Non-Enzymatic Electrochemical Sensor Modified by Nickel Nanoparticles for Urea Determination in Biological Fluids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Modification of GCE Electrode with NiNPs (GCE-NiNPs)
2.3. Morphological and Electrochemical Characterization of the GCE/NINPs
2.4. Study of the Electrochemical Behavior of Urea on Bare GCE and GCE/NiNPs
2.5. Electroanalysis of Urea in Synthetic Biological Fluid Samples
3. Results and Discussion
3.1. Electrochemical Behavior of Urea on the GCE/NiNPs Sensor
3.1.1. Analysis of the Supporting Electrolyte for the Electrooxidation of Urea and Surface Activation of the GCE/NiNPs
3.1.2. Study of the Electrodeposition Charge of NiNPs on the GCE Surface
3.1.3. Study of the Electrodeposition Potential of NiNPs on the GCE Surface
3.2. Morphological and Electrochemical Characterization of the GCE/NINPs
3.3. Electrochemical Behavior of Urea on Bare GCE and GCE/NiNPs
3.4. Analytical Performance
3.5. Interference Study
3.6. Application of the GCE/NiNPs Sensor for Urea Detection in Synthetic Biological Fluid Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Y.; Jin, B.; Shen, W.; Sinko, P.J.; Xie, X.; Zhang, H.; Jia, L. China and the United States-global partners, competitors and collaborators in nanotechnology development. Nanomedicine 2016, 12, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.; Chawla, R.; Natasha, G.; Mahdibeiraghdar, S.; Jeyaraj, R.; Rajadas, J.; Hamblin, M.R.; Seifalian, A.M. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier. J. Plast. Reconstr. Aesthet. Surg. 2016, 69, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Xiangke, W.; Cazzato, G.; Anwar Saleemi, H.; Khan, A.; Ismail, A.; Zahid, M.; Farooq Khan, M. Role of silver nanoparticles in fluorimetric determination of urea in urine samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 271, 120889. [Google Scholar] [CrossRef]
- Pandya, D.; Nagrajappa, A.K.; Ravi, K.S. Assessment and correlation of urea and creatinine levels in saliva and serum of patients with chronic kidney disease, diabetes and hypertension—A research study. J. Clin. Diagn. Res. 2016, 10, ZC58–ZC62. [Google Scholar] [CrossRef]
- Costa, J.A.C.; Vieira-Neto, O.M.; Neto, M.M. Acute renal failure. Medicina 2003, 36, 307–324. [Google Scholar]
- Pundir, C.S.; Jakhar, S.; Narwal, V. Determination of urea with special emphasis on biosensors: A review. Biosens. Bioelectron. 2019, 123, 36–50. [Google Scholar] [CrossRef]
- Radomska, A.; Koncki, R.; Pyrzyńska, K.; Gła̧b, S. Bioanalytical system for control of hemodialysis treatment based on potentiometric biosensors for urea and creatinine. Anal. Chim. Acta 2004, 523, 193–200. [Google Scholar] [CrossRef]
- Koncki, R.; Radomska, A.; Glab, S.X. Potentiometric determination of dialysate urea nitrogen. Talanta 2000, 52, 13–17. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Alegret, S.; del Valle, M. Bioelectronic tongue for the simultaneous determination of urea, creatinine and alkaline ions in clinical samples. Biosens. Bioelectron. 2008, 23, 795–802. [Google Scholar] [CrossRef]
- Marchenko, S.V.; Kucherenko, I.S.; Soldatkin, O.O.; Soldatkin, A.P. Potentiometric biosensor system based on recombinant urease and creatinine deiminase for urea and creatinine determination in blood dialysate and serum. Electroanalysis 2015, 27, 1699–1706. [Google Scholar] [CrossRef]
- Coulombe, J.J.; Favreau, L. A new simple semimicro method for colorimetric determination of urea. Clin. Chem. 1963, 9, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Ismail, M.; Khan, A.; Khan, H.; Haider, S.; Kamal, T. Spectrophotometric methods for the determination of urea in real samples using silver nanoparticles by standard addition and 2nd order derivative methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 189, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Koebel, M.; Elsener, M. Determination of urea and its thermal decomposition products by High-Performance Liquid Chromatography. J. Chromatogr. A 1995, 689, 164–169. [Google Scholar] [CrossRef]
- Clark, S.; Francis, P.S.; Conlan, X.A.; Barnett, N.W. Determination of urea using High-Performance Liquid Chromatography with fluorescence detection after automated derivatisation with xanthydrol. J. Chromatogr. A 2007, 1161, 207–213. [Google Scholar] [CrossRef]
- Jensen, P.S.; Bak, J.; Ladefoged, S.; Andersson-Engels, S. Determination of urea, glucose, and phosphate in dialysate with Fourier Transform Infrared Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004, 60, 899–905. [Google Scholar] [CrossRef]
- Boubriak, O.A.; Soldatkin, A.P.; Starodub, N.F.; Sandrovsky, A.K.; El’skaya, A.K. Determination of urea in blood serum by a urease biosensor based on an ion-sensitive field-effect transistor. Sens. Actuators B Chem. 1995, 26, 429–431. [Google Scholar] [CrossRef]
- Alizadeh, T.; Ganjali, M.R.; Rafiei, F. Trace level and highly selective determination of urea in various real samples based upon voltammetric analysis of diacetylmonoxime-urea reaction product on the carbon nanotube/carbon paste electrode. Anal. Chim. Acta 2017, 974, 54–62. [Google Scholar] [CrossRef]
- Lian, H.; Liu, B.; Chen, Y.; Sun, X. A urea electrochemical sensor based on molecularly imprinted chitosan film doping with CdS quantum dots. Anal. Biochem. 2012, 426, 40–46. [Google Scholar] [CrossRef]
- Marchenko, S.V.; Kucherenko, I.S.; Hereshko, A.N.; Panasiuk, I.V.; Soldatkin, O.O.; El’skaya, A.V.; Soldatkin, A.P. Application of potentiometric biosensor based on recombinant urease for urea determination in blood serum and hemodialyzate. Sens. Actuators B Chem. 2015, 207, 981–986. [Google Scholar] [CrossRef]
- Zhybak, M.; Beni, V.; Vagin, M.Y.; Dempsey, E.; Turner, A.P.F.; Korpan, Y. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. Biosens. Bioelectron. 2016, 77, 505–511. [Google Scholar] [CrossRef]
- Shalileh, F.; Sabahi, H.; Dadmehr, M.; Hosseini, M. Sensing approaches toward detection of urea adulteration in milk. Microchem. J. 2023, 193, 108990. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, M.; Singh, G. Recent advancementsin urea biosensors for biomedical applications. IET Nanobiotechnol. 2021, 15, 358–379. [Google Scholar] [CrossRef] [PubMed]
- Botewad, S.N.; Gaikwad, D.K.; Girhe, N.B.; Thorat, H.N.; Pawar, P.P. Urea biosensors: A comprehensive review. Biotechnol. Appl. Biochem. 2023, 70, 485–501. [Google Scholar] [CrossRef] [PubMed]
- Güngör, S.; Taşaltın, C.; Gürol, İ.; Baytemir, G.; Karakuş, S.; Taşaltın, N. Copper phthalocyanine-borophene nanocomposite-based non-enzymatic electrochemical urea biosensor. Appl. Phys. A Mater. Sci. Process. 2022, 128, 89. [Google Scholar] [CrossRef]
- Salarizadeh, N.; Habibi-Rezaei, M.; Zargar, S.J. NiO–MoO3 nanocomposite: A sensitive non-enzymatic sensor for glucose and urea monitoring. Mater. Chem. Phys. 2022, 281, 125870. [Google Scholar] [CrossRef]
- Dhinasekaran, D.; Soundharraj, P.; Jagannathan, M.; Rajendran, A.R.; Rajendran, S. Hybrid ZnO nanostructures modified graphite electrode as an efficient urea sensor for environmental pollution monitoring. Chemosphere 2022, 296, 133918. [Google Scholar] [CrossRef]
- Sanko, V.; Şenocak, A.; Tümay, S.O.; Demirbas, E. A novel comparative study for electrochemical urea biosensor design: Effect of different ferrite nanoparticles (MFe2O4, M: Cu, Co, Ni, Zn) in urease immobilized composite system. Bioelectrochemistry 2023, 149, 108324. [Google Scholar] [CrossRef]
- Ibáñez-Redín, G.; Rosso Cagnani, G.; Gomes, N.O.; Raymundo-Pereira, P.A.; Sergio, S.A.; Gutierrez, M.A.; Krieger, J.E.; Oliveira, O.N. Wearable potentiometric biosensor for analysis of urea in sweat. Biosens. Bioelectron. 2023, 223, 114994. [Google Scholar] [CrossRef]
- Pereira, A.C.; Santos, A.D.S.; Kubota, L.T. Trends in amperometric electrodes modification for electroanalytical applications. Quim. Nova 2002, 25, 1012–1021. [Google Scholar]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Welch, C.M.; Compton, R.G. The use of nanoparticles in electroanalysis: A review. Anal. Bioanal. Chem. 2006, 384, 601–619. [Google Scholar] [CrossRef]
- Campbell, F.W.; Compton, R.G. The use of nanoparticles in electroanalysis: An updated review. Anal. Bioanal. Chem. 2010, 396, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.Q.; Gao, Z. Metal oxide nanoparticles in electroanalysis. Electroanalysis 2015, 27, 2074–2090. [Google Scholar] [CrossRef]
- Karimi-maleh, H.; Karimi, F.; Fallahshojaei, A.; Tabatabaeian, K.; Arshadi, M.; Rezapour, M. Metal-based nanoparticles as conductive mediators in electrochemical sensors: A mini review. Curr. Anal. Chem. 2019, 15, 136–142. [Google Scholar] [CrossRef]
- Salimi, A.; Sharifi, E.; Noorbakhsh, A.; Soltanian, S. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity. Biosens. Bioelectron. 2007, 22, 3146–3153. [Google Scholar] [CrossRef]
- Erdem, C.; Zeybek, D.K.; Aydoǧdu, G.; Zeybek, B.; Pekyardimci, Ş.; Kiliç, E. Electrochemical glucose biosensor based on nickel oxide nanoparticle-modified carbon paste electrode. Artif. Cells Nanomed. Biotechnol. 2014, 42, 237–244. [Google Scholar] [CrossRef]
- Park, S.; Cho, K.; Kim, S. Enzyme-free glucose sensors with channels composed of necked zno nanoparticles on plastic. Microelectron. Eng. 2011, 88, 2611–2613. [Google Scholar] [CrossRef]
- Salimi, A.; Sharifi, E.; Noorbakhsh, A.; Soltanian, S. Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles. Electrochem. Commun. 2006, 8, 1499–1508. [Google Scholar] [CrossRef]
- Lata, S.; Batra, B.; Karwasra, N.; Pundir, C.S. An amperometric H2O2 biosensor based on cytochrome c immobilized onto nickel oxide nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode. Process. Biochem. 2012, 47, 992–998. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, W.; Liu, C.; Zeng, J.; He, Z.; Wang, C.; Yuan, W.; Wang, Q. Flower-like CoO nanowire-decorated ni foam: A non-invasive electrochemical biosensor for glucose detection in human saliva. Appl. Mater. Today 2024, 36, 102083. [Google Scholar] [CrossRef]
- Sedenho, G.; da Silva, J.L.; Azevedo Beluomini, M.; de Sá, A.; Stradiotto, N. Determination of electroactive organic acids in sugarcane vinasse by high performance anion-exchange chromatography with pulsed amperometric detection using a nickel nanoparticle modified boron-doped diamond. Energy Fuels 2017, 31, 2865–2870. [Google Scholar] [CrossRef]
- Sá, A.C.; Cristina Sedenho, G.; Paim, L.L.; Ramos Stradiotto, N. New method for carbohydrates determination in sugarcane bagasse by HPAEC-RPAD using glassy carbon electrode modified with carbon nanotubes and nickel nanoparticles. Electroanalysis 2018, 30, 128–136. [Google Scholar]
- da Silva, J.L.; Beluomini, M.A.; Sedenho, G.C.; Stradiotto, N.R. Determination of amino acids in sugarcane vinasse by ion chromatographic using nickel nanoparticles on reduced graphene oxide modified electrode. Microchem. J. 2017, 134, 374–382. [Google Scholar] [CrossRef]
- King, R.L.; Botte, G.G. Hydrogen production via urea electrolysis using a gel electrolyte. J. Power Sources 2011, 196, 2773–2778. [Google Scholar] [CrossRef]
- Yan, W.; Wang, D.; Botte, G.G. Electrochimica acta nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochim. Acta 2012, 61, 25–30. [Google Scholar] [CrossRef]
- De Souza, J.C.; Zanoni, M.V.B.; Oliveira-Brett, A.M. Genotoxic permanent hair dye precursors p-aminophenol and p-toluenediamine electrochemical oxidation mechanisms and evaluation in biological fluids. J. Electroanal. Chem. 2020, 857, 113509, reprinted in J. Electroanal. Chem. 2020, 857, 114529. [Google Scholar] [CrossRef]
- De Souza, J.C.; Irikura, K.; Mantilla, H.D.R.; Zanoni, M.V.B.; Salazar, R. Using 3D printed magnetic platform as support for screen printed electrode applied for p-toluenediamine detection in biological fluid and water samples. Anal. Chim. Acta 2023, 1240, 340745. [Google Scholar] [CrossRef]
Detection Method | Linear Range (mmol L⁻1) | LOD (µmol L⁻1) | Sample | Reference |
---|---|---|---|---|
GCE/NiNPs a | 0.085–3.10 | 60.0 | Blood, urine | This work |
Urease biosensor/FIA a,b | – | – | Dialysate fluid | [7] |
Urease biosensor/FIA | 3.37–10.71 | – | Dialysate and postdialysate fluids | [8] |
Urease biosensor a | 0.10–10.0 | – | Urine | [9] |
Potentiometric biosensor | 0.5–15 | 500 | Blood dialysate and serum | [10] |
UV-Vis spectroscopy | 0.1–15 | 302 | Urine | [12] |
HPLC c | 0.0083–1.66 | 3.33 | Urea-SCR | [13] |
HPLC | – | 0.05 | Urina and wine | [14] |
FTIR d spectroscopy | 3.0–10.0 | – | Dialysate | [15] |
Urease biosensor a | 0.25–2 | – | Blood serum | [16] |
CP-CNT electrode a | 0.0001–10 | 0.052 | Urine, blood serum, soil and water | [17] |
CdS QDs–MIP/Au a | 5.0 × 10−9–4.0 × 10−7 | 1.0 × 10−9 | Blood serum | [18] |
Urease biosensor a | 0.5–15 | 100 | Blood serum and hemodialysate | [19] |
Urease/PANi-Nafion-Cu/SPE a | 0.001–0.10 | 0.1 | Serum | [20] |
CuPc-BP sensor a,e | 0.25–1.0 | 0.05 | – | [24] |
Fe–ZnO@PGE a | 0.013–0.067 | 0.042 | – | [26] |
NiO–MoO3 a | 0.2–1 | 0.86 | – | [25] |
Nf/PANI/CuF/Urs a | 0.0005–0.045 | 0.17 | Soil and milk | [27] |
SPCE/PANI/urease- chitosan/PVC a | 5–200 | – | Sweat | [28] |
Sample | Bovine Serum Albumin | Artificial Urine | Dialysate | Hemodialysis Wastewater |
---|---|---|---|---|
Added (mmol L−1) | 1.00 | 1.00 | 0.00 | 0.00 |
Found (mmol L−1) | 1.06 ± 0.07 | 1.03 ± 0.03 | 6.03 ± 0.06 | 10.4 ± 0.03 |
Average recovery (%) | 106 ± 0.1 | 103 ± 0.2 | 111 ± 3 | 105 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, G.F.; de Souza, J.C.; da Silva, J.L.; Boldrin Zanoni, M.V. Non-Enzymatic Electrochemical Sensor Modified by Nickel Nanoparticles for Urea Determination in Biological Fluids. Processes 2025, 13, 1306. https://doi.org/10.3390/pr13051306
de Oliveira GF, de Souza JC, da Silva JL, Boldrin Zanoni MV. Non-Enzymatic Electrochemical Sensor Modified by Nickel Nanoparticles for Urea Determination in Biological Fluids. Processes. 2025; 13(5):1306. https://doi.org/10.3390/pr13051306
Chicago/Turabian Stylede Oliveira, Gabriela Fonseca, João Carlos de Souza, José Luiz da Silva, and Maria Valnice Boldrin Zanoni. 2025. "Non-Enzymatic Electrochemical Sensor Modified by Nickel Nanoparticles for Urea Determination in Biological Fluids" Processes 13, no. 5: 1306. https://doi.org/10.3390/pr13051306
APA Stylede Oliveira, G. F., de Souza, J. C., da Silva, J. L., & Boldrin Zanoni, M. V. (2025). Non-Enzymatic Electrochemical Sensor Modified by Nickel Nanoparticles for Urea Determination in Biological Fluids. Processes, 13(5), 1306. https://doi.org/10.3390/pr13051306