Biomass-Derived Syngas Chemical Looping Combustion Using Fluidizable Oxygen Carriers: A Review
Abstract
:1. Introduction
2. The Chemical Looping Combustion (CLC) Process
3. CLC Process Thermodynamics
4. Oxygen Carrier Requirements
4.1. Oxygen Carriers for CLC
- An OC with good fluidizability properties at the anticipated CLC operating conditions. This is essential for a CLC process configured with circulating beds where fluidization in both the Air and the Fuel Reactor is considered.
- An OC with a high capacity for oxygen transport from the Air Reactor to the Fuel Reactor. This is significant to minimize the OC recirculating flow.
- An OC showing high reactivity and high stability in both the Air Reactor and the Fuel Reactor. This is important to decrease the CLC operational process costs, given that, without these properties, frequent replacements of the used OC with a fresh OC sample will be required.
- A high resistance of the OC to particle attrition with little elutriated solids and negligible solid agglomeration. This is critical to minimize oxygen carrier losses and frequent oxygen carrier replacement impacting in the CLC process operational costs.
- A small carbon deposition on the OC in the Fuel Reactor. If this is not the case, the deposited carbon on the OC, released in the Air Reactor as CO2, will reduce the desired high CO2 separation efficiency of the CLC process.
- An OC with a low manufacturing cost and with insignificant environmental impact.
4.2. OC Preparation Methods
4.3. Proposed Oxygen Carriers
5. NiO-Based Oxygen Carriers in BMD Syngas CLC
6. Preparation of the High-Performance Oxygen Carrier (HPOC)
7. CREC Riser Simulator to Establish HPOC Performance
8. CLC Reaction Network
9. Kinetics of CLC Using HPOC
OC/Support | Conditions/Reactants | Kinetics | Activation Energy (kJ/mole) | References |
---|---|---|---|---|
60wt% NiO/Al2O3 | TGA (600–950 °C), H2 and CH4 | SCM | [93,98] | |
20wt% NiO-/Al2O3 | TPR-TPO (200–750 °C) H2 and O2 | NNGM | [58] | |
20wt% NiO/Co-Al2O3 | TPO, TPR (200–750 °C) CREC-RS (650 °C) H2 and O2 | NNGM | [99] | |
20 wt% NiO/Al2O3 | CREC-RS (680 °C) CH4 | SCM, NNGM, PLM | [35] | |
20wt% NiO/La-Al2O3 | TPR,TPO (200–750 °C) CREC-RS (650 °C) H2 and CH4 | NNGM | [66] | |
40wt% NiO/NiAl2O4 | TPR (300–600 °C) | SCM | [63] | |
65wt% NiO/Al2O3 | TGA (800–950 °C) H2 and CH4 | SCM | [94] | |
15wt% NiO/Al2O3 | Fixed Bed (600–900 °C) CH4, H2, CO | MVM | [100] | |
40wt% NiO/NiAl2O4 | TGA (750–1000 °C) CH4, H2, CO | SCM | [101] | |
18wt% NiO/Al2O3 | TGA (700–950 °C) H2, CO, O2 | SCM | [52] |
10. Large-Scale and Demonstration CLC Unit Simulation
11. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notation
as per Equation (39) (s−1); | |
Turbulent diffusivity (m2 s−1); | |
Mass concentration of “i” chemical species in g/cm3; | |
Activation energy methane conversion with NiO via CLC (kJ/mole); | |
Activation energy CO conversion with NiO via CLC (kJ/mole); | |
Activation energy hydrogen conversion with NiO via CLC (kJ/mole); | |
Activation energy oxygen conversion with Ni via CLC (kJ/mole); | |
1/RT. (101325/14.7) unit conversion factor; | |
Molar flow of the “i” in CLC products, with “i’ being the CO, H2 or CH4 (Kmol/s); | |
Function of particle position (xp), velocity(up), mass (Mp) and time(t); | |
Exerted particle force per unit fluid volume (newtons m−3); | |
Gravity acceleration (m2/s); | |
Pre-exponential frequency factor for the forward constant Reaction 3 (mol.m−3psi−1s); | |
Pre-exponential frequency factor for the forward constant Reaction 4 (mol.m−3psi−1s); | |
Pre-exponential frequency factor for the forward constant Reaction 4 (mol.m−3psi−1s); | |
Pre-exponential frequency factor for the forward Reaction 3 (mol.m−3psi−1s); | |
Pre-exponential frequency factor for the forward Reaction 3 (mol.m−3psi−1s); | |
Forward kinetic constant for Reaction 3 (mol.m−3psi−1s); | |
Forward kinetic constant for Reaction 4 (mol.m−3psi−1s); | |
Forward kinetic constant for Reaction 5 (mol.m−3psi−1s); | |
Backward kinetic constant for Reaction 4 (mol.m−3psi−1s); | |
Backward kinetic constant for Reaction 5 (mol.m−3psi−1s); | |
Chemical equilibrium constant for Reactions 3, 4 and 5 (-); | |
Isometric parameters; | |
Number of experimental data points; | |
Mass of an OC particle cluster; | |
Moles of i chemical species in CLC products, with “i’ being the CO, H2 or CH4; | |
partial pressures of “i” chemical species (psi); | |
Total pressure (atm); | |
Heat loses in Fuel Reactor (kJ/s); | |
Heat loses in Air Reactor (kJ/s); | |
Heat discarded from the heat engine (kJ/s); | |
Heat transfer from the Air Reactor (kJ/s); | |
Reaction rate of the species formation, or the consumption of “i” species (grams of “i” species/(gcat s)); | |
OC particle ratio (m); | |
Universal gas constant (J/mole K); | |
Particle Reynolds number (-); | |
Schmidt dimensionless number (-); | |
Reaction time in seconds; | |
Temperature (°K or °C); | |
Interstitial gas velocity (m s−1); | |
Particle velocity (m s−1); | |
Total reactor volume (cm3); | |
Mass of oxygen carrier in grams; | |
Shaft work extracted from the reversible thermal engine; | |
Shaft work extracted from the CLC unit; | |
in CREC Riser Simulator | |
in a Downer Fuel Reactor; | |
Molar fraction of the “i” component in the gas phase; | |
in CREC Riser Simulator in a downer unit. |
Greek Symbols
Fraction of converted NiO sites or Ni sites (-); | |
Weight of OC per unit reactor volume (kg m−3); | |
Enthalpy change from syngas oxidation in the Air Reactor (kJ/mole); | |
Entropy change from syngas oxidation in the Air Reactor (kJ/mole K); | |
Enthalpy change from syngas direct combustion; | |
Entropy change resulting from syngas direct combustion (kJ/mole K); | |
Overall efficiency = ηCLC, syngas. ηthermal,engine; | |
Ø; | |
Ws/(ΔHo)oxidation Ø; | |
(ΔHo)oxidation/(ΔHo)syngas, ratio; | |
Shear viscosity (Pa.s); | |
(ΔS)oxidation/(ΔS)syngas ratio; | |
Gas void fraction (-); | |
Gas density (kg m−3); | |
Particle density (kg m−3); | |
Fluid stress tensor (Pa); | |
Fluid particle tensor (Pa); | |
Particle cluster sphericity (-). |
Acronyms
BET | Brunauer–Emmett–Teller method for specific surface area; |
BMD Syngas | Biomass-derived syngas; |
CLC | Chemical looping combustion; |
COP | Co-precipitation; |
CPFD | Computational Particle Fluid Dynamics; |
CREC-RS | Chemical Reactor Engineering Centre; |
CREC-UWO | Chemical Reactor Engineering Centre, University of Western Ontario, Canada; |
DIS | Dissolution; |
IMP | Wet/incipient wetness impregnation; |
MM | Mechanical mixing; |
MP-PIC | Multi-phase particle-in-cell-fluid model; |
MVM | Modified volumetric model; |
NNGM | Nucleation and nuclei growth model; |
pFxB | Pressurized fixed bed; |
PLM | Power law model; |
SC | Solution combustion; |
SCM | Shrinking Core Model SD spray drying; |
Syngas-133 | 44v% H2, 33v% CO, 11v% CH4, and 12v% CO2 gas blend; |
Syngas-250 | 50v% H2, 20v% CO, 10v% CH4, and 20v% CO2 gas blend; |
TGA | Thermogravimetric analyzer; |
TPO | Temperature programmed oxidation; |
TPR | Temperature programmed reduction. |
Appendix A. Validation of Enthalpy Assigned Calculation Values
- (a)
- Thermodynamic Properties.
- Reaction 3: CH4 + NiO → Ni+ CO + 2 H2, ΔHR,3 = 204.41 kJ/mole;
- Reaction 4: H2 + NiO →H2O+ Ni, ΔHR,4 = − 1.7 kJ/mole;
- Reaction 5: CO + NiO →CO2 + Ni, ΔHR,4 = − 42.9 kJ/mole.
Chemical Species | ΔHf298 (kJ/mole) | ΔGf298 (kJ/mole) |
---|---|---|
Reducing Gas | ||
H2 | 0 | 0 |
CO | −110.5 | −137.2 |
CH4 | −74.8 | −50.5 |
CO2 | −393.50 | −3944.4 |
OC and O2 | ||
NiO | −240.1 | −157.1 |
Ni | 0 | 0 |
O2 | 0 | 0 |
- (b)
- Reaction Enthalpy for Syngas-133 and NiO.
- (c)
- Reaction Enthalpy for Syngas-250 and NiO.
- (d)
- Enthalpy of Oxidation for Ni-based OC.
- (e)
- Net enthalpy for the CLC process.
- (f)
- Enthalpy of Direct Combustion.
References
- Omoruyi, S.O.; Idiata, D.J. The Environmental and Cost Implication of Fossil Fuel Generators: New Benin Market, Benin City, Nigeria. Int. J. Eng. Tech. Adv. Eng. 2015, 5, 25–29. [Google Scholar]
- Carapellucci, R.; Milazzo, A. Membrane Systems for CO2 Capture and Their Integration with Gas Turbine Plants. Proc. Inst. Mech. Eng. Part J. Power Energy 2003, 217, 505–517. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in Carbon Dioxide Separation and Capture: A Review. J. Environ. Sci. 2008, 20, 14–27. [Google Scholar] [CrossRef]
- Zhao, H. 2024 Pioneers in Energy Research: Juan Adánez. Energy Fuels 2024, 38, 21666–21671. [Google Scholar] [CrossRef]
- Mahinpey, N.; Farooqui, A.; Abdalla, A.; Asghari, K. Chapter 12—Power Generation from Syngas. In Advances in Synthesis Gas: Methods, Technologies and Applications; Rahimpour, M.R., Makarem, M.A., Meshksar, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 3, pp. 289–319. ISBN 978-0-323-91878-7. [Google Scholar]
- Hossain, M.M.; de Lasa, H.I. Chemical-Looping Combustion (CLC) for Inherent CO2 Separation-a Review. Chem. Eng. Sci. 2008, 63, 4433–4451. [Google Scholar] [CrossRef]
- Adanez, J.; Abad, A.; Garcia-labiano, F.; Gayan, P.; Diego, L.F. De Progress in Chemical-Looping Combustion and Reforming Technologies. Prog. Energy Combust. Sci. 2012, 38, 215–282. [Google Scholar] [CrossRef]
- Ahmed, I.; de Lasa, H. 110th Anniversary: Kinetic Model for Syngas Chemical Looping Combustion Using a Nickel-Based Highly Performing Fluidizable Oxygen Carrier. Ind. Eng. Chem. Res. 2019, 58, 2801–2811. [Google Scholar] [CrossRef]
- Ahmed, I.; de Lasa, H. Syngas Chemical Looping Combustion Using a Highly Performing Fluidizable Oxygen Carrier. Catal. Today 2020, 343, 63–71. [Google Scholar] [CrossRef]
- Quddus, M.R. A Novel Mixed Metallic Oxygen Carrier for Chemical Looping Combustion: Preparation, Characterization & Kinetic Modeling; Western University: London, ON, Canada, 2013. [Google Scholar]
- Lewis, W.K.; Gilliland, E.R. Production of Pure Carbon Dioxide. U.S. Patent 2665971A, 12 January 1954. [Google Scholar]
- Lewis, W.K.; Gilliland, E.R.; Reed, W.A. Reaction of Methane with Copper Oxide in a Fluidized Bed. Ind. Eng. Chem. 1949, 41, 1227–1237. [Google Scholar] [CrossRef]
- Richter, H.J.; Knoche, K.F. Reversibility of Combustion Processes. In Proceedings of the ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1983; pp. 71–85. [Google Scholar]
- Ishida, M.; Zheng, D.; Akehata, T. Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis. Energy 1987, 12, 147–154. [Google Scholar] [CrossRef]
- McGlashan, N.R. Chemical-Looping Combustion—A Thermodynamic Study. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2008, 222, 1005–1019. [Google Scholar] [CrossRef]
- Hossain, M.M. Chemical-Looping Combustion with Gaseous Fuels: Thermodynamic Parametric Modeling. Arab. J. Sci. Eng. 2014, 39, 3415–3421. [Google Scholar] [CrossRef]
- Svoboda, K.; Slowinski, G.; Rogut, J.; Baxter, D. Thermodynamic Possibilities and Constraints for Pure Hydrogen Production by Iron Based Chemical Looping Process at Lower Temperatures. Energy Convers. Manag. 2007, 48, 3063–3073. [Google Scholar] [CrossRef]
- Ishida, M.; Jin, H. A Novel Chemical-Looping Combustor without NOx Formation. Ind. Eng. Chem. Res. 1996, 35, 2469–2472. [Google Scholar] [CrossRef]
- Ishida, M.; Jin, H. A Novel Combustor Based on Chemical-Looping Reactions and its Reaction Kinetics. J. Chem. Eng. Jpn. 1994, 27, 296–301. [Google Scholar] [CrossRef]
- Bartholomew, C.H.; Farrauto, R.J. Fundamentals of Industrial Catalytic Processes, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-471-45713-8. [Google Scholar]
- Daneshmand-Jahromi, S.; Sedghkerdar, M.H.; Mahinpey, N. A Review of Chemical Looping Combustion Technology: Fundamentals, and Development of Natural, Industrial Waste, and Synthetic Oxygen Carriers. Fuel 2023, 341, 127626. [Google Scholar] [CrossRef]
- Abdalla, A.; Tijani, M.M.; Mohamedali, M.; Mahinpey, N. The Effects of WO3 Addition to NiO/ZrO2 Oxygen Carriers for Chemical Looping Combustion of Methane. J. Environ. Chem. Eng. 2022, 10, 106945. [Google Scholar] [CrossRef]
- Mattisson, T.; Johansson, M.; Lyngfelt, A. The Use of NiO as an Oxygen Carrier in Chemical-Looping Combustion. Fuel 2006, 85, 736–747. [Google Scholar] [CrossRef]
- Stevens, R.W.; Newby, R.A.; Keairns, D.; Woods, M. Oxygen Carrier Production Cost. In Proceedings of the Clearwater Clean Energy Conference Clearwater; National Energy Technology Laboratory (NETL): Pittsburgh, PA, USA; Morgantown, WV, USA, 2019. [Google Scholar]
- Jerndal, E.; Mattisson, T.; Thijs, I.; Snijkers, F.; Lyngfelt, A. Investigation of NiO/NiAl2O4 Oxygen Carriers for Chemical-Looping Combustion Produced by Spray-Drying. Int. J. Greenh. Gas Control 2010, 4, 23–35. [Google Scholar] [CrossRef]
- Johansson, M.; Mattisson, T.; Lyngfelt, A. Comparison of Oxygen Carriers for Chemical-Looping Combustion. Therm. Sci. 2006, 10, 93–107. [Google Scholar] [CrossRef]
- Cabello, A.; Gayán, P.; Abad, A.; de Diego, L.F.; García-Labiano, F.; Izquierdo, M.T.; Scullard, A.; Williams, G.; Adánez, J. Long-Lasting Cu-Based Oxygen Carrier Material for Industrial Scale in Chemical Looping Combustion. Int. J. Greenh. Gas Control 2016, 52, 120–129. [Google Scholar] [CrossRef]
- Adánez-Rubio, I.; Bararpour, S.T.; Abad, A.; Gayán, P.; Williams, G.; Scullard, A.; Mahinpey, N.; Adánez, J. Performance Evaluation of a Cu-Based Oxygen Carrier Impregnated onto ZrO2 for Chemical-Looping Combustion (CLC). Ind. Eng. Chem. Res. 2020, 59, 7255–7266. [Google Scholar] [CrossRef]
- de Diego, L.F.; García-Labiano, F.; Adánez, J.; Gayán, P.; Abad, A.; Corbella, B.M.; María Palacios, J. Development of Cu-Based Oxygen Carriers for Chemical-Looping Combustion. Fuel 2004, 83, 1749–1757. [Google Scholar] [CrossRef]
- Karnaukhov, T.M.; Veselov, G.B.; Cherepanova, S.V.; Vedyagin, A.A. Sol-Gel Synthesis and Characterization of the Cu-Mg-O System for Chemical Looping Application. Materials 2022, 15, 2021. [Google Scholar] [CrossRef]
- Karami, D.; Soleimanisalim, A.H.; Sedghkerdar, M.H.; Mahinpey, N. Preparation of Novel Oxygen Carriers Supported by Ti, Zr-Shelled γ-Alumina for Chemical Looping Combustion of Methane. Ind. Eng. Chem. Res. 2020, 59, 3221–3228. [Google Scholar] [CrossRef]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The Evolution of “Sol-Gel” Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Cai, N. Oxidization and Reduction Kinetics of a Manganese Oxygen Carrier Granulated with the Spray Drying Method at a Tonnage Scale for Chemical Looping Combustion. Fuel 2021, 303, 121267. [Google Scholar] [CrossRef]
- Quddus, M.R.; Hossain, M.M.; de Lasa, H.I. Ni Based Oxygen Carrier Over γ-Al2O3 for Chemical Looping Combustion: Effect of Preparation Method on Metal Support Interaction. Catal. Today 2013, 210, 124–134. [Google Scholar] [CrossRef]
- Sedor, K.E.; Hossain, M.M.; de Lasa, H.I. Reactivity and Stability of Ni/Al2O3 Oxygen Carrier for Chemical-Looping Combustion (CLC). Chem. Eng. Sci. 2008, 63, 2994–3007. [Google Scholar] [CrossRef]
- Dueso, C.; Abad, A.; García-Labiano, F.; De Diego, L.F.; Gayán, P.; Adánez, J.; Lyngfelt, A. Reactivity of a NiO/Al2O3 Oxygen Carrier Prepared by Impregnation for Chemical-Looping Combustion. Fuel 2010, 89, 3399–3409. [Google Scholar] [CrossRef]
- Ohlemüller, P.; Reitz, M.; Ströhle, J.; Epple, B. Investigation of Chemical Looping Combustion of Natural Gas at 1 MWth Scale. Proc. Combust. Inst. 2019, 37, 4353–4360. [Google Scholar] [CrossRef]
- Siriwardane, R.; Riley, J.; Bayham, S.; Straub, D.; Tian, H.; Weber, J.; Richards, G. 50-kWth Methane/Air Chemical Looping Combustion Tests with Commercially Prepared CuO-Fe2O3-Alumina Oxygen Carrier with two Different Techniques. Appl. Energy 2018, 213, 92–99. [Google Scholar] [CrossRef]
- Langørgen, Ø.; Saanum, I.; Haugen, N.E.L. Chemical Looping Combustion of Methane Using a Copper-Based Oxygen Carrier in a 150 kW Reactor System. Energy Procedia 2017, 114, 352–360. [Google Scholar] [CrossRef]
- Gu, H.; Shen, L.; Zhang, S.; Niu, M.; Sun, R.; Jiang, S. Enhanced Fuel Conversion by Staging Oxidization in a Continuous Chemical Looping Reactor Based on Iron Ore Oxygen Carrier. Chem. Eng. J. 2018, 334, 829–836. [Google Scholar] [CrossRef]
- Rifflart, S.; Hoteit, A.; Yazdanpanah, M.M.; Pelletant, W.; Surla, K. Construction and Operation of a 10 kW CLC Unit with Circulation Configuration Enabling Independent Solid Flow Control. Energy Procedia 2011, 4, 333–340. [Google Scholar] [CrossRef]
- Linderholm, C.; Mattisson, T.; Lyngfelt, A. Long-Term Integrity Testing of Spray-Dried Particles in a 10-kW Chemical-Looping Combustor Using Natural Gas as Fuel. Fuel 2009, 88, 2083–2096. [Google Scholar] [CrossRef]
- Mattisson, T.; Lyngfelt, A. Capture of CO2 Using Chemical-Looping Combustion. In Proceedings of the First Biennial Meeting of the Scandinavian−Nordic Section of the Combustion Institute, Göteborg, Sweden, 18–20 April 2001; pp. 163–168. [Google Scholar]
- Bolt, P.H.; Habraken, F.H.P.M.; Geus, J.W. Formation of Nickel, Cobalt, Copper, and Iron Aluminates From α- and γ-Alumina-Supported Oxides: A Comparative Study. J. Solid State Chem. 1998, 135, 59–69. [Google Scholar] [CrossRef]
- Zafar, Q.; Mattisson, T.; Gevert, B. Redox Investigation of Some Oxides of Transition-State Metals Ni, Cu, Fe, and Supported on SiO2 and MgAl2O4. Energy Fuels 2006, 20, 34–44. [Google Scholar] [CrossRef]
- Jin, H.; Ishida, M. A New Type of Coal Gas Fueled Chemical-Looping Combustion. Fuel 2004, 83, 2411–2417. [Google Scholar] [CrossRef]
- Jin, H.; Okamoto, T.; Ishida, M. Development of a Novel Chemical-Looping Combustion: Synthesis of a Looping Material with a Double Metal Oxide of CoO−NiO. Energy Fuels 1998, 12, 1272–1277. [Google Scholar] [CrossRef]
- Mattisson, T.; Järdnäs, A.; Lyngfelt, A. Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen—Application for Chemical-Looping Combustion. Energy Fuels 2003, 17, 643–651. [Google Scholar] [CrossRef]
- Cho, P.; Mattisson, T.; Lyngfelt, A. Comparison of Iron-, Nickel-, Copper- and Manganese-Based Oxygen Carriers for Chemical-Looping Combustion. Fuel 2004, 83, 1215–1225. [Google Scholar] [CrossRef]
- Hossain, M.M.; de Lasa, H.I. Reactivity and Stability of Co-Ni/Al2O3 Oxygen Carrier in Multicycle CLC. AIChE J. 2007, 53, 1817–1829. [Google Scholar] [CrossRef]
- Ishida, M.; Yamamoto, M.; Ohba, T. Experimental Results of Chemical-Looping Combustion with NiO/NiAl2O4 Particle Circulation at 1200 °C. Energy Convers. Manag. 2002, 43, 1469–1478. [Google Scholar]
- Dueso, C.; García-Labiano, F.; Adánez, J.; de Diego, L.F.; Gayán, P.; Abad, A. Syngas Combustion in a Chemical-Looping Combustion System Using an Impregnated Ni-Based Oxygen Carrier. Fuel 2009, 88, 2357–2364. [Google Scholar] [CrossRef]
- Erri, P.; Varma, A. Spinel-Supported Oxygen Carriers for Inherent CO2 Separation during Power Generation. Ind. Eng. Chem. Res. 2007, 46, 8597–8601. [Google Scholar] [CrossRef]
- Shen, L.; Gao, Z.; Wu, J.; Xiao, J. Sulfur Behavior in Chemical Looping Combustion with NiO/Al2O3 Oxygen Carrier. Combust. Flame 2010, 157, 853–863. [Google Scholar] [CrossRef]
- Shen, L.; Wu, J.; Gao, Z.; Xiao, J. Characterization of Chemical Looping Combustion of Coal in a 1 kWth Reactor with a Nickel-Based Oxygen Carrier. Combust. Flame 2010, 157, 934–942. [Google Scholar] [CrossRef]
- Shen, L.; Wu, J.; Gao, Z.; Xiao, J. Reactivity Deterioration of NiO/Al2O3 Oxygen Carrier for Chemical Looping Combustion of Coal in a 10 kWth Reactor. Combust. Flame 2009, 156, 1377–1385. [Google Scholar] [CrossRef]
- Sedor, K.E.; Hossain, M.M.; de Lasa, H.I. Reduction Kinetics of a Fluidizable Nickel-Alumina Oxygen Carrier for Chemical-Looping Combustion. Can. J. Chem. Eng. 2008, 86, 323–334. [Google Scholar] [CrossRef]
- Hossain, M.M.M.; Sedor, K.E.E.; de Lasa, H.I.I. Co-Ni/Al2O3 Oxygen Carrier for Fluidized Bed Chemical-Looping Combustion: Desorption Kinetics and Metal-Support Interaction. Chem. Eng. Sci. 2007, 62, 5464–5472. [Google Scholar] [CrossRef]
- García-Labiano, F.; De Diego, L.F.; Gayán, P.; Adánez, J.; Abad, A.; Dueso, C. Effect of Fuel Gas Composition in Chemical-Looping Combustion with Ni-Based Oxygen Carriers. 1. Fate of Sulfur. Ind. Eng. Chem. Res. 2009, 48, 2499–2508. [Google Scholar] [CrossRef]
- Adánez, J.; Garcá-Labiano, F.; Gayán, P.; de Diego, L.F.; Abad, A.; Dueso, C.; Forero, C.R. Effect of Gas Impurities on the Behavior of Ni-Based Oxygen Carriers on Chemical-Looping Combustion. Energy Procedia 2009, 1, 11–18. [Google Scholar] [CrossRef]
- Gayán, P.; Dueso, C.; Abad, A.; Adanez, J.; de Diego, L.F.; García-Labiano, F. NiO/Al2O3 Oxygen Carriers for Chemical-Looping Combustion Prepared by Impregnation and Deposition-Precipitation Methods. Fuel 2009, 88, 1016–1023. [Google Scholar] [CrossRef]
- Hossain, M.M.; Lopez, D.; Herrera, J.; de Lasa, H.I. Nickel on Lanthanum-Modified γ-Al2O3 Oxygen Carrier for CLC: Reactivity and Stability. Catal. Today 2009, 143, 179–186. [Google Scholar] [CrossRef]
- Erri, P.; Varma, A. Diffusional Effects in Nickel Oxide Reduction Kinetics. Ind. Eng. Chem. Res. 2009, 48, 4–6. [Google Scholar] [CrossRef]
- Ishida, M.; Jin, H. Fundamental Study on a Novel Gas Turbine Cycle. J. Energy Resour. Technol. 2001, 123, 10–14. [Google Scholar] [CrossRef]
- Trueba, M.; Trasatti, S.P. γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects. Eur. J. Inorg. Chem. 2005, 2005, 3393–3403. [Google Scholar] [CrossRef]
- Hossain, M.M.; Quddus, M.R.; de Lasa, H.I. Reduction Kinetics of La Modified NiO/La-γAl2O3 Oxygen Carrier for Chemical-Looping Combustion. Ind. Eng. Chem. Res. 2010, 49, 11009–11017. [Google Scholar] [CrossRef]
- Villa, R.; Cristiani, C.; Groppi, G.; Lietti, L.; Forzatti, P.; Cornaro, U.; Rossini, S. Ni Based Mixed Oxide Materials for CH4 Oxidation under Redox Cycle Conditions. J. Mol. Catal. Chem. 2003, 204–205, 637–646. [Google Scholar] [CrossRef]
- Lasa, H.I.d. Riser Simulator. U.S. Patent 5102628A, 4 April 1992. [Google Scholar]
- de Lasa, H. Reactor and Multifunctional Riser and Downer Simulator Incorporating the Same. U.S. Patent 10220363B2, 3 May 2019. [Google Scholar]
- Lanza, A.; de Lasa, H. Scaling-up down Flow Reactors. CPFD Simulations and Model Validation. Comput. Chem. Eng. 2017, 101, 226–242. [Google Scholar] [CrossRef]
- de Lasa, H. The CREC Fluidized Riser Simulator a Unique Tool for Catalytic Process Development. Catalysts 2022, 12, 888. [Google Scholar] [CrossRef]
- Rostom, S.; de Lasa, H.I. Propane Oxidative Dehydrogenation Using Consecutive Feed Injections and Fluidizable VOx/γAl2O3 and VOx/ZrO2–γAl2O3 Catalysts. Ind. Eng. Chem. Res. 2017, 56, 13109–13124. [Google Scholar] [CrossRef]
- Aponte, Y.; de Lasa, H. A Zn-Offretite for the Adsorption of Thiophenic Species under Fluidized Catalytic Cracking Conditions. Synthesis, Characterization and Reactivity. Appl. Catal. B Environ. 2016, 189, 160–171. [Google Scholar] [CrossRef]
- Ayandiran, A.A.; Bakare, I.A.; Binous, H.; Al-Ghamdi, S.; Razzak, S.A.; Hossain, M.M. Oxidative Dehydrogenation of Propane to Propylene over VOx/CaO-γ-Al2O3 Using Lattice Oxygen. Catal. Sci. Technol. 2016, 6, 5154–5167. [Google Scholar] [CrossRef]
- Mazumder, J.; de Lasa, H.I. Catalytic Steam Gasification of Biomass Surrogates: Thermodynamics and Effect of Operating Conditions. Chem. Eng. J. 2016, 293, 232–242. [Google Scholar] [CrossRef]
- Pujro, R.; Falco, M.; Sedran, U. Production of Aromatic Compounds in the Heavy Naphtha and Light Cycle Oil Ranges: Catalytic Cracking of Aromatics and C10 Naphthenic-Aromatics. J. Chem. Technol. Biotechnol. 2016, 91, 336–345. [Google Scholar] [CrossRef]
- Bakare, I.A.; Mohamed, S.A.; Al-Ghamdi, S.; Razzak, S.A.; Hossain, M.M.; de Lasa, H.I. Fluidized Bed ODH of Ethane to Ethylene over VOx-MoOx/γ-Al2O3 Catalyst: Desorption Kinetics and Catalytic Activity. Chem. Eng. J. 2015, 278, 207–216. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Quddus, M.R.; Razzak, S.A.; Hossain, M.M.; de Lasa, H.I. Fluidizable NiO/Ce-γAl2O3 Oxygen Carrier for Chemical Looping Combustion. Energy Fuels 2015, 29, 6095–6103. [Google Scholar] [CrossRef]
- Del Rio, D.; Bastos, R.; Sedran, U. Commercial Additives for Sulfur Control in FCC Gasoline: Overall Analysis of Their Impact on LCO and Gasoline. Catal. Today 2013, 213, 206–210. [Google Scholar] [CrossRef]
- Al-Sabawi, M.; de Lasa, H. Modeling Thermal and Catalytic Conversion of Decalin under Industrial FCC Operating Conditions. Chem. Eng. Sci. 2010, 65, 626–644. [Google Scholar] [CrossRef]
- Salaices, E.; Serrano, B.; de Lasa, H. Biomass Catalytic Steam Gasification Thermodynamics Analysis and Reaction Experiments in a CREC Riser Simulator. Ind. Eng. Chem. Res. 2010, 49, 6834–6844. [Google Scholar] [CrossRef]
- de la Puente, G.; Ávila, A.; Chiovetta, G.; Martignoni, W.P.; Cerqueira, H.S.; Sedran, U. Adsorption of Hydrocarbons on FCC Catalysts under Reaction Conditions. Ind. Eng. Chem. Res. 2005, 44, 3879–3886. [Google Scholar] [CrossRef]
- García-Labiano, F.; Adánez, J.; de Diego, L.F.; Gayán, P.; Abad, A. Effect of Pressure on the Behavior of Copper-, Iron-, and Nickel-Based Oxygen Carriers for Chemical-Looping Combustion. Energy Fuels 2006, 20, 26–33. [Google Scholar] [CrossRef]
- Garcia-Labiano, F.; Diego, L. De Reduction and Oxidation Kinetics of a Copper-Based Oxygen Carrier Prepared by Impregnation for Chemical-Looping Combustion. Ind. Eng. Chem. Res. 2004, 43, 8168–8177. [Google Scholar] [CrossRef]
- Barin, I.; Platzki, G. Thermochemical Data of Pure Substances, 3rd ed.; VCH: Weinheim, NY, USA, 1995; ISBN 978-3-527-28745-1. [Google Scholar]
- Smith, J.M.; Van Ness, H.C.; Abbott, M.M. Introduction to Chemical Engineering Thermodynamics, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2018; ISBN 978-1-259-69652-7. [Google Scholar]
- Mazumder, J. Steam Gasification of Biomass Surrogates: Catalyst Develpment and Kinetic Modelling; The University of Western Ontario: London, ON, Canada, 2014; pp. 1–160. [Google Scholar]
- Ahmed, I. Syngas Chemical Looping Combustion Using A Fluidizable Oxygen Carrier: Reactivity, Kinetics, Reactor Simulation. Ph.D. Thesis, Western University, London, ON, Canada, 2018. [Google Scholar]
- Khawam, A.; Flanagan, D.R. Solid-State Kinetic Models: Basics and Mathematical Fundamentals. J. Phys. Chem. B 2006, 110, 17315–17328. [Google Scholar] [CrossRef]
- Zhou, Z.; Han, L.; Bollas, G.M. Kinetics of NiO Reduction by H2 and Ni Oxidation at Conditions Relevant to Chemical-Looping Combustion and Reforming. Int. J. Hydrogen Energy 2014, 39, 8535–8556. [Google Scholar] [CrossRef]
- Manukyan, K.V.; Avetisyan, A.G.; Shuck, C.E.; Chatilyan, H.A.; Rouvimov, S.; Kharatyan, S.L.; Mukasyan, A.S. Nickel Oxide Reduction by Hydrogen: Kinetics and Structural Transformations. J. Phys. Chem. C 2015, 119, 16131–16138. [Google Scholar] [CrossRef]
- Dai, X.; Cheng, J.; Li, Z.; Liu, M.; Ma, Y.; Zhang, X. Reduction Kinetics of Lanthanum Ferrite Perovskite for the Production of Synthesis Gas by Chemical-Looping Methane Reforming. Chem. Eng. Sci. 2016, 153, 236–245. [Google Scholar] [CrossRef]
- Abad, A.; García-Labiano, F.; de Diego, L.F.; Gayán, P.; Adánez, J. Reduction Kinetics of Cu-, Ni-, and Fe-Based Oxygen Carriers Using Syngas (CO + H2) for Chemical-Looping Combustion. Energy Fuels 2007, 21, 1843–1853. [Google Scholar] [CrossRef]
- Moghtaderi, B.; Song, H. Reduction Properties of Physically Mixed Metallic Oxide Oxygen Carriers in Chemical Looping Combustion. Energy Fuels 2010, 24, 5359–5368. [Google Scholar] [CrossRef]
- Dueso, C.; Ortiz, M.; Abad, A.; García-Labiano, F.; De Diego, L.F.; Gayán, P.; Adánez, J. Reduction and Oxidation Kinetics of Nickel-Based Oxygen-Carriers for Chemical-Looping Combustion and Chemical-Looping Reforming. Chem. Eng. J. 2012, 188, 142–154. [Google Scholar] [CrossRef]
- Boldyrev, V.V. Topochemistry of Thermal Decompositions of Solids. Thermochim. Acta 1986, 100, 315–338. [Google Scholar] [CrossRef]
- Burnham, A.K.; Weese, R.K.; Weeks, B.L. A Distributed Activation Energy Model of Thermodynamically Inhibited Nucleation and Growth Reactions and Its Application to the β−δ Phase Transition of HMX. J. Phys. Chem. B 2004, 108, 19432–19441. [Google Scholar] [CrossRef]
- Abad, A.; Adánez, J.; García-Labiano, F.; de Diego, L.F.; Gayán, P.; Celaya, J. Mapping of the Range of Operational Conditions for Cu-, Fe-, and Ni-Based Oxygen Carriers in Chemical-Looping Combustion. Chem. Eng. Sci. 2007, 62, 533–549. [Google Scholar] [CrossRef]
- Hossain, M.M.; de Lasa, H.I. Reduction and Oxidation Kinetics of Co-Ni/Al2O3 Oxygen Carrier Involved in a Chemical-Looping Combustion Cycles. Chem. Eng. Sci. 2010, 65, 98–106. [Google Scholar] [CrossRef]
- Iliuta, I.; Tahoces, R.; Patience, G.S.; Rifflart, S.; Luck, F. Chemical-Looping Combustion Process: Kinetics and Mathematical Modeling. AIChE J. 2010, 56, 1063–1079. [Google Scholar] [CrossRef]
- Abad, A.; Adánez, J.; García-Labiano, F.; de Diego, L.F.; Gayán, P.; Kolbitsch, P.; Pröll, T. CLC Modeling the Fuel Reactor at Fast Fluidization—Conversion of CH4 Using a NiO-Based Oxygen Carrier in a 12 kWth Unit. In Proceedings of the 1st International Conference on Chemical Looping, Lyon, France, 17–19 March 2010. [Google Scholar]
- Kim, H.R.; Wang, D.; Zeng, L.; Bayham, S.; Tong, A.; Chung, E.; Kathe, M.V.; Luo, S.; McGiveron, O.; Wang, A.; et al. Coal Direct Chemical Looping Combustion Process: Design and Operation of a 25-kWth Sub-Pilot Unit. Fuel 2013, 108, 370–384. [Google Scholar] [CrossRef]
- Abad, A.; De Diego, L.F.; García-Labiano, F.; Izquierdo, M.T.; Mendiara, T.; Gayán, P.; Adánez-Rubio, I.; Adánez, J. Reviewing the Operational Experience on Chemical Looping Combustion of Biomass at CSIC: I G-CLC vs CLOU. Energy Fuels 2024, 38, 20681–20706. [Google Scholar] [CrossRef]
- Markström, P.; Linderholm, C.; Lyngfelt, A. Chemical-Looping Combustion of Solid Fuels—Design and Operation of a 100 kW Unit with Bituminous Coal. Int. J. Greenh. Gas Control 2013, 15, 150–162. [Google Scholar] [CrossRef]
- Parker, J.M. CFD Model for the Simulation of Chemical Looping Combustion. Powder Technol. 2014, 265, 47–53. [Google Scholar] [CrossRef]
- Kolbitsch, P.; Pröll, T.; Bolhar-Nordenkampf, J.; Hofbauer, H. Design of a Chemical Looping Combustor Using a Dual Circulating Fluidized Bed (DCFB) Reactor System. Chem. Eng. Technol. 2009, 32, 398–403. [Google Scholar] [CrossRef]
- Ströhle, J.; Orth, M.; Epple, B. Design and Operation of a 1 MWth Chemical Looping Plant. Appl. Energy 2014, 113, 1490–1495. [Google Scholar] [CrossRef]
- Ahmed, I.; de Lasa, H. CO2 Capture Using Chemical Looping Combustion from a Biomass-Derived Syngas Feedstock: Simulation of a Riser–Downer Scaled-Up Unit. Ind. Eng. Chem. Res. 2020, 59, 6900–6913. [Google Scholar] [CrossRef]
- Tu, Q.; Luo, Z.; Wang, H. MP-PIC Simulation of the Gas-Solid Full-Loop Flow Characteristics in a Dual Fluidized Bed and Validation with Experimental Data. Chem. Eng. J. 2021, 421, 129835. [Google Scholar] [CrossRef]
- Jung, J.; Gamwo, I.K. Multiphase CFD-Based Models for Chemical Looping Combustion Process: Fuel Reactor Modeling. Powder Technol. 2008, 183, 401–409. [Google Scholar] [CrossRef]
- Cloete, S.; Johanse, S.T.; Amini, S. Multiphase CFD-Based Models for a Chemical Looping Combustion Process. In Proceedings of the 1st International Conference on Chemical Looping, Lyon, France, 17–19 March 2010. [Google Scholar]
- Mahalatkar, K.; Kuhlman, J.; Huckaby, E.D.; O’Brien, T. Computational Fluid Dynamic Simulations of Chemical Looping Fuel Reactors Utilizing Gaseous Fuels. Chem. Eng. Sci. 2011, 66, 469–479. [Google Scholar] [CrossRef]
- Hamilton, M.A.; Whitty, K.J.; Lighty, J.S. Numerical Simulation Comparison of Two Reactor Configurations for Chemical Looping Combustion and Chemical Looping with Oxygen Uncoupling. J. Energy Resour. Technol. 2016, 138, 042213. [Google Scholar] [CrossRef]
- Andrews, M.J.; O’Rourke, P.J. The Multiphase Particle-in-Cell (MP-PIC) Method for Dense Particulate Flows. Int. J. Multiph. Flow 1996, 22, 379–402. [Google Scholar] [CrossRef]
- Snider, D.M.; O’Rourke, P.J.; Andrews, M.J. Sediment Flow in Inclined Vessels Calculated Using a Multiphase Particle-in-Cell Model for Dense Particle Flows. Int. J. Multiph. Flow 1998, 24, 1359–1382. [Google Scholar] [CrossRef]
- O’Rourke, P.J.; Zhao, P.; Snider, D. A Model for Collisional Exchange in Gas/Liquid/Solid Fluidized Beds. Chem. Eng. Sci. 2009, 64, 1784–1797. [Google Scholar] [CrossRef]
- Anderson, T.B.; Jackson, R.O.Y. A Fluid Mechanical Description of Fluidized Beds. Ind. Eng. Chem. Fundam. 1967, 6, 527–539. [Google Scholar] [CrossRef]
- Jackson, R. The Dynamics of Fluidized Particles; Cambridge Monographs on Mechanics; Cambridge University Press: Cambridge, MA, USA, 2000; ISBN 978-0-521-78122-0. [Google Scholar]
- Smagorinsky, J. General Circulation Experiments with the Primitive Equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar]
- O’Rourke, P.J.; Snider, D.M. An Improved Collision Damping Time for MP-PIC Calculations of Dense Particle Flows with Applications to Polydisperse Sedimenting Beds and Colliding Particle Jets. Chem. Eng. Sci. 2010, 65, 6014–6028. [Google Scholar] [CrossRef]
- Chhabra, R.P.; Agarwal, L.; Sinha, N.K. Drag on Non-Spherical Particles: An Evaluation of Available Methods. Powder Technol. 1999, 101, 288–295. [Google Scholar] [CrossRef]
- Lanza, A. Cluster Fluid Dynamics in Down Flow Reactors: Experimental and Modeling Study. Ph.D. Thesis, Western University, London, ON, Canada, 2015. [Google Scholar]
ΔHreduction (kJ/mole O) | ΔHoxidation (kJ/mole O) | ΔHBMD syngasl (kJ/mole O) | ΔSoxidation (kJ/mole O °K) | ΔSfuel (kJ/mole O °K) | ψ | Ω | ηrev | |
---|---|---|---|---|---|---|---|---|
Syngas-133 | 2.498 | −240.1 | −238.0 | 0.2338 | 0.04001 | 1.008 | 6.94 | 99.0% |
Syngas-250 | 6.391 | −240.1 | −234.3 | 0.2423 | −0.0362 | 1.024 | 5.37 | 97.0 |
Method | Advantages and Disadvantages | References |
---|---|---|
Co-Precipitation | Pros: (i) OCs display high reactivity, (ii) OCs give good metal dispersion. Cons: (i) OC preparation method has a relatively high cost, (ii) OC particle size distributions are unsuitable for fluidized CLC. | [22,23,24] |
Freeze Granulation | Pros: (i) OCs have high mesoporosity, (ii) OCs are manufactured from homogenous precursors. Cons: (i) OCs are expensive, (ii) manufactured OCs have wide particle size distributions, (iii) OC preparation requires a binder, (iv) OCs have low mechanical strength. | [25,26] |
Wet/Incipient Wetness Impregnation of Fluidizable Supports | Pros: (i) OCs can be impregnated on fluidizable supports with the required particle size distribution, (ii) OCs are suitable for large-scale production. Cons: (iii) OC supports may promote agglomeration, (iv) Metal addition to the fluidizable support may require several impregnations until the appropriate loading is reached, making OC preparation more expensive. | [9,26,27,28] |
Natural Mineral Griding | Pros: (i) Low-cost OC preparation using natural minerals, with a desirable particle size is achieved via ball mill grinding. Cons: (ii) Additives are needed for OC particle sizing, (iii) OCs may display poor fluidizability, poor resistance to sintering, and high attrition, (iv) OCs have low metal dispersion, and limited specific surface area, (v) There is a reduced OC performance stability given that mineral impurities may promote particle agglomeration. | [27,28,29] |
Sol–Gel | Pros: (i) Good control of OC morphology, and particle size, (ii) Stable OCs, and redox reactivity. Cons: (i) Costly OCs for large-scale fluidized CLC processes. | [30,31,32] |
Spray Drying | Pros: (i) Good control of OC particle properties including particle size and fluidizability. Cons: (i) OC particles may have limited surface area metal oxides exposed and as a result provide limited reactivity. | [26,33] |
No. | Oxygen Carrier (OC) | Thermal Power (Testing Unit Location) | Fuel Conversion (OC to Fuel Ratio) | Synthesis Method | References |
---|---|---|---|---|---|
1 | Natural gas/Ca-Mn-based OC | 1000 kW (Germany) | 80% (5) | Spray Drying | [37] |
2 | Methane/CuO-Fe2O3/Alumina | 50 kW (USA) | 50 to 65% | Spray Drying and Wet Granulation | [38] |
3 | Methane/CuO/γ-Alumina | 150 kW (Norway) | 90% −150 kW 98% −100 kW | Incipient Wetness Impregnation | [39] |
4 | Syngas, CH4/Iron ore/ | 2 kW (China) | 93% | n/a | [40] |
5 | Methane/NiO/NiAl2O4/ | 10 kW (France) | 99% | Precipitation | [41] |
6 | Natural gas/NiO/MgAl2O4 and NiAl2O4 | 10 kW (Sweden) | 98% | Spray Drying and Freeze Granulation | [42] |
NiO Loading (%) | Support | Preparation Technique | Reactants | Reactor Type | References |
---|---|---|---|---|---|
35 | γAl2O3 | COP | Coal, syngas + H2S, CO, O2 | TGA, CLC | [54,55,56] |
2.5–20 | α-Al2O3 | IMP | CH4, H2, O2 | TPR, TPO, CREC-RS | [35,57,58] |
18 | α-Al2O3 | IMP | Syngas, CH4, H2, CO | TGA, pxFB, CLC 300 W | [59,60,61] |
5 | Co-γAl2O3 | IMP | CH4, O2 | CREC-RS | [50,58] |
20 | La-γAl2O3 | IMP | CH4, Biomass | CREC-RS | [62] |
30 | MgAl2O4 | SC + MM | CH4, Syngas | TGA | [53] |
20–40 | NiAl2O4 | SC + MM | CH4, H2, Syngas | TGA | [53,63] |
60 | NiAl2O4 | DIS + SD | CH4, H2, Syngas | TGA, pFxB | [46,47,64] |
Reactions Involving an NiO Oxygen Carrier | AHo (kJ/mole) T = 25 °C, 1 atm | Keq (Chemical Equilibrium Constants) T = 600 °C, 1 atm | Equation |
---|---|---|---|
156.5 | 6.49 × 1048 | (11) | |
199.8 | 1.93 × 1036 | (12) | |
Reaction 3: | 204 | 4.03 × 1011 | (13) |
Reaction 4: | −43.27 | 1.36 × 109 | (14) |
Reaction 5: | −2.13 | 3.51 × 1012 | (15) |
Reactions Involving Gas Phase Species in the Fuel Reactor | AHo (kJ/mole) T = 25 °C, 1 atm | Keq, T = 600 °C, 1 atm | Equation |
---|---|---|---|
247 | 0.119 | (16) | |
−41.2 | 1.54 | (17) | |
206 | 0.18 | (18) |
Apparent Parameters | Syngas-250 | Syngas-133 | ||
---|---|---|---|---|
Value | 95% CI | Value | 95% CI | |
k0,1a | 3.03 × 10−2 | ±16% | 5.62 × 10−2 | ±1.7% |
k0,2 | 12.5 × 10−2 | ±14.9% | 10.5 × 10−2 | ±11.6% |
k0,3 | 29.8 × 10−2 | ±7% | 39.7 × 10−2 | ±10.6% |
k0,4 | 2.94 × 10−2 | ±32.0% | 1.54 × 10−2 | ±36.2% |
k0,5 | 19.1 × 10−2 | ±11.5% | 8.9 × 10−2 | ±14.1% |
E1b | 3.6 × 10−13 | ±5.8% | 4.02 × 10−14 | ±27.3% |
E2 | 13.02 | ±44.5% | 5.13 | ±56.5% |
E3 | 20.10 | ±34.3% | 7.36 | ±48.9% |
E4 | 40.17 | ±30.3 | 36.90 | ±39.0% |
E5 | 30.31 | ±35.6 | 21.23 | ±36.7% |
m | 250 | |||
DOF | 240 |
Designed Capacity (kW) | Fluidization Regime | Feedstock | Location | Ref | |
---|---|---|---|---|---|
Air Reactor | Fuel Reactor | ||||
25 | CFB-fast fluidization | Moving bed | Coal | The Ohio State University, USA | [102] |
50 | Bubbling bed with Riser | Bubbling bed with Riser | Biomass | Instituto de Carbonquímica, Zaragoza, Spain | [103] |
100 | Bubbling bed with Riser | CFB in bubbling regime | Bituminous coal | Chalmers University of Technology, Sweden | [104] |
100 | Bubbling bed with Riser | Bubbling bed | Coal | National Energy Technology Laboratory, USA | [105] |
120 | CFB in fast regime | CFB in fast fluidization regime | Natural gas | Vienna University of Technology, USA | [106] |
1000 | CFB in fast fluidization | CFB in fast fluidization | Ilmenite and hard coal | Technische Universität Darmstadt, Germany | [107] |
Oxygen Carrier | Fuel | Reactor Configuration | Reactor Capacity | References |
---|---|---|---|---|
58wt% NiO on Bentonite | CH4 | FR:BFB | Batch Mode | [110] |
FR:BFB; AR:Riser | 12 kW | [111] | ||
Fe-Ni on Bentonite | CH4 | FR:BFB | 1 kW | [112] |
30.7wt% FeO-Ilmenite | CH4, H2, CO | FR:BFB; AR:DFB and Riser | 42 kW | [105] |
Glass beads (Geldart A and B) | Cold Run | FR:CFB; AR:CFB | 10 kW | [113] |
Parameters | Value |
---|---|
Particle mean diameter, d50 [µm] | 87.1 |
Particle density, [kg/m3] | 1800 |
Particle sphericity | 0.9 |
Particle close pack volume fraction | 0.6 |
Particle–wall tangential retention coefficient | 0.85 |
Particle–wall normal retention coefficient | 0.85 |
Diffuse bounce | 0 |
Maximum momentum redirection from particle-to-particle collision | 40% |
Downer Fuel Reactor Length/Vapor Phase Reaction Time | H2 Conversion % | CO Conversion % | CH4 Conversion % | CO2 Yields % | NiO Conversion % |
---|---|---|---|---|---|
3.75 m or 5 s | 97.7 | 49.4 | 64.5 | 79.7 | 29.1 |
7.5 m or 10 s | 98.75 | 72.3 | 73.9 | 84.4 | 33.4 |
11.25 m or 15 s | 99.3 | 84.5 | 72.71 | 85.99 | 34.0 |
15 m or 20 s | 99.6 | 91.2 | 71.9 | 87.03 | 35.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lasa, H.; Torres Brauer, N. Biomass-Derived Syngas Chemical Looping Combustion Using Fluidizable Oxygen Carriers: A Review. Processes 2025, 13, 1053. https://doi.org/10.3390/pr13041053
de Lasa H, Torres Brauer N. Biomass-Derived Syngas Chemical Looping Combustion Using Fluidizable Oxygen Carriers: A Review. Processes. 2025; 13(4):1053. https://doi.org/10.3390/pr13041053
Chicago/Turabian Stylede Lasa, Hugo, and Nicolas Torres Brauer. 2025. "Biomass-Derived Syngas Chemical Looping Combustion Using Fluidizable Oxygen Carriers: A Review" Processes 13, no. 4: 1053. https://doi.org/10.3390/pr13041053
APA Stylede Lasa, H., & Torres Brauer, N. (2025). Biomass-Derived Syngas Chemical Looping Combustion Using Fluidizable Oxygen Carriers: A Review. Processes, 13(4), 1053. https://doi.org/10.3390/pr13041053