Mechanical, Morphological, and Electrical Characteristics of Cu-Loaded Acrylic Paint on a Fused Deposition Modeling Printed Polylactic Acid Surface
Abstract
:1. Introduction
Scope for the Present Work
2. Materials and Methods
2.1. Material Selection and Sample Preparation
2.2. Mechanical Testing
2.3. SEM Analysis
2.4. UV–Vis Diffuse Reflectance Spectroscopy
2.5. Electrical Property Testing
3. Results and Discussion
3.1. UTM Results and Discussion
3.2. Morphological Results and Discussion
3.2.1. SEM Results and Discussion
3.2.2. UV–Vis Diffuse Reflectance Spectroscopy Results and Discussion
4. Electrical Property Results and Discussion
5. Conclusions
- From mechanical properties, it may be concluded that there is a significant rise in tensile strength for the increasing content of Cu in the acrylic paint layer on the PLA substrate. The rise in tensile strength of the specimen was observed to be gradual and linear from 13.5 MPa (sample 1) to 15.6 MPa (sample 5), whereas the percentage of strain at failure ranges from 4.2% (sample 1) to 8.6% (sample 5). The application of a surface coating on the samples, often employed to improve mechanical characteristics, can promote the even distribution of stress throughout the material, reducing the occurrence of localized vulnerabilities and enhancing the overall tensile strength.
- SEM investigation detected the existence of copper powder particles in the PLA surface covered with acrylic–Cu. Sample 5, with 25 wt% Cu, showed the presence of a dense layer of acrylic–Cu coating compared to sample 1. Furthermore, the acrylic paint formed a layer around the Cu particle, preventing the presence of any unbound Cu particles on the surface. This led to a reduced electrical conductivity and dielectric constant.
- The UV–Vis DRS spectrum has a consistent absorbance level over the 400–800 nm range, followed by a sharp rise in absorbance within the 400 nm to 300 nm wavelength area. As the copper content rises, the absorption of UV radiation in the 400–600 nm wavelength range also increases, with the most significant change found in sample 5.
- The capacitance values increased up to 7.87 pF for (10 wt% Cu coating) from 3.6 pF for pure PLA. From the analysis, it may be concluded that the coating results in an average capacitance value of 5–7 pF for the Cu-coated sample, which shows nearly a 100% increase in the capacitance of Cu-coated PLA samples.
Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- R. Koloor, S.S.; Karimzadeh, A.; Abdullah, M.R.; Petrů, M.; Yidris, N.; Sapuan, S.M.; Tamin, M.N. Linear-nonlinear stiffness responses of carbon fiber-reinforced polymer composite materials and structures: A numerical study. Polymers 2021, 13, 344. [Google Scholar] [CrossRef] [PubMed]
- Shah, I.A.; Khan, R.; Koloor, S.S.R.; Petrů, M.; Badshah, S.; Ahmad, S.; Amjad, M. Finite element analysis of the ballistic impact on auxetic sandwich composite human body armor. Materials 2022, 15, 2064. [Google Scholar] [CrossRef]
- Wong, K.J.; Johar, M.; Koloor, S.S.R.; Petrů, M.; Tamin, M.N. Moisture Absorption Effects on Mode II Delamination of Carbon/Epoxy Composites. Polymers 2020, 12, 2162. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, I.; Kumar, D.; Yahya, M.Y.; Koloor, S.S.R. Mechanical and Morphological Characterizations of Laminated Object Manufactured 3D Printed Biodegradable Poly(lactic)acid with Various Physical Configurations. J. Mar. Sci. Eng. 2022, 10, 1954. [Google Scholar] [CrossRef]
- Asghari, Y.; Mohammadyan-Yasouj, S.; Petrů, M.; Ghandvar, H.; Koloor, S.R. 3D Printing and Implementation of Engineered Cementitious Composites—A Review. Case Stud. Constr. Mater. 2024, 21, e03462. [Google Scholar]
- Kumar, S.; Singh, I.; Koloor, S.S.R.; Kumar, D.; Yahya, M.Y. On Laminated Object Manufactured FDM-Printed ABS/TPU Multimaterial Specimens: An Insight into Mechanical and Morphological Characteristics. Polymers 2022, 14, 4066. [Google Scholar] [CrossRef]
- Vinay, D.L.; Keshavamurthy, R.; Erannagari, S.; Gajakosh, A.; Dwivedi, Y.D.; Bandhu, D.; Tamam, N.; Saxena, K.K. Parametric analysis of processing variables for enhanced adhesion in metal-polymer composites fabricated by fused deposition modeling. J. Adhes. Sci. Technol. 2023, 38, 331–354. [Google Scholar] [CrossRef]
- Fijoł, N.; Aguilar-Sánchez, A.; Ruiz-Caldas, M.-X.; Redlinger-Pohn, J.; Mautner, A.; Mathew, A.P. 3D printed polylactic acid (PLA) filters reinforced with polysaccharide nanofibers for metal ions capture and microplastics separation from water. Chem. Eng. J. 2022, 457, 141153. [Google Scholar]
- Sadeghian, H.; Ayatollahi, M.R.; Yahya, M.Y. Effects of copper additives on load carrying capacity and micro mechanisms of fracture in 3D-printed PLA specimens. Theor. Appl. Fract. Mech. 2023, 127, 104027. [Google Scholar]
- Hasanzadeh, R.; Mihankhah, P.; Azdast, T.; Aghaiee, S.; Park, C.B. Optimization of Process Parameters of Fused Filament Fabrication of Polylactic Acid Composites Reinforced by Aluminum Using Taguchi Approach. Metals 2023, 13, 1013. [Google Scholar] [CrossRef]
- Kam, M.; Saruhan, H.; İpekçi, A. Experimental investigation of vibration damping capabilities of 3D printed metal/polymer composite sleeve bearings. J. Thermoplast. Compos. Mater. 2022, 36, 2505–2522. [Google Scholar] [CrossRef]
- Petousis, M.; Vidakis, N.; Mountakis, N.; Moutsopoulou, A.; Papadakis, V.; Maravelakis, E. On the substantial mechanical reinforcement of Polylactic Acid with Titanium Nitride ceramic nanofillers in material extrusion 3D printing. Ceram. Int. 2023, 49, 16397–16411. [Google Scholar] [CrossRef]
- Yelamanchi, B.; MacDonald, E.; Gonzalez-Canche, N.; Carrillo, J.; Cortes, P. The fracture properties of fiber metal laminates based on a 3D printed glass fiber composite. J. Thermoplast. Compos. Mater. 2020, 36, 815–835. [Google Scholar]
- Raichur, S.; Ravishankar, R.; Kumar, R.R. Tribological Studies of Nanoclay-Reinforced PLA Composites Developed by 3D Printing Technology. J. Inst. Eng. Ser. D 2024, 105, 517–525. [Google Scholar]
- Mansour, M.T.; Tsongas, K.; Tzetzis, D. Carbon-Fiber- and Nanodiamond-Reinforced PLA Hierarchical 3D-Printed Core Sandwich Structures. J. Compos. Sci. 2023, 7, 285. [Google Scholar] [CrossRef]
- Fijoł, N.; Mautner, A.; Grape, E.S.; Bacsik, Z.; Inge, A.K.; Mathew, A.P. MOF@Cell: 3D printed biobased filters anchored with a green metal–organic framework for effluent treatment. J. Mater. Chem. A 2023, 11, 12384–12394. [Google Scholar] [CrossRef]
- Paz-González, J.A.; Velasco-Santos, C.; Villarreal-Gómez, L.J.; Alcudia-Zacarias, E.; Olivas-Sarabia, A.; Cota-Leal, M.A.; Flores-López, L.Z.; Gochi-Ponce, Y. Structural composite based on 3D printing polylactic acid/carbon fiber laminates (PLA/CFRC) as an alternative material for femoral stem prosthesis. J. Mech. Behav. Biomed. Mater. 2022, 138, 105632. [Google Scholar]
- Ambruş, S.; Muntean, R.; Codrean, C.; Uţu, I.-D. Influence of printing conditions on the mechanical properties of copper-polylactic acid composites obtained by 3D printing fused deposition modelling. Mater. Today Proc. 2022, 72, 580–585. [Google Scholar] [CrossRef]
- Bodaghi, M.; Sadooghi, A.; Bakhshi, M.; Hashemi, S.J.; Rahmani, K.; Motamedi, M.K. Glass Fiber Reinforced Acrylonitrile Butadiene Styrene Composite Gears by FDM 3D Printing. Adv. Mater. Interfaces 2023, 10, 2300337. [Google Scholar]
- Mohammadi-Zerankeshi, M.; Alizadeh, R. 3D-printed PLA-Gr-Mg composite scaffolds for bone tissue engineering applications. J. Mater. Res. Technol. 2022, 22, 2440–2446. [Google Scholar]
- Sharifi, J.; Paserin, V.; Fayazfar, H. Sustainable direct metallization of 3D-printed metal-infused polymer parts: A novel green approach to direct copper electroless plating. Adv. Manuf. 2024, 12, 784–797. [Google Scholar]
- Kumar, R.; Kumar, M.; Chohan, J.S.; Singh, N.K.; Mahajan, D.K. Corrosion and Thermal Analysis of 316L Stainless Steel Coated PLA Parts Fabricated by FDM Process for Biomedical Applications. Prot. Met. Phys. Chem. Surf. 2023, 59, 736–749. [Google Scholar] [CrossRef]
- Moraczewski, K.; Trafarski, A.; Karasiewicz, T.; Mazurkiewicz, M.; Szabliński, K.; Augustyn, P.; Rytlewski, P. Copper electroless metallization of 3D printed poly(lactide acid) elements via tannic acid or polydopamine coatings and silver catalyst. Mater. Today Commun. 2023, 34, 105332. [Google Scholar]
- Inclán-Sánchez, L. Performance Evaluation of a Low-Cost Semitransparent 3D-Printed Mesh Patch Antenna for Urban Communication Applications. Electronics 2023, 13, 153. [Google Scholar] [CrossRef]
- Aziz, M.; El Hassan, A.; Hussein, M.; Zaneldin, E.; Al-Marzouqi, A.H.; Ahmed, W. Characteristics of antenna fabricated using additive manufacturing technology and the potential applications. Heliyon 2024, 10, e27785. [Google Scholar] [PubMed]
- Farajian, J.; Hatami, O.; Bakhtiari, M.; Darabinajand, B.; Mahboubkhah, M. Investigation of Mechanical Properties of 3D-Printed PLA Coated with PU/MWCNTs in a Corrosive Environment. Arab. J. Sci. Eng. 2024, 49, 11181–11193. [Google Scholar]
- Εkonomou, S.Ι.; Soe, S.; Stratakos, A.C. An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens. J. Mech. Behav. Biomed. Mater. 2022, 137, 105536. [Google Scholar]
- Moradi, M.; Dezaki, M.L.; Kheyri, E.; Rasouli, S.A.; Attar, M.A.; Bodaghi, M. Simultaneous FDM 4D printing and magnetizing of iron-filled polylactic acid polymers. J. Magn. Magn. Mater. 2023, 568, 170425. [Google Scholar]
- Sukindar, N.A.; Yasir, A.S.H.M.; Azhar, M.A.M.; Halim, N.F.H.A.; Sulaiman, M.H.; Sabli, A.S.H.A.; Ariffin, M.K.A.M. Evaluation of the surface roughness and dimensional accuracy of low-cost 3D-printed parts made of PLA–aluminum. Heliyon 2024, 10, e25508. [Google Scholar]
- Alzyod, H.; Takacs, J.; Ficzere, P. Improving surface smoothness in FDM parts through ironing post-processing. J. Reinf. Plast. Compos. 2023, 43, 671–681. [Google Scholar] [CrossRef]
- Amin, M.; Singh, M.; Ravi, K. Fabrication of superhydrophobic PLA surfaces by tailoring FDM 3D printing and chemical etching process. Appl. Surf. Sci. 2023, 626, 157217. [Google Scholar] [CrossRef]
- Abdi, B.; Koloor, S.S.R.; Abdullah, M.R.; Amran, A.; Yahya, M.Y. Effect of strain-rate on flexural behavior of composite sandwich panel. Appl. Mech. Mater. 2012, 229, 766–770. [Google Scholar] [CrossRef]
- Joshani, M.; Koloor, S.; Abdullah, R. Damage Mechanics Model for Fracture Process of Steel-Concrete Composite Slabs. Appl. Mech. Mater. 2012, 165, 339–345. [Google Scholar] [CrossRef]
- Costanzo, G.D.; Ribba, L.; Goyanes, S.; Ledesma, S. Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes. J. Phys. D Appl. Phys. 2014, 47, 135103. [Google Scholar] [CrossRef]
- Thangavel, S.; Ponnusamy, S. Application of 3D printed polymer composite as capacitive sensor. Sens. Rev. 2019, 40, 54–61. [Google Scholar] [CrossRef]
- Kuzmanić, I.; Vujović, I.; Petković, M.; Šoda, J. Influence of 3D printing properties on relative dielectric constant in PLA and ABS materials. Prog. Addit. Manuf. 2023, 8, 703–710. [Google Scholar] [CrossRef]
Machine Parameters | Value |
---|---|
Base temperature | 65 °C |
Nozzle temperature | 210 °C |
Infill percentage | 10% |
Number of layers | 4 |
Infill orientation | 45 degrees |
Infill pattern | Linear |
Sample | Capacitance | Dissipation |
---|---|---|
1 | 6.96 ± 0.42 pF | 0.0399 ± 0.02 |
2 | 7.80 ± 0.95 pF | 0.0626 ± 0.02 |
3 | 6.82 ± 0.06 pF | 0.0057 ± 0.01 |
4 | 7.40 ± 0.33 pF | 0.0720 ± 0.06 |
5 | 5.70 ± 0.23 pF | 0.1316 ± 0.07 |
Pure PLA | 3.59 ± 0.14 pF | 0.0451 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Tiwari, P.; Rahimian Koloor, S.S. Mechanical, Morphological, and Electrical Characteristics of Cu-Loaded Acrylic Paint on a Fused Deposition Modeling Printed Polylactic Acid Surface. Processes 2025, 13, 1059. https://doi.org/10.3390/pr13041059
Kumar S, Tiwari P, Rahimian Koloor SS. Mechanical, Morphological, and Electrical Characteristics of Cu-Loaded Acrylic Paint on a Fused Deposition Modeling Printed Polylactic Acid Surface. Processes. 2025; 13(4):1059. https://doi.org/10.3390/pr13041059
Chicago/Turabian StyleKumar, Sudhir, Pulkit Tiwari, and Seyed Saeid Rahimian Koloor. 2025. "Mechanical, Morphological, and Electrical Characteristics of Cu-Loaded Acrylic Paint on a Fused Deposition Modeling Printed Polylactic Acid Surface" Processes 13, no. 4: 1059. https://doi.org/10.3390/pr13041059
APA StyleKumar, S., Tiwari, P., & Rahimian Koloor, S. S. (2025). Mechanical, Morphological, and Electrical Characteristics of Cu-Loaded Acrylic Paint on a Fused Deposition Modeling Printed Polylactic Acid Surface. Processes, 13(4), 1059. https://doi.org/10.3390/pr13041059