The Contribution of Commercial Flights to the Global Emissions of Inorganic and Organic Pollutants
Abstract
:1. Introduction
2. The Role of Aviation Emission Regulators
3. Data on Emissions of Pollutants from Global Aircraft Activity
3.1. General View
3.2. Data on Emissions
- Homogeneous Formation: This occurs in the gas phase at high temperatures (500–800 °C). It involves the pyrolytic rearrangement of chlorinated precursors like chlorophenols and chlorobenzenes [14].
- Heterogeneous Formation: This takes place at lower temperatures (200–400 °C) on the surface of particles such as ash or soot. It is a catalyzed reaction involving the oxidation and chlorination of unburned carbon in the particulates [14].
- De Novo Synthesis: This mechanism involves the formation of dioxins from carbonaceous particles in the presence of chlorine. It typically occurs at temperatures between 200 and 400 °C and is catalyzed by metals like copper. The process includes the oxidation and chlorination of carbon structures, leading to the formation of PCDD/Fs [15].
4. Comparing Aviation Emissions with Other Transport Sectors
4.1. Total Emissions by Sector
4.2. Trends and Future Projections
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bendtsen, K.M.; Bengtsen, E.; Saber, A.T.; Vogel, U. A Review of Health Effects Associated with Exposure to Jet Engine Emissions in and around Airports. Environ. Health 2021, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, J.T.; Jacobson, M.Z.; Malwitz, A.; Balasubramanian, S.; Wayson, R.; Fleming, G.; Naiman, A.D.; Lele, S.K. Analysis of Emission Data from Global Commercial Aviation: 2004 and 2006. Atmos. Chem. Phys. 2010, 10, 6391–6408. [Google Scholar] [CrossRef]
- Conesa, J.A.; Ortuño, N.; Palmer, D. Estimation of Industrial Emissions during Pyrolysis and Combustion of Different Wastes Using Laboratory Data. Sci. Rep. 2020, 10, 6750. [Google Scholar] [CrossRef] [PubMed]
- Bo, X.; Xue, X.; Xu, J.; Du, X.; Zhou, B.; Tang, L. Aviation’s Emissions and Contribution to the Air Quality in China. Atmos. Environ. 2019, 201, 121–131. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.; Hao, Y.; Liu, S.; Liu, X.; Zhu, C.; Wu, Y.; Liu, W.; Bai, X.; Wu, B. Atmospheric Emission Inventory of Multiple Pollutants from Civil Aviation in China: Temporal Trend, Spatial Distribution Characteristics and Emission Features Analysis. Sci. Total Environ. 2019, 648, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Durdina, L.; Brem, B.T.; Setyan, A.; Siegerist, F.; Rindlisbacher, T.; Wang, J. Assessment of Particle Pollution from Jetliners: From Smoke Visibility to Nanoparticle Counting. Environ. Sci. Technol. 2017, 51, 3534–3541. [Google Scholar] [CrossRef] [PubMed]
- EDGAR—The Emissions Database for Global Atmospheric Research. Available online: https://edgar.jrc.ec.europa.eu/ (accessed on 15 January 2025).
- European Environment Agency’s Home Page. Available online: https://www.eea.europa.eu/en (accessed on 15 January 2025).
- Sustainable Aviation Fuels in Practice Main Milestones so Far. Available online: https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet-sustainable-aviation-fuels/ (accessed on 15 January 2025).
- Spicer, C.; Holdren, M.; Lyon, T.; Riggin, R. Composition and Photochemical Reactivity of Turbine Engine Exhaust. 1984. Available online: https://ww2.arb.ca.gov/sites/default/files/2023-12/spicer_turbine_1984.pdf (accessed on 18 March 2025).
- Masiol, M.; Harrison, R.M. Aircraft Engine Exhaust Emissions and Other Airport-Related Contributions to Ambient Air Pollution: A Review. Atmos. Environ. 2014, 95, 409–455. [Google Scholar] [CrossRef] [PubMed]
- Stockholm Convention—Home Page. Available online: https://www.pops.int/ (accessed on 15 January 2025).
- Conesa, J.A. Sewage Sludge as Inhibitor of the Formation of Persistent Organic Pollutants during Incineration. Sustainability 2021, 13, 10935. [Google Scholar] [CrossRef]
- Stanmore, B.R. The Formation of Dioxins in Combustion Systems. Combust. Flame 2004, 136, 398–427. [Google Scholar] [CrossRef]
- Huang, H.; Buekens, A. On the Mechanisms of Dioxin Formation in Combustion Processes. Chemosphere 1995, 31, 4099–4117. [Google Scholar] [CrossRef]
- Agrawal, H.; Sawant, A.A.; Jansen, K.; Wayne Miller, J.; Cocker, D.R. Characterization of Chemical and Particulate Emissions from Aircraft Engines. Atmos. Environ. 2008, 42, 4380–4392. [Google Scholar] [CrossRef]
- Impactará Precio del Petróleo a La Demanda de Turbosina|Aviación 21. Available online: https://a21.com.mx/index.php/aeronautica/2024/08/16/impactara-precio-del-petroleo-la-demanda-de-turbosina?utm_source=chatgpt.com (accessed on 21 January 2025).
- Los 10 Aviones Comerciales Más Usados—IASCA. Available online: https://iasca.aero/los-10-aviones-comerciales-mas-usados/ (accessed on 20 January 2025).
- Masiol, M.; Mallon, T.M.; Haines, K.M.; Utell, M.J.; Hopke, P.K. Source Apportionment of Airborne Dioxins, Furans, and Polycyclic Aromatic Hydrocarbons at a United States Forward Operating Air Base during the Iraq War. J. Occup. Environ. Med. 2016, 58, S31–S37. [Google Scholar] [CrossRef] [PubMed]
- Quaß, U.; Fermann, M.; Bröker, G. The European Dioxin Air Emission Inventory Project—Final Results. Chemosphere 2004, 54, 1319–1327. [Google Scholar] [PubMed]
- Tesseraux, I. Risk Factors of Jet Fuel Combustion Products. Toxicol. Lett. 2004, 149, 295–300. [Google Scholar] [PubMed]
- Song, S.; Chen, K.; Huang, T.; Ma, J.; Wang, J.; Mao, X.; Gao, H.; Zhao, Y.; Zhou, Z. New Emission Inventory Reveals Termination of Global Dioxin Declining Trend. J. Hazard. Mater. 2023, 443, 130357. [Google Scholar] [CrossRef] [PubMed]
- International Civil Aviation Organization (ICAO). Available online: https://www.icao.int/Pages/default.aspx (accessed on 15 January 2025).
- Janicka, A.B.; Zawiślak, M.; Gawron, B.; Górniak, A.; Bialecki, T. Emission of Volatile Organic Compounds during Combustion Process in a Miniature Turbojet Engine. Environ. Prot. Eng. 2018, 44, 57–67. [Google Scholar] [CrossRef]
- Rey, M.D.; Font, R.; Aracil, I. PCDD/F Emissions from Light-Duty Diesel Vehicles Operated under Highway Conditions and a Diesel-Engine Based Power Generator. J. Hazard. Mater. 2014, 278, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Smit, R. Dioxins Emissions from Motor Vehicles in Australia; Australian Government Department of the Environment and Heritage: Canberra, Australia, 2004; ISBN 064254994X.
- Kulkarni, P.S.; Crespo, J.G.; Afonso, C.A.M. Dioxins Sources and Current Remediation Technologies—A Review. Environ. Int. 2008, 34, 139–153. [Google Scholar] [CrossRef] [PubMed]
Ranking | Maker | Model | Production Years | Number of Passengers (Approx.) | Fuel Capacity (L) | Maximum Speed (Mach) | Autonomy (km) |
---|---|---|---|---|---|---|---|
1 | Boeing | 747 | 1969–2005 | 366 | 243,120 | 0.92 | 14,816 |
2 | Boeing | 777 | 1995–now | 440 | 181,283 | 0.84 | 17,370 |
3 | Boeing | 737 | 1967–now | 170 | 29,660 | 0.78 | 7223 |
4 | Boeing | 787 | 2009–now | 350 | 101,350 | 0.84 | 14,075 |
5 | Boeing | 757 | 1982–2004 | 270 | 43,400 | 0.80 | 7222 |
6 | Boeing | 767 | 1982–now | 375 | 61,800 | 0.69 | 11,093 |
7 | Boeing | 727 | 1963–1984 | 190 | 15,000 | 0.67 | 5000 |
8 | Airbus | A320 | 1984–now | 220 | 27,200 | 0.71 | 6100 |
9 | Boeing | 707 | 1954–1978 | 190 | 90,290 | 0.71 | 10,500 |
10 | Airbus | A380 | 2005–2021 | 853 | 320,000 | 0.96 | 15,200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conesa, J.A.; Mortes, J. The Contribution of Commercial Flights to the Global Emissions of Inorganic and Organic Pollutants. Processes 2025, 13, 995. https://doi.org/10.3390/pr13040995
Conesa JA, Mortes J. The Contribution of Commercial Flights to the Global Emissions of Inorganic and Organic Pollutants. Processes. 2025; 13(4):995. https://doi.org/10.3390/pr13040995
Chicago/Turabian StyleConesa, Juan A., and Jonathan Mortes. 2025. "The Contribution of Commercial Flights to the Global Emissions of Inorganic and Organic Pollutants" Processes 13, no. 4: 995. https://doi.org/10.3390/pr13040995
APA StyleConesa, J. A., & Mortes, J. (2025). The Contribution of Commercial Flights to the Global Emissions of Inorganic and Organic Pollutants. Processes, 13(4), 995. https://doi.org/10.3390/pr13040995