoride) Membranes. Polymers 2021, 13, 2579. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Quirós-Fallas, M.I.; Vargas-Huertas, F.; Quesada-Mora, S.; Azofeifa-Cordero, G.; Wilhelm-Romero, K.; Vásquez-Castro, F.; Alvarado-Corella, D.; Sánchez-Kopper, A.; Navarro-Hoyos, M.; Characterization, P.H.R.S. Contents and Antioxidant Activity of Curcuma longa Rhizomes from Costa Rica. Antioxidants 2022, 11, 620. [Google Scholar] [CrossRef]
- Vargas-Huertas, L.F.; Alvarado-Corella, L.D.; Sánchez-Kopper, A.; Araya-Sibaja, A.M.; Navarro-Hoyos, M. Characterization and Isolation of Piperamides from Piper nigrum Cultivated in Costa Rica. Horticulturae 2023, 9, 1323. [Google Scholar] [CrossRef]
- Araya-Sibaja, A.M.; Vargas-Huertas, F.; Quesada, S.; Azofeifa, G.; Vega-Baudrit, J.R.; Navarro-Hoyos, M. Characterization, Antioxidant and Cytotoxic Evaluation of Demethoxycurcumin and Bisdemethoxycurcumin from Curcuma longa Cultivated in Costa Rica. Separations 2024, 11, 23. [Google Scholar] [CrossRef]
- Efthymiopoulos, I.; Hellier, P.; Ladommatos, N.; Russo-Profili, A.; Eveleigh, A.; Aliev, A.; Kay, A.; Mills-Lamptey, B. Influence of solvent selection and extraction temperature on yield and composition of lipids extracted from spent coffee grounds. Ind. Crops Prod. 2018, 119, 49–56. [Google Scholar] [CrossRef]
- Couto, R.M.; Fernandes, J.; da Silva, M.D.R.G.; Simões, P.C. Supercritical fluid extraction of lipids from spent coffee grounds. J. Supercrit Fluids 2009, 51, 159–166. [Google Scholar] [CrossRef]
- Sompech, S.; Srion, A.; Nuntiya, A. The Effect of Ultrasonic Treatment on the Particle Size and Specific Surface Area of LaCoO3. Procedia Eng. 2012, 32, 1012–1018. [Google Scholar] [CrossRef]
- Taleb, F.; Ammar, M.; Mosbah, M.B.; Salem, R.B.; Moussaoui, Y. Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Sci. Rep. 2020, 10, 11048. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.L.; Li, W.S.; Tan, C.L.; Li, W.; Wu, Y.Z. Improvement in electrochemical capacitance of carbon materials by nitric acid treatment. J. Power Sources 2008, 184, 668–674. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Pašti, I.A.; Lazarević-Pašti, T. Resolving Coffee Waste and Water Pollution—A Study on KOH-Activated Coffee Grounds for Organophosphorus Xenobiotics Remediation. J. Xenobiot. 2024, 14, 1238–1255. [Google Scholar] [CrossRef]
- JIS K1474:2014; Test Methods for Activated Carbon. Methylene Blue Adsorption Performance. JIS: Tokyo, Japan, 2014.
- Worch, E. Adsorption Technology in Water Treatment. Fundamentals, Processes, and Modeling; Walter de Gruyter GmbH & Co.: Göttingen, Germany, 2012. [Google Scholar]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification; physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef] [PubMed]
- Pellenz, L.; de Oliveira, C.R.S.; da Silva Júnior, A.H.; da Silva, L.J.S.; da Silva, L.; de Souza, A.A.U.; Ulson, S.M.D.A.G.; Borba, F.H.; da Silva, A. A comprehensive guide for characterization of adsorbent materials. Sep. Purif. Technol. 2023, 305, 122435. [Google Scholar] [CrossRef]
- Pourhakkak, P.; Taghizadeh, M.; Taghizadeh, A.; Ghaedi, M. Adsorbent. In Volume 33: Adsorption: Fundamental Processes and Applications; Interface Science and Technology; Ghaedi, M., Ed.; Elsevier: Yasouj, Iran, 2021; pp. 71–210. [Google Scholar]
- Mussatto, S.I.; Carneiro, L.M.; Silva, J.P.A.; Roberto, I.C.; Teixeira, J.A. A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr. Polym. 2011, 83, 368–374. [Google Scholar] [CrossRef]
- Satyam, S.; Patra, S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024, 10, e29573. [Google Scholar] [CrossRef]
- Mane, P.V.; Rego, R.M.; Yap, P.L.; Losic, D.; Kurkuri, M.D. Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water. Prog. Mater. Sci. 2024, 146, 101314. [Google Scholar] [CrossRef]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus green extraction techniques—A comparative perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Ibáñez, E.; Mendiola, J.A.; Castro-Puyana, M.; Extraction, S.F. Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 227–233. [Google Scholar] [CrossRef]
- Tyśkiewicz, K.; Konkol, M.; Rój, E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef]
- Santoro, I.; Nardi, M.; Benincasa, C.; Costanzo, P.; Giordano, G.; Procopio, A.; Sindona, G. Sustainable and Selective Extraction of Lipids and Bioactive Compounds from Microalgae. Molecules 2019, 24, 4347. [Google Scholar] [CrossRef]
- Vafaei, N.; Rempel, C.B.; Scanlon, M.G.; Jones, P.J.H.; Eskin, M.N.A. Application of Supercritical Fluid Extraction (SFE) of Tocopherols and Carotenoids (Hydrophobic Antioxidants) Compared to Non-SFE Methods. AppliedChem 2022, 2, 68–92. [Google Scholar] [CrossRef]
- Belova, V.; Gorin, D.A.; Shchukin, D.G.; Möhwald, H. Controlled Effect of Ultrasonic Cavitation on Hydrophobic/Hydrophilic Surfaces. ACS Appl. Mater. Interfaces 2011, 3, 417–425. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Zhao, Z.; Musoke, F.S.N.; Wu, X. Ultrasonic Activated Biochar and Its Removal of Harmful Substances in Environment. Microorganisms 2022, 10, 1593. [Google Scholar] [CrossRef] [PubMed]
- Martini, S.; Afroze, S.; Roni, K.A.; Setiawati, M.; Kharismadewi, D. A review of fruit waste-derived sorbents for dyes and metals removal from contaminated water and wastewater. Desalination Water Treat 2021, 235, 300–323. [Google Scholar] [CrossRef]
- Hussain, M.; Ali, A.S.; Kousar, T.; Mahmood, F.; Haruna, A.; Zango, Z.U.; Adamu, H.; Kotp, M.G.; Abdulganiyyu, I.A.; Keshta, B.E. Efficient removal of manganese (II) ions from aqueous solution using biosorbent derived from rice husk. Sustain. Chem. One World 2025, 5, 100047. [Google Scholar] [CrossRef]
- Karnitski, A.; Natarajan, L.; Lee, Y.J.; Kim, S.-S. Controlled chemical transformation of lignin by nitric acid treatment and carbonization. Int. J. Biol. Macromol. 2024, 281, 136408. [Google Scholar] [CrossRef]
- Murthy, T.P.K.; Gowrishankar, B.S. Process optimisation of methylene blue sequestration onto physical and chemical treated coffee husk based adsorbent. SN Appl. Sci. 2020, 2, 836. [Google Scholar] [CrossRef]
- Dávila-Guzmán, N.E.; de Jesús Cerino-Córdova, F.; Soto-Regalado, E.; Rangel-Mendez, J.R.; Díaz-Flores, P.E.; Garza-Gonzalez, M.T.; Loredo-Medrano, J.A. Copper Biosorption by Spent Coffee Ground: Equilibrium, Kinetics, and Mechanism. Clean 2013, 41, 557–564. [Google Scholar] [CrossRef]
- El-Hendawy, A.-N.A. An insight into the KOH activation mechanism through the production of microporous activated carbon for the removal of Pb2+ cations. Appl. Surf. Sci. 2009, 255, 3723–3730. [Google Scholar] [CrossRef]
- Onwuka, J.C.; Agbaji, E.B.; Ajibola, V.O.; Okibe, F.G. Thermodynamic pathway of lignocellulosic acetylation process. BMC Chem. 2019, 13, 79. [Google Scholar] [CrossRef]
- Abegunde, S.M.; Idowu, K.S.; Adejuwon, O.M.; Adeyemi-Adejolu, T. A review on the influence of chemical modification on the performance of adsorbents, Resources. Environ. Sustain. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy 2013, 104, 801–809. [Google Scholar] [CrossRef]
- Cerino-Córdova, F.J.; Dávila-Guzmán, N.E.; León, A.M.G.; Salazar-Rabago, J.J.; Soto-Regalado, E. Revalorization of Coffee Waste. In Coffee-Production and Research; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Pujol, D.; Liu, C.; Gominho, J.; Olivella, M.À.; Fiol, N.; Villaescusa, I.; Pereira, H. The chemical composition of exhausted coffee waste. Ind. Crops Prod. 2013, 50, 423–429. [Google Scholar] [CrossRef]
- Larkin, P. General Outline and Strategies for IR and Raman Spectral Interpretation. In Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2011; pp. 117–133. [Google Scholar] [CrossRef]
- Larkin, P. Environmental Dependence of Vibrational Spectra. In Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2011; pp. 55–62. [Google Scholar] [CrossRef]
- Larkin, P.J. IR and Raman Spectra–Structure Correlations. In Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 85–134. [Google Scholar] [CrossRef]
- Ottah, V.E.; Ezugwu, A.L.; Ezike, T.C.; Chilaka, F.C. Comparative analysis of alkaline-extracted hemicelluloses from Beech, African rose and Agba woods using FTIR and HPLC. Heliyon 2022, 8, e09714. [Google Scholar] [CrossRef] [PubMed]
- El Boustani, M.; Brouillette, F.; Lebrun, G.; Belfkira, A. Solvent-free acetylation of lignocellulosic fibers at room temperature: Effect on fiber structure and surface properties. J. Appl. Polym. Sci. 2015, 132, 42247. [Google Scholar] [CrossRef]
- Gieroba, B.; Kalisz, G.; Krysa, M.; Khalavka, M.; Przekora, A. Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process. Int. J. Mol. Sci. 2023, 24, 2630. [Google Scholar] [CrossRef]
- de Carvalho Oliveira, F.; Srinivas, K.; Helms, G.L.; Isern, N.G.; Cort, J.R.; Gonçalves, A.R.; Ahring, B.K. Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresour. Technol. 2018, 257, 172–180. [Google Scholar] [CrossRef]
- Toda, T.A.; Santana, A.J.M.; Ferreira, J.A.; Pallone, E.M.D.J.A.; de Aguiar, C.L.; Rodrigues, C.E.D.C. Evaluation of Techniques for Intensifying the Process of the Alcoholic Extraction of Coffee Ground Oil Using Ultrasound and a Pressurized Solvent. Foods 2022, 11, 584. [Google Scholar] [CrossRef]
- Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R.; et al. A Review on the Modification of Cellulose and Its Applications. Polymers 2022, 14, 3206. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Salifu, A.; Petrusevski, B.; Mwampashi, E.S.; Pazi, I.A.; Ghebremichael, K.; Buamah, R.; Aubry, C.; Amy, G.L.; Kenedy, M.D. Defluoridation of groundwater using aluminum-coated bauxite: Optimization of synthesis process conditions and equilibrium study. J. Environ. Manag. 2016, 181, 108–117. [Google Scholar] [CrossRef]
- Farsad, A.; Niimi, K.; Ersan, M.S.; Gonzalez-Rodriguez, J.R.; Hristovski, K.D.; Westerhoff, P. Mechanistic Study of Arsenate Adsorption onto Different Amorphous Grades of Titanium (Hydr)Oxides Impregnated into a Point-of-Use Activated Carbon Block. ACS EST Eng. 2023, 3, 989–1000. [Google Scholar] [CrossRef]
- Ali, K.; Zeidan, H.; Amar, R.B. Evaluation of the use of agricultural waste materials as low-cost and eco-friendly sorbents to remove dyes from water: A review. Desalination Water Treat 2023, 302, 231–252. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, D.; Yan, H.; Ji, Y.; Wu, W.; Tanaka, S. Study on the mechanism of methylene blue adsorption of spent coffee grounds. Fresenius Environ. Bull 2016, 25, 3423–3429. [Google Scholar]
- El Malti, W.; Koteich, S.; Hijazi, A. Utilizing Chamaerops humilis in removing methylene blue dye from water: An effective approach. RSC Adv. 2024, 14, 24196–24206. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Tsoutsa, E.K.; Kyzas, G.Z.; Katsoyiannis, I.A. Sustainable use of low-cost adsorbents prepared from waste fruit peels for the removal of selected reactive and basic dyes found in wastewaters. Environ. Sci. Pollut. Res. 2024, 31, 14662–14689. [Google Scholar] [CrossRef]
- Lazarova, S.; Tonev, R.; Dimitrova, S.; Dimova, G.; Mihailova, I. Valorization of Peanut and Walnut Shells through Utilisation as Biosorbents for the Removal of Textile Dyes from Water. Processes 2023, 11, 2291. [Google Scholar] [CrossRef]
- Sadoun, L.; Seffah, K.; Benmounah, A.; Zerizer, A.; Ghernaout, D. High-performance raw biosorbent derived from Algerian Zean oak sawdust for removing methylene blue from aqueous environments. Desalination Water Treat 2023, 294, 233–246. [Google Scholar] [CrossRef]
- Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Derbal, K.; Benalia, A.; Pizzi, A. Effect of Washing Temperature on Adsorption of Cationic Dyes by Raw Lignocellulosic Biomass. Appl. Sci. 2024, 14, 10365. [Google Scholar] [CrossRef]
- Wardighi, Z.; Bensalah, J.; Zarrouk, A.; Rifi, E.H.; Lebkiri, A. Investigation of adsorption and mechanism of the cationic methylene blue by the polymeric Rubia tinctorum seeds from environment wastewater: Kinetic equilibrium and thermodynamic studies. Desalination Water Treat 2023, 310, 212–225. [Google Scholar] [CrossRef]
- Qin, G.; Wang, C.; Yang, Q.; Wei, W. Removal of methylene blue from aqueous solution using common bean vine and cowpea vine biomass. Desalination Water Treat 2023, 283, 237–246. [Google Scholar] [CrossRef]
- Colodel, C.; Canteli, A.M.D.; de Mello Castanho Amboni, R.D.; de Oliveira Petkowicz, C.L. Use of white grape pomace for removal of cationic dyes from aqueous solution: Kinetic, isotherm and thermodynamic characterization. Biomass Convers. Biorefin. 2024. [Google Scholar] [CrossRef]
- Benamraoui, F.; Boudiaf, H.; Bouhank, A.; Bencheikh, L.; Bourzami, R.; Gil, A.; Boulahbal, A.-I.; Boutahala, M. Methylene blue removal using black cumin seeds waste: Experimental study and molecular dynamic simulation. Desalination Water Treat 2023, 300, 167–177. [Google Scholar] [CrossRef]
- Nitayaphat, W.; Jintakosol, T.; Engkaseth, K.; Wanrakakit, Y. Removal of methylene blue from aqueous solution by coffee residues. Chiang Mai J. Sci. 2015, 42, 407–416. [Google Scholar]
- Nascimento, N.N.R.D.; da Trindade Silva, A.L.M.; Silva, W.L.; Rodrigues, M.G.F. Valorization of coffee agro-industrial residue for biochar production: Use as adsorbent for methylene blue removal. Desalination Water Treat 2024, 320, 100767. [Google Scholar] [CrossRef]
- Zirari, M.; Aouji, M.; Hmouni, D.; El Mejdoub, N. Adsorption behavior and mechanism of modified Abies marocana Trab. needles for the efficient removal of methylene blue dye. Water Pract. Technol. 2024, 19, 3808–3832. [Google Scholar] [CrossRef]
- Aryee, A.A.; Han, R.; Qu, L. Investigation into the adsorption of methylene blue and trimethoprim onto modified peanut husk in single and binary systems. Desalination Water Treat 2024, 317, 100248. [Google Scholar] [CrossRef]
- Diagboya, P.N.; Odagwe, A.; Oyem, H.H.; Omoruyi, C.; Osabohien, E. Adsorptive decolorization of dyes in aqueous solution using magnetic sweet potato (Ipomoea batatas L.) peel waste. RSC Sustain. 2024, 2, 686–694. [Google Scholar] [CrossRef]
- Hassani, E.M.S.; Duarte, H.; Brás, J.; Taleb, A.; Taleb, M.; Rais, Z.; Eivazi, A.; Norgren, M.; Romano, A.; Medronho, B. On the Valorization of Olive Oil Pomace: A Sustainable Approach for Methylene Blue Removal from Aqueous Media. Polymers 2024, 16, 3055. [Google Scholar] [CrossRef]
- Tong, J.; Li, G.; Wei, J.; Li, C. Functionalized spent coffee grounds by citric acid and polydopamine for eliminating cationic dyes from wastewater: Investigation on recyclability, salt resistance and adsorption mechanism. Ind. Crops Prod. 2025, 223, 120198. [Google Scholar] [CrossRef]
Modification | Adsorbent | Langmuir | Freundlich | ||||||
---|---|---|---|---|---|---|---|---|---|
KL (L/mg) | qmax (mg/g) | R2 | χ2 | KF (mg/g)/ (L/mg)n | n | R2 | χ2 | ||
Cleaning | SCG-H2O | 0.051 | 65.69 | 0.993 | 0.35 | 7.03 | 0.48 | 0.958 | 1.64 |
SCG-US | 0.045 | 84.43 | 0.999 | 0.38 | 7.87 | 0.51 | 0.945 | 2.24 | |
SCG-ASE | 0.041 | 83.19 | 0.995 | 0.33 | 8.23 | 0.48 | 0.949 | 2.46 | |
SCG-SFE | 0.027 | 93.32 | 0.895 | 4.21 | 7.96 | 0.47 | 0.831 | 5.23 | |
Chemical treatment | SCG-Acet | 0.062 | 84.13 | 0.992 | 0.51 | 9.06 | 0.50 | 0.976 | 1.74 |
SCG-KOH | 0.015 | 171.60 | 0.978 | 1.96 | 4.24 | 0.73 | 0.959 | 3.11 | |
SCG-HNO3 | 0.011 | 270.64 | 0.864 | 13.21 | 4.16 | 0.75 | 0.814 | 14.52 |
Bioadsorbent | Contact Time (h) | Temperature (°C) | pH | Co (mg/L) | Adsorbent Dose (g/L) | qmax (mg/g) | Reference |
---|---|---|---|---|---|---|---|
Sawdust from the European fan palm tree, Chamaerops humilis | 2 | 25 | 8.0 | 20 | N.A. | 22.7 | [71] |
Waste orange peels | 24 | 25 | 9.0 | 5–1000 | 6 | 40.13 | [72] |
Walnut shell | 24 | 20 | 4.8 | 25–100 | 2.5 | 41.5 | [73] |
Peanut shell | 24 | 20 | 4.8 | 25–100 | 2.5 | 46.8 | [73] |
Algerian Zean oak sawdust | 0.75 | 25 | 7.0 | 20 | 1 | 52.376 | [74] |
Wild carob Ceratonia siliqua | 24 | 20 | N.A. | 10–300 | 1 | 79.19 | [75] |
Waste pomegranate peels | 24 | 25 | 9.0 | 5–1000 | 6 | 98.08 | [72] |
Waste banana peels | 24 | 25 | 9.0 | 5–1000 | 4 | 112.35 | [72] |
Rubia tinctorum seeds | N.A. | 25 | 5.0 | N.A. | N.A. | 125 | [76] |
Osage orange, Maclura pomifera | 24 | 20 | N.A. | 10–300 | 1 | 146.92 | [75] |
Cowpea (Vigna unguiculata subsp. unguiculata) vines | 30 | N.A | 0.5 | 149.25 | [77] | ||
Common bean (Phaseolus vulgaris L.) vine | 30 | N.A. | 0.5 | 181.82 | [77] | ||
Grape pomace powder (GPP) | N.A. | 20 | N.A. | N.A | N.A. | 183.96 | [78] |
Black cumin seeds | 24 | 20 | 6.4 | 10–500 | 1 | 346.1 | [79] |
SCG | 0.3 | 20 | 10 | 10–100 | 20 | 4.68 | [80] |
SCG | 24 | 25 | 7.0 | 10–100 | 0.6 | 86.6 | [70] |
SCG | 24 | 25 | 7.0 | 10–100 | 0.6 | 78.6 | [70] |
SCG | 1 | 25 | 5.5 | 20–250 | N.A. | 40.85 | [81] |
SCG | 12 | 25 | 5.0 | 50–500 | 10 | 18.7 | [9] |
SCG-H2O | 24 | 25 | 7.0 | 100 | 1, 2, 4, 8 | 64.56 | This study |
Modified Bioadsorbent | Contact Time (h) | Temperature (°C) | pH | Co (mg/L) | Adsorbent Dose (g/L) | qmax (mg/g) | Reference |
---|---|---|---|---|---|---|---|
Abies marocana needles chemical treatment with sulfuric acid (H2SO4) | 1 | 25 | 8.0 | 20–60 | 4 | 18.81 | [82] |
Modified peanut husk with KMnO4 | 6 | 20 | 7.0 | 200 | 1 | 226 | [83] |
Magnetic sweet potato (Ipomoea batatas L.) peels | 0.33 | 15 | N.A. | 100 | 20 | 38 | [84] |
Olive oil pomace, defatted with ethyl acetate | 3.3 | 20 | 7.0 | 5–460 | 1 | 269 | [85] |
Sulfuric acid lignin (SAL) extracted from SCG | 24 | 25 | N.A. | 10–100 | 1.2 | 66.225 | [28] |
Phenolated SAL extracted from SCG | 24 | 25 | N.A. | 10–100 | 1.2 | 93.457 | [28] |
Acetylated SAL extracted from SCG | 24 | 25 | N.A. | 10–100 | 1.2 | 71.942 | [28] |
Phosphorylated SCG (PSCG) (H3PO4/P2O5) | 2 | 25 | 7.0 | 5–200 | N.A. | 188.68 | [6] |
Modified SCG with citric acid and polydopamine PDA@SC | 24 | 25 | 7.0 | 60–100 | 0.33 | 291 | [86] |
SCG-Acet | 24 | 25 | 7.0 | 100 | 1, 2, 4, 8 | 60.14 | This study |
SCG-KOH | 165.47 | ||||||
SCG-HNO3 | 221.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araya-Sibaja, A.M.; Quesada-Soto, T.; Vega-Baudrit, J.R.; Navarro-Hoyos, M.; Valverde-Cerdas, J.; Romero-Esquivel, L.G. Spent Coffee Ground-Based Materials Evaluated by Methylene Blue Removal. Processes 2025, 13, 1592. https://doi.org/10.3390/pr13051592
Araya-Sibaja AM, Quesada-Soto T, Vega-Baudrit JR, Navarro-Hoyos M, Valverde-Cerdas J, Romero-Esquivel LG. Spent Coffee Ground-Based Materials Evaluated by Methylene Blue Removal. Processes. 2025; 13(5):1592. https://doi.org/10.3390/pr13051592
Chicago/Turabian StyleAraya-Sibaja, Andrea Mariela, Tamara Quesada-Soto, José Roberto Vega-Baudrit, Mirtha Navarro-Hoyos, Johnny Valverde-Cerdas, and Luis Guillermo Romero-Esquivel. 2025. "Spent Coffee Ground-Based Materials Evaluated by Methylene Blue Removal" Processes 13, no. 5: 1592. https://doi.org/10.3390/pr13051592
APA StyleAraya-Sibaja, A. M., Quesada-Soto, T., Vega-Baudrit, J. R., Navarro-Hoyos, M., Valverde-Cerdas, J., & Romero-Esquivel, L. G. (2025). Spent Coffee Ground-Based Materials Evaluated by Methylene Blue Removal. Processes, 13(5), 1592. https://doi.org/10.3390/pr13051592