Polymer Nanocomposites with Optimized Nanoparticle Dispersion and Enhanced Functionalities for Industrial Applications
Abstract
:1. Introduction
2. Advancements in Dispersion Techniques for PNCs
2.1. Existing Dispersion Techniques
2.1.1. Physical Dispersion Techniques
2.1.2. Chemical Dispersion Techniques
2.1.3. Combined Physical and Chemical Methods
2.2. Interactions Between Polymer Matrix and Nanocomposites
2.3. Recent Advancement in Dispersion Techniques for PNCs
3. Industrial Applications of Advanced PNCs
4. Recent Trends and Future Scope
4.1. Recent Trends in PNC
4.2. Future Scope of PNC
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patlolla, V.R.; Uddin, M.N.; Asmatulu, R. Effects of porosity and edge reinforcement on interlaminar tensile strength of curved-beam carbon fiber composites. J. Compos. Mater. 2024, 58, 2219–2230. [Google Scholar] [CrossRef]
- Yang, C.; Li, W.; Yang, Z.; Gu, L.; Yu, Y. Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries. Nano Energy 2015, 18, 12–19. [Google Scholar] [CrossRef]
- Pan, D.; Wang, S.; Zhao, B.; Wu, M.; Zhang, H.; Wang, Y.; Li, J. Li storage properties of disordered graphene nanosheets. Chem. Mater. 2009, 21, 3136–3142. [Google Scholar] [CrossRef]
- Shao, Y.; Xiao, J.; Wang, W.; Engelhard, M.; Chen, X.; Nie, Z.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2013, 13, 3909–3914. [Google Scholar] [CrossRef]
- Paranjpe, U.; Uddin, M.N.; Rahman, A.K.S.; Asmatulu, R. Effects of surface treatment on adhesive performance of composite-to-composite and composite-to-metal joints. Processes 2024, 12, 2623. [Google Scholar] [CrossRef]
- Uddin, M.N.; Desai, F.; Asmatulu, E. Review of bioaccumulation, biomagnification, and biotransformation of engineered nanomaterials. In Nanotoxicology and Nanoecotoxicology; Springer: Cham, Switzerland, 2021; Volume 2, pp. 133–164. [Google Scholar]
- Uddin, M.N.; Desai, F.; Asmatulu, E. Engineered nanomaterials in the environment: Bioaccumulation, biomagnification, and biotransformation. Environ. Chem. Lett. 2020, 18, 1073–1083. [Google Scholar] [CrossRef]
- Thinh, D.B.; Tien, N.T.; Dat, N.M.; Phong, H.H.T.; Giang, N.T.H.; Tai, L.T.; Oanh, D.T.Y.; Nam, H.M.; Phong, M.T.; Hieu, N.H. Improved photodegradation of p-nitrophenol from water media using ternary MgFeO-doped TiO/reduced graphene oxide. Synth. Met. 2020, 270, 116583. [Google Scholar] [CrossRef]
- Khandoker, N.; Hawkins, S.C.; Ibrahim, R.; Huynh, C.P.; Deng, F. Tensile strength of spinnable multiwall carbon nanotubes. Procedia Eng. 2011, 10, 2572–2578. [Google Scholar] [CrossRef]
- Wei, W.; Yu, D.; Huang, Q. Preparation of Ag/TiO nanocomposites with controlled crystallization and properties as a multifunctional material for SERS and photocatalytic applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 243, 118793. [Google Scholar] [CrossRef]
- Uddin, M.N.; George, J.M.; Patlolla, V.R.; Asmatulu, R. Investigating the effects of UV light and moisture absorption on the low impact resistance of three different carbon fiber-reinforced composites. Adv. Compos. Hybrid Mater. 2019, 2, 701–710. [Google Scholar]
- Uddin, M.N.; Gandy, H.T.N.; Rahman, M.M.; Asmatulu, R. Adhesiveless honeycomb sandwich structures of pre-preg carbon fiber composites for primary structural applications. Adv. Compos. Hybrid Mater. 2019, 2, 339–350. [Google Scholar] [CrossRef]
- Bhat, A.; Budholiya, S.; Raj, S.A.; Sultan, M.; Hui, D.; Shah, A.M.; Safri, S. Review on nanocomposites based on aerospace applications. Nanotechnol. Rev. 2021, 10, 237–253. [Google Scholar] [CrossRef]
- Wang, S.; Chen, S.; Sun, J.; Liu, Z.; He, D.; Xu, S. Effects of rare earth oxides on the mechanical and tribological properties of phenolic-based hybrid nanocomposites. Polymers 2023, 16, 131. [Google Scholar] [CrossRef]
- Wu, B.; Zhu, H.; Yang, Y.; Huang, J.; Liu, T.; Kuang, T.; Jiang, S.; Hejna, A.; Liu, K. Effect of different proportions of CNTs/FeO hybrid filler on the morphological, electrical, and electromagnetic interference shielding properties of poly(lactic acid) nanocomposites. e-Polymers 2023, 23, 20230006. [Google Scholar] [CrossRef]
- Shaari, N.; Kamarudin, S.K. Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: An overview. Int. J. Energy Res. 2019, 43, 2756–2794. [Google Scholar] [CrossRef]
- Muthoosamy, K.; Manickam, S. State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation, and functionalization of graphene derivatives. Ultrason. Sonochem. 2017, 39, 478–493. [Google Scholar] [CrossRef]
- Inkyo, M.; Tahara, T.; Iwaki, T.; Iskandar, F.; Hogan, C.J., Jr.; Okuyama, K. Experimental investigation of nanoparticle dispersion by beads milling with centrifugal bead separation. J. Colloid Interface Sci. 2006, 304, 535–540. [Google Scholar] [CrossRef]
- Ha, J.H.; Lee, S.E.; Park, S.H. Effect of dispersion by three-roll milling on electrical properties and filler length of carbon nanotube composites. Materials 2019, 12, 3823. [Google Scholar] [CrossRef]
- Pötschke, P.; Villmow, T.; Krause, B.; Kretzschmar, B. Influence of twin screw extrusion conditions on MWCNT length and dispersion and resulting electrical and mechanical properties of polycarbonate composites. Polymers 2024, 16, 2694. [Google Scholar] [CrossRef]
- Lewandowski, A.; Wilczyński, K. Modeling of twin screw extrusion of polymeric materials. Polymers 2022, 14, 274. [Google Scholar] [CrossRef]
- Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A review of the synthesis and applications of polymer–nanoclaycomposites. Appl. Sci. 2018, 8, 1696. [Google Scholar]
- Albdiry, M. Effect of melt blending processing on mechanical properties of polymer nanocomposites: A review. Polym. Bull. 2024, 81, 5793–5821. [Google Scholar] [CrossRef]
- Ahmadi Bonakdar, M.; Rodrigue, D. Electrospinning: Processes, structures, and materials. Macromol 2024, 4, 58–103. [Google Scholar] [CrossRef]
- Tao, Y.; Pescarmona, P.P. Nanostructured oxides synthesized via scco2-assisted sol-gel methods and their application in catalysis. Catalysts 2018, 8, 212. [Google Scholar]
- Guglielmi, M.; Martucci, A. Sol-Gel Nanocomposites; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Dave, B.C.; Lockwood, S.B. Sol-Gel Method. In Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Heidari, B.S.; Lopez, E.M.; Chen, P.; Ruan, R.; Vahabli, E.; Davachi, S.M.; Granero-Moltó, F.; De-Juan-Pardo, E.M.; Zheng, M.; Doyle, B. Silane-modified hydroxyapatite nanoparticles incorporated into polydioxanone/poly(lactide-co-caprolactone) creates a novel toughened nanocomposite with improved material properties and in vivo inflammatory responses. Mater. Today Bio 2023, 22, 100778. [Google Scholar]
- Ghamarpoor, R.; Jamshidi, M. Synthesis of vinyl-based silica nanoparticles by sol–gel method and their influences on network microstructure and dynamic mechanical properties of nitrile rubber nanocomposites. Sci. Rep. 2022, 12, 15286. [Google Scholar]
- Shamsuri, A.A.; Md. Jamil, S.N.A. A short review on the effect of surfactants on the mechanico-thermal properties of polymer nanocomposites. Appl. Sci. 2020, 10, 4867. [Google Scholar] [CrossRef]
- Khandelwal, M. Current international research into cellulose as a functional nanomaterial for advanced applications. J. Mater. Sci. 2022, 57, 5697–5767. [Google Scholar]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar]
- Guadagno, L.; Raimondo, M.; Vietri, U.; Vertuccio, L.; Barra, G.; De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V.; Volponi, R.; et al. Effective formulation and processing of nanofilled carbon fiber reinforced composites. RSC Adv. 2015, 5, 6033–6042. [Google Scholar]
- Zhang, H.; Zhu, H.; Xu, C.; Li, Y.; Liu, Q.; Wang, S.; Yan, S. Effect of nanoparticle size on the mechanical properties of polymer nanocomposites. Polymer 2022, 252, 124944. [Google Scholar] [CrossRef]
- Holt, A.P.; Bocharova, V.; Cheng, S.; Kisliuk, A.M.; White, B.T.; Saito, T.; Uhrig, D.; Mahalik, J.P.; Kumar, R.; Imel, A.E.; et al. Controlling interfacial dynamics: Covalent bonding versus physical adsorption in polymer nanocomposites. ACS Nano 2016, 10, 6843–6852. [Google Scholar] [PubMed]
- Bhol, P.; Mohanty, M.; Mohanty, P.S. Polymer-matrix stabilized metal nanoparticles: Synthesis, characterizations and insight into molecular interactions between metal ions, atoms, and polymer moieties. J. Mol. Liq. 2021, 325, 115135. [Google Scholar]
- Tang, T.Y.; Arya, G. Anisotropic three-particle interactions between spherical polymer-grafted nanoparticles in a polymer matrix. Macromolecules 2017, 50, 1167–1183. [Google Scholar]
- Gao, Y.; Jing, H.W.; Chen, S.J.; Du, M.R.; Chen, W.Q.; Duan, W.H. Influence of ultrasonication on the dispersion and enhancing effect of graphene oxide–carbon nanotube hybrid nanoreinforcement in cementitious composite. Compos. Part B Eng. 2019, 164, 45–53. [Google Scholar]
- Liu, H.; Tang, Y.; Jin, Z.; Song, S.; Zhang, P.; Zhao, S.; Guan, S.; Guan, W. Surface functionalization of carbon nanotubes by biological adhesive polymers carbopol for developing high-permittivity polymer composites. J. Vinyl Addit. Technol. 2020, 26, 165–172. [Google Scholar]
- Alimohamadi, F.; Salabat, A. Effect of surfactant type on the particle dispersion in Ag/polystyrene nanocomposite prepared by microemulsion method. Colloid Nanosci. J. 2023, 1, 112–118. [Google Scholar]
- Sheng, X.; Zhang, L.; Wu, H. Generation of polymer nanocomposites through shear-driven aggregation of binary colloids. Polymers 2017, 9, 619. [Google Scholar] [CrossRef]
- Clarissa, W.H.Y.; Chia, C.H.; Zakaria, S.; Evyan, Y.C.Y. Recent advancement in 3-D printing: Nanocomposites with added functionality. Prog. Addit. Manuf. 2022, 7, 325–350. [Google Scholar] [CrossRef]
- LaNasa, J.A.; Torres, V.M.; Hickey, R.J. In situ polymerization and polymer grafting to stabilize polymer-functionalized nanoparticles in polymer matrices. J. Appl. Phys. 2020, 127, 134701. [Google Scholar]
- Jamil, H.; Faizan, M.; Adeel, M.; Jesionowski, T.; Boczkaj, G.; Balčiūnaitė, A. Recent advances in polymer nanocomposites: Unveiling the frontier of shape memory and self-healing properties—A comprehensive review. Molecules 2024, 29, 1267. [Google Scholar] [CrossRef] [PubMed]
- Akafuah, N.K.; Poozesh, S.; Salaimeh, A.; Patrick, G.; Lawler, K.; Saito, K. Evolution of the automotive body coating process—A review. Coatings 2016, 6, 24. [Google Scholar] [CrossRef]
- Mathew, J.; Asmatulu, R. Importance of various nanoparticles and their effect in transportation. J. King Saud Univ. Sci. 2019, 31, 586–594. [Google Scholar] [CrossRef]
- Shah, S.; Shah, M. Nanotechnology: A scope for a sustainable future. In Handbook of Polymer and Ceramic Nanotechnology; Springer: Cham, Switzerland, 2021; pp. 1627–1649. [Google Scholar]
- Kite, M.A.G. Recent trends and future scope in nanoscience and nanotechnology. Recent Trends High. Educ. 2024, 87, 87. [Google Scholar]
- Rani, K.; Sridevi, V. An overview on the role of nanotechnology in green and clean technology. Austin Environ. Sci. 2017, 2, 1026. [Google Scholar]
- Sahani, S.; Sharma, Y.C. Advancements in applications of nanotechnology in global food industry. Food Chem. 2020, 342, 128318. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Pulicharla, R.; Rouissi, T.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Pine-wood-derived nanobiochar for removal of carbamazepine from aqueous media: Adsorption behavior and influential parameters. Arab. J. Chem. 2019, 12, 5292–5301. [Google Scholar] [CrossRef]
- Mohamed, M.; El-AAty, M.A.; Moawaed, S.; Hashad, A.; Abdel-Aziz, E.; Othman, H.; Hassabo, A.G. Smart textiles via photochromic and thermochromic colorant. J. Text. Color. Polym. Sci. 2022, 19, 235–243. [Google Scholar] [CrossRef]
- Al-Nahrawi, M.S. Effect of different structural compositions of blended cotton knitted fabrics on the functional performance properties of sportswear. J. Res. Fields Specif. Educ. 2019, 22, 1–38. [Google Scholar]
- Pecz, B.; Vouroutzis, N.; Radnoczi, G.Z.; Frangis, N.; Stoemenos, J. Structural characteristics of the Si whiskers grown by Ni-metal-induced-lateral-crystallization. Nanomaterials 2021, 11, 1878. [Google Scholar] [CrossRef]
- Po-sa, L.; Molnar, G.; Kalas, B.; Baji, Z.; Czigany, Z.; Petrik, P.; Volk, J. A rational fabrication method for low switching-temperature VO₂. Nanomaterials 2021, 11, 212. [Google Scholar] [CrossRef] [PubMed]
- Sang, M.; Shin, J.; Kim, K.; Yu, K.J. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 2019, 9, 374. [Google Scholar] [CrossRef] [PubMed]
- Abu Hajleh, M.N.; Abu-Huwaij, R.; AL-Samydai, A.; Al-Halaseh, L.K.; Al-Dujaili, E.A. The revolution of cosmeceuticals delivery by using nanotechnology: A narrative review of advantages and side effects. J. Cosmet. Dermatol. 2021, 20, 3818–3828. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, P.K.; Arya, A.; Ramniwas, S.; Tyagi, S. Recent trends in nanotechnology in precision and sustainable agriculture. Front. Plant Sci. 2023, 14, 1256319. [Google Scholar] [CrossRef]
- Asmatulu, R.; Veisi, Z.; Uddin, M.N.; Mahapatro, A. Highly sensitive and reliable electrospun polyaniline nanofiber-based biosensor as a robust platform for COX-2 enzyme detections. Fibers Polym. 2019, 20, 966–974. [Google Scholar] [CrossRef]
- Dasgupta, N.; Ranjan, S.; Ramalingam, C. Applications of nanotechnology in agriculture and water quality management. Environ. Chem. Lett. 2017, 15, 591–605. [Google Scholar] [CrossRef]
- Jurak, S.F.; Jurak, E.; Uddin, M.N.; Asmatulu, R. Functional superhydrophobic coating systems for possible corrosion mitigation. Int. J. Autom. Technol. 2020, 14, 148–158. [Google Scholar] [CrossRef]
- Kumar, S.S.A.; Uddin, M.N.; Rahman, M.M.; Asmatulu, R. Introducing graphene thin films into carbon fiber composite structures for lightning strike protection. Polym. Compos. 2018, 40 (Suppl. S1), E517–E525. [Google Scholar] [CrossRef]
- Uddin, M.N.; Le, L.; Zhang, B.; Nair, R.; Asmatulu, R. Effects of graphene thin films and nanocomposite coatings on fire retardancy and thermal stability of aircraft composites: A comparative study. J. Eng. Mater. Technol. 2019, 141, 031004. [Google Scholar] [CrossRef]
- Komaiko, J.S.; McClements, D.J. Formation of food-grade nanoemulsions using low-energy preparation methods: A review of available methods. Compr. Rev. Food Sci. Food Saf. 2016, 15, 331–352. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, S.J.; Choi, D.S.; Hur, S.J. Current topics in active and intelligent food packaging for preservation of fresh foods. J. Sci. Food Agric. 2015, 95, 2799–2810. [Google Scholar] [PubMed]
- Bahrami, M.; Nezamzadeh-Ejhieh, A. Effect of supporting and hybridizing of FeO and ZnO semiconductors onto an Iranian clinoptilolite nanoparticles and the effect of ZnO/FeO ratio in the solar photodegradation of fishponds wastewater. Mater. Sci. Semicond. Process. 2014, 27, 833–840. [Google Scholar]
- Chen, C.C.; Lin, C.L.; Chen, L.C. Functionalized carbon nanomaterial supported palladium nanocatalysts for electrocatalytic glucose oxidation reaction. Electrochim. Acta 2015, 152, 408–416. [Google Scholar] [CrossRef]
- Khani, R.; Sobhani, S.; Beyki, M.H. Highly selective and efficient removal of lead with magnetic nano-adsorbent: Multivariate optimization, isotherm, and thermodynamic studies. J. Colloid Interface Sci. 2016, 466, 198–205. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Dasmeh, H.R.; Sajadi, S.M. Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity. J. Alloys Compd. 2018, 763, 1024–1034. [Google Scholar]
- Choudhury, H.; Gorain, B.; Karmakar, S.; Biswas, E.; Dey, G.; Barik, R.; Mandal, M.; Pal, T.K. Improvement of cellular uptake, in vitro antitumor activity, and sustained release profile with increased bioavailability from a nanoemulsion platform. Int. J. Pharm. 2014, 460, 131–143. [Google Scholar]
- Gallarate, M.; Chirio, D.; Bussano, R.; Peira, E.; Battaglia, L.; Baratta, F.; Trotta, M. Development of O/W nanoemulsions for ophthalmic administration of timolol. Int. J. Pharm. 2013, 440, 126–134. [Google Scholar]
- Park, J.C.; Song, H. Metal@silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011, 4, 33–49. [Google Scholar]
- Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Jacks, T.; Anderson, D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. 2012, 12, 39–50. [Google Scholar]
- Chen, G.F.; Jia, H.M.; Zhang, L.Y.; Chen, B.H.; Li, J.T. An efficient synthesis of 2-substituted benzothiazoles in the presence of FeCl₃/Montmorillonite K-10 under ultrasound irradiation. Ultrason. Sonochem. 2013, 20, 627–632. [Google Scholar]
- Guo, S.; Zhang, X.; Zhu, W.; He, K.; Su, D.; Mendoza-Garcia, D.; Ho, S.F.; Lu, G.; Sun, S. Nanocatalyst superior to Pt for oxygen reduction reactions: The case of core/shell Ag(Au)/CuPd nanoparticles. J. Am. Chem. Soc. 2014, 136, 15026–15033. [Google Scholar] [PubMed]
- Pereira, C.; Pereira, A.M.; Freire, C.; Pinto, T.V.; Costa, R.S.; Teixeira, J.S. Nanoengineered textiles: From advanced functional nanomaterials to groundbreaking high-performance clothing. In Handbook of Functionalized Nanomaterials for Industrial Applications; Hussain, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 611–714. [Google Scholar]
- Chen, J.; Zhan, Y.; Wang, Y.; Han, D.; Tao, B.; Luo, Z.; Ma, S.; Wang, Q.; Li, X.; Fan, L.; et al. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater. 2018, 80, 154–168. [Google Scholar] [PubMed]
- Lim, T.H.; Kim, S.H.; Oh, K.W. Fabrication of Organic Materials for Electronic Textiles. In Handbook of Smart Textiles; Tao, X., Ed.; Springer: Singapore, 2015; pp. 739–773. [Google Scholar]
- Fateixa, S.; Pinheiro, P.C.; Nogueira, H.I.; Trindade, T. Gold loaded textile fibres as substrates for SERS detection. J. Mol. Struct. 2019, 1185, 333–340. [Google Scholar]
- Rezaie, A.; Montazer, M. In situ incorporation and loading of copper nanoparticles into a palmitic–lauric phase-change material on polyester fibers. J. Appl. Polym. Sci. 2019, 136, 46951. [Google Scholar]
- Muzammal, S.; Ahmad, A.; Sheraz, M.; Kim, J.; Ali, S.; Hanif, M.B.; Hussain, I.; Pandiaraj, S.; Alodhayb, A.; Javed, M.S.; et al. Polymer-supported nanomaterials for photodegradation: Unraveling the methylene blue menace. Energy Convers. Manag. X 2024, 22, 100547. [Google Scholar]
- Farid, M.F.; Rehman, M.U.U.; Rehman, J.U.; Sajjad, W.; Fazal, M.W.; Khan, M.A.; Akhtar, N. In situ synthesis of manganese oxide/iron oxide/polyaniline composite catalyst for oxygen evolution reaction. J. Mater. Res. 2024, 39, 981–991. [Google Scholar]
- Kežionis, A.; Šalkus, T.; Dudek, M.; Madej, D.; Mosiałek, M.; Napruszewska, B.D.; Łasocha, W.; Hanif, M.B.; Motola, M. Investigation of alumina- and scandia-doped zirconia electrolyte for solid oxide fuel cell applications: Insights from broadband impedance spectroscopy and distribution of relaxation times analysis. J. Power Sources 2024, 591, 233846. [Google Scholar]
- ur Rehman, J.; Chowdhury, M.H. Super-capacitors and other fiber-shaped batteries as energy storage devices for flexible electronic devices. In Proceedings of the IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Glasgow, UK, 7–10 July 2019; pp. 1–3. [Google Scholar]
- Salahuddin, M.; Uddin, M.N.; Hwang, G.; Asmatulu, R. Super-Hydrophobic PAN Nanofibers for Gas Diffusion Layers of Proton Exchange Membrane Fuel Cells for Cathodic Water Management. Int. J. Hydrogen Energy 2018, 43, 11530–11538. [Google Scholar]
- Nigro, R.L.; Fiorenza, P.; Pécz, B.; Eriksson, J. Nanotechnology for electronic materials and devices. Nanomaterials 2022, 12, 3319. [Google Scholar] [CrossRef]
- Li, S.; Tian, S.; Yao, Y.; He, M.; Chen, L.; Zhang, Y.; Zhai, J. Gallic Enhanced Electrical Performance of Monolayer MoS2 with Rare Earth Element Sm Doping. Nanomaterials 2021, 11, 769. [Google Scholar]
- Yamasue, K.; Cho, Y. Boxcar Averaging Scanning Nonlinear Dielectric Microscopy. Nanomaterials 2022, 12, 794. [Google Scholar] [CrossRef] [PubMed]
- Aithal, S.; Aithal, P. Green and eco-friendly Nanotechnology–concepts and industrial prospects. Int. J. Manag. Technol. Soc. Sci. (IJMTS) 2021, 6, 1–31. [Google Scholar]
- Costa, L.G.; Cole, T.B.; Dao, K.; Chang, Y.C.; Coburn, J.; Garrick, J.M. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol. Ther. 2020, 210, 107523. [Google Scholar] [PubMed]
- Harifi, T.; Montazer, M. Application of nanotechnology in sports clothing and flooring for enhanced sports activities, performance, efficiency, and comfort: A review. J. Ind. Text. 2017, 46, 1147–1169. [Google Scholar]
- Gupta, V.; Mohapatra, S.; Mishra, H.; Farooq, U.; Kumar, K.; Ansari, M.J.; Iqbal, Z. Nanotechnology in cosmetics and cosmeceuticals—A review of latest advancements. Gels 2022, 8, 173. [Google Scholar] [CrossRef]
- Elmustafa, S.A.A.; Sohal, H.S. Nanotechnology in communication engineering: Issues, applications, and future possibilities. World Sci. News 2017, 66, 134–148. [Google Scholar]
- Yang, Y.; Jiao, P. Nanomaterials and nanotechnology for biomedical soft robots. Mater. Today Adv. 2023, 17, 100338. [Google Scholar]
- Naskar, M. Polymer nanocomposites for structure and construction applications. In Properties and Applications of Polymer Nanocomposites: Clay and Carbon Based Polymer Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2017; pp. 37–56. [Google Scholar]
- Sharma, S.; Sudhakara, P.; Omran, A.A.; Singh, J.; Ilyas, R.A. Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers 2021, 13, 2898. [Google Scholar] [CrossRef]
- Mishra, K.; Devi, N.; Siwal, S.S.; Zhang, Q.; Alsanie, W.F.; Scarpa, F.; Thakur, V.K. Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. Adv. Sci. 2022, 9, 2202187. [Google Scholar]
- Ates, B.; Koytepe, S.; Ulu, A.; Gurses, C.; Thakur, V.K. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 2020, 120, 9304–9362. [Google Scholar]
- Chikwendu, O.C.; Emeka, U.C.; Onyekachi, E. The optimization of polymer-based nanocomposites for advanced engineering applications. World J. Adv. Res. Rev. 2025, 25, 755–763. [Google Scholar] [CrossRef]
- Anastasia-dis, S.H.; Chrissopoulou, K.; Stratakis, E.; Kavatzikidou, P.; Kaklamani, G.; Ranella, A. How the physicochemical properties of manufactured nanomaterials affect their performance in dispersion and their applications in biomedicine: A review. Nanomaterials 2022, 12, 552. [Google Scholar] [CrossRef] [PubMed]
- Ogi, T.; Zulhijah, R.; Iwaki, T.; Okuyama, K. Recent progress in nanoparticle dispersion using bead mill. KONA Powder Part. J. 2017, 34, 3–23. [Google Scholar] [CrossRef]
- Santagiuliana, G.; Picot, O.T.; Crespo, M.; Porwal, H.; Zhang, H.; Li, Y.; Rubini, L.; Colonna, S.; Fina, A.; Barbieri, E.; et al. Breaking the nanoparticle loading–dispersion dichotomy in polymer nanocomposites with the art of croissant-making. ACS Nano 2018, 12, 9040–9050. [Google Scholar] [CrossRef]
- Kim, S.; Oh, S.M.; Kim, S.Y.; Park, J.D. Role of adsorbed polymers on nanoparticle dispersion in drying polymer nanocomposite films. Polymers 2021, 13, 2960. [Google Scholar] [CrossRef]
- Jouault, N.; Zhao, D.; Kumar, S.K. Role of casting solvent on nanoparticle dispersion in polymer nanocomposites. Macromolecules 2014, 47, 5246–5255. [Google Scholar] [CrossRef]
Silane Name | Chemical Formula | Chemical Structure | References |
---|---|---|---|
3-Methacryloxypropyltrimethoxysilane | C10H20Si | CH=C(CH3)COO(CH2)3Si(OCH)3 | [28] |
3-Mercaptopropyltriethoxysilane | C9H22O3SSi | HS(CH2)3Si(OCH3CH3)3 | [29] |
Vinyltriethoxysilane | C5H12O3Si | CH2=CHSi(OCHCH3)3 | [29] |
y-Aminopropyltriethoxysilane | C9H23NO3Si | NH2(CH2)3Si(OCH2CH3)3 | [28] |
Bis-3Triethoxysilylpropyl Tetrasulfide | C18H42O6S4Si2 | (CH2)3Si(OCH2CH3)3-S-S-S-S-(CH2)3Si(OCH2CH3)3 | [29] |
Category | Description | Examples |
---|---|---|
Nanomedicine | Improves targeted drug delivery, reducing side effects and boosting treatment efficacy | Nanoparticles release drugs at specific sites like tumors, enabling effective cancer treatment; advanced imaging tools |
Nanoelectronics | Enables creation of smaller, faster, and more-efficient devices | Carbon nanotubes and graphene in transistors for enhanced computing; flexible electronics for medical devices |
Energy Storage and Generation | Advances the performance of batteries, supercapacitors, and solar cells | Lithium-ion batteries with nanostructured electrodes offer higher energy densities; nanomaterials improve solar cells |
Environmental Applications | Addresses environmental challenges like water purification and pollution control | Nanofilters for cleaner water; sensors for pollution monitoring; nanoremediation for contaminated sites |
Nanomaterials in Consumer Products | Enhances the properties of everyday items, including cosmetics, clothing, and food packaging | Nanoparticles improve UV protection in fabrics, enhance cosmetics’ efficacy, and create antimicrobial coatings |
Category | Description | Applications |
---|---|---|
Advancements in Nanomedicine | Focus on personalized medicine through nanobots for targeted drug delivery and minimally invasive surgeries | Nanobots delivering drugs directly to diseased cells; integration with AI for complex disease treatment |
Quantum Computing and Nanoelectronics | Role of PNCs in developing quantum computing through quantum dots and nanoscale transistors for efficient devices | Quantum dots as qubits; nanoscale interconnects enhancing computational power and efficiency |
Sustainable Energy Solutions | Use of nanomaterials in advanced energy storage systems and improving renewable energy technologies | Solid-state batteries; enhanced solar cells; efficient hydrogen production |
PNCs in Agriculture | Development of smart farming practices with nanopesticides, nanofertilizers, and monitoring systems for optimized resource use | Enhanced crop yields; real-time soil and crop condition monitoring; disease-resistant crops |
Advanced Materials and Manufacturing | Innovations in nanocomposites with enhanced properties for various industries and advancements in 3D printing techniques | Lightweight materials for aerospace and automotive applications; customized structures with nanoscale precision |
Environmental Sustainability and PNCs | Role of PNCs in water purification, waste management, and developing biodegradable materials | Nanomaterials for cleaner environments; eco-friendly products aligned with circular economy principles |
Healthcare and Diagnostics | Development of nanoscale biosensors and diagnostic tools for early disease detection and personalized medicine | Rapid diagnostic tools with high sensitivity; integration with wearable devices for remote healthcare |
PNCs in Space Exploration | Potential of PNCs in creating durable materials for space applications and in situ resource utilization | Lightweight materials for spacecraft; sensors and systems for monitoring space missions |
Ethical and Regulatory Considerations | Importance of evaluating risks and benefits of PNCs, focusing on health, environmental impacts, and regulatory frameworks | Developing comprehensive regulations and public engagement strategies for safe PNC development |
Education and Workforce Development | The increasing role of nanotechnology necessitates specialized training programs to develop a skilled workforce | University degree programs; specialized nanotechnology certifications; hands-on lab training; industry–academic partnerships |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Khan, K.H.; Parvez, M.M.H.; Irizarry, N.; Uddin, M.N. Polymer Nanocomposites with Optimized Nanoparticle Dispersion and Enhanced Functionalities for Industrial Applications. Processes 2025, 13, 994. https://doi.org/10.3390/pr13040994
Rahman MM, Khan KH, Parvez MMH, Irizarry N, Uddin MN. Polymer Nanocomposites with Optimized Nanoparticle Dispersion and Enhanced Functionalities for Industrial Applications. Processes. 2025; 13(4):994. https://doi.org/10.3390/pr13040994
Chicago/Turabian StyleRahman, Md Mahbubur, Karib Hassan Khan, Md Mahadi Hassan Parvez, Nelson Irizarry, and Md Nizam Uddin. 2025. "Polymer Nanocomposites with Optimized Nanoparticle Dispersion and Enhanced Functionalities for Industrial Applications" Processes 13, no. 4: 994. https://doi.org/10.3390/pr13040994
APA StyleRahman, M. M., Khan, K. H., Parvez, M. M. H., Irizarry, N., & Uddin, M. N. (2025). Polymer Nanocomposites with Optimized Nanoparticle Dispersion and Enhanced Functionalities for Industrial Applications. Processes, 13(4), 994. https://doi.org/10.3390/pr13040994