Optimizing Bioethanol Production by Comparative Environmental and Economic Assessments of Multiple Agricultural Feedstocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Waste Characterization
2.2. Technological Framework for the Proposed Project
2.3. Life Cycle Assessment (LCA)
2.4. Goal and Scope Definition
2.5. Functional Unit and System Boundary
2.6. Life Cycle Inventory (LCI)
2.7. Life Cycle Impact Assessment (LCIA)
2.8. Uncertainty Analysis
2.9. Techno-Economic Assessment
2.9.1. Life Cycle Cost Assessment (LCC)
2.9.2. Cost–Benefit Analysis (CBA)
3. Results
3.1. Environmental Impact Assessment of Bioethanol Production Using LCIA
3.2. Midpoint Impact Assessment of Three Feedstocks in Bioethanol Production
3.3. Normalized Midpoint Impact Assessment Results
3.4. Endpoint Assessment Results of Bioethanol Production Process
3.5. Hotspot Identification of Bioethanol Production Process
3.6. Uncertainty Analysis Results
3.6.1. Sensitivity Analysis
3.6.2. Monte Carlo Analysis
3.7. Scenario-Based Assessment of Bioethanol Production from Three Feedstocks
3.8. Techno-Economic Analysis of Bioethanol Production Process
4. Discussion
4.1. Comparative Analysis with Existing Studies and Recent Innovations in Bioethanol Production Technologies
4.2. Current Challenges and Policy Suggestions
4.3. Sustainability Implications
4.4. Practical Implications of This Study
4.5. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tareen, W.; Anjum, Z.; Yasin, N.; Siddiqui, L.; Farhat, I.; Malik, S.A.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B.; Darwish, M.; et al. The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel. Energies 2018, 11, 2431. [Google Scholar] [CrossRef]
- Buchner, B.; Clark, A.; Falconer, A.; Macquarie, R.; Meattle, C.; Tolentino, R.; Wetherbee, C. Global Landscape of Climate Finance 2019. Clim. Policy Initiat. 2019, 32, 1–38. [Google Scholar]
- Johansson, V.; Lehtveer, M.; Göransson, L. Biomass in the electricity system: A complement to variable renewables or a source of negative emissions? Energy 2019, 168, 532–541. [Google Scholar] [CrossRef]
- Becerra-Pérez, L.A.; Tyner, W.E.; García-Paez, B. Cellulosic Ethanol in Mexico: An Appraisal as Industrial Feedstock. In Advances in Renewable Energy Engineering; Digambar, N.P., Ed.; Akinik Publications: New Delhi, India, 2019; Volume 1, ISBN 978-93-5335-557-9. [Google Scholar]
- Imran, M.; Zahid, A.; Mouneer, S.; Özçatalbaş, O.; Ul Haq, S.; Shahbaz, P.; Murtaza, M.R. Relationship between household dynamics, biomass consumption, and carbon emissions in Pakistan. Sustainability 2022, 14, 6762. [Google Scholar] [CrossRef]
- NREL. Biomass Sites in Pakistan; National Renewable Energy Laboratory: Golden, CO, USA, 2018.
- Karthikeyan, O.P.; Mehariya, S.; Wong, J.W.C. Bio-refining of food waste for fuel and value products. Energy Procedia 2017, 136, 14–21. [Google Scholar] [CrossRef]
- Adams, P.; Bridgwater, T.; Lea-Langton, A.; Ross, A.; Watson, I. Biomass Conversion Technologies. In Greenhouse Gases Balances of Bioenergy Systems; Academic Press: Cambridge, MA, USA, 2018; pp. 107–139. [Google Scholar]
- Shukla, P.R.; Skea, J.; Reisinger, A.; Slade, R.; Fradera, R.; Pathak, M.; Vyas, P. Climate Change 2022 Mitigation of Climate Change Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers Edited by, 2022. Available online: www.ipcc.ch (accessed on 19 September 2022).
- Babu, S.; Rathore, S.S.; Singh, R.; Kumar, S.; Singh, V.K.; Yadav, S.K.; Wani, O.A. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. Bioresour. Technol. 2022, 360, 127566. [Google Scholar] [CrossRef]
- Singh, R.; Shukla, A.; Tiwari, S.; Srivastava, M. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew. Sustain. Energy Rev. 2014, 32, 713–728. [Google Scholar] [CrossRef]
- Zhao, L.; Chang, S.; Wang, H.; Zhang, X.; Ou, X.; Wang, B.; Wu, M. Long-term projections of liquid biofuels in China: Uncertainties and potential benefits. Energy 2015, 83, 37e54. [Google Scholar] [CrossRef]
- IEA. Energy Access Outlook 2020: Analyzing the Pathways to Universal Access; IEA: Paris, France, 2020. [Google Scholar]
- NEPRA. Renewable Energy Policy 2019; NEPRA: Islamabad, Pakistan, 2019. [Google Scholar]
- Khan, S.; Nisar, A.; Wu, B.; Zhu, Q.L.; Wang, Y.W.; Hu, G.Q.; He, M.X. Bioenergy production in Pakistan: Potential, progress, and prospect. Sci. Total Environ. 2022, 814, 152872. [Google Scholar]
- Liu, T.; Miao, P.; Shi, Y.; Tang KH, D.; Yap, P.S. Recent advances, current issues and future prospects of bioenergy production: A review. Sci. Total Environ. 2022, 810, 152181. [Google Scholar]
- Benti, N.E.; Gurmesa, G.S.; Argaw, T.; Aneseyee, A.B.; Gunta, S.; Kassahun, G.B.; Asfaw, A.A. The current status, challenges and prospects of using biomass energy in Ethiopia. Biotechnol. Biofuels 2021, 14, 1–24. [Google Scholar]
- Falfushynska, H. Advancements and prospects in algal biofuel production: A comprehensive review. Phycology 2024, 4, 548–575. [Google Scholar] [CrossRef]
- Yin, T.; Huhe, T.; Li, X.; Wang, Q.; Lei, T.; Zhou, Z. Research on Life Cycle Assessment and Performance Comparison of Bioethanol Production from Various Biomass Feedstocks. Sustainability 2024, 16, 1788. [Google Scholar] [CrossRef]
- Venkatramanan, V.; Shah, S.; Prasad, S.; Singh, A.; Prasad, R. Assessment of bioenergy generation potential of agricultural crop residues in India. Circ. Econ. Sustain. 2021, 1, 1335–1348. [Google Scholar] [CrossRef]
- Piwowar, A.; Dzikuć, M. Bioethanol production in Poland in the context of sustainable development-current status and future prospects. Energies 2022, 15, 2582. [Google Scholar] [CrossRef]
- Kargbo, H.; Harris, J.S.; Phan, A.N. “Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability. Renew. Sustain. Energy Rev. 2021, 135, 110168. [Google Scholar]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework; International Standard. International Organization for Standardization: Geneva, Switzerland, 2006.
- Halim, S.A.; Mohd, N.A.; Razali, N.A. A comparative assessment of biofuel products from rice husk and oil palm empty fruit bunch obtained from conventional and microwave pyrolysis. J. Taiwan Inst. Chem. Eng. 2022, 134, 104305. [Google Scholar]
- Collotta, M.; Champagne, P.; Tomasoni, G.; Alberti, M.; Busi, L.; Mabee, W. Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainability assessment perspective. Renew. Sustain. Energy Rev. 2019, 115, 109358. [Google Scholar]
- Pandit, S.; Yadav, N.; Sharma, P.; Prakash, A.; Kuila, A. Life cycle assessment and techno-economic analysis of nanotechnology-based wastewater treatment: Status, challenges and future prospectives. J. Taiwan Inst. Chem. Eng. 2024, 166, 105567. [Google Scholar]
- Ali, Y.; Sabir, M.; Afridi, S.; Ullah, Z. Pakistan’s circular bio-economy: Potential, opportunities and sustainable development. In Environment, Development and Sustainability; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–27. [Google Scholar]
- IEA. Bioenergy for Sustainable Development; IEA: Paris, France, 2022. [Google Scholar]
- Zhang, B.; Li, H.; Chen, L.; Fu, T.; Tang, B.; Hao, Y.; Peng, Y. Recent advances in the bioconversion of waste straw biomass with steam explosion technique: A comprehensive review. Processes 2022, 10, 1959. [Google Scholar] [CrossRef]
- Kordi, M.; Farrokhi, N.; Pech-Canul, M.I.; Ahmadikhah, A. Rice husk at a glance: From agro-industrial to modern applications. Rice Sci. 2024, 31, 14–32. [Google Scholar]
- IPCC. Climate Change 2021: Mitigation of Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Daniel, A.I.; Fadaka, A.O.; Gokul, A.; Bakare, O.O.; Aina, O.; Fisher, S.; Klein, A. Biofertilizer: The future of food security and food safety. Microorganisms 2022, 10, 1220. [Google Scholar] [CrossRef]
- Silalertruksa, T.; Gheewala, S.H. A comparative LCA of rice straw utilization for fuels and fertilizer in Thailand. Bioresour. Technol. 2013, 150, 412–419. [Google Scholar] [CrossRef]
- ADEME. Analyses de Cycle de Vie Appliquées aux Biocarburants de Première Génération Consommés en France; Direction Production et Energies Durables (DEPD): Paris, France, 2010. [Google Scholar]
- Delivand, M.K.; Barz, M.; Gheewala, S.H.; Sajjakulnukit, B. Environmental and socio-economic feasibility assessment of rice straw conversion to power and ethanol in Thailand. J. Clean. Prod. 2012, 37, 29–41. [Google Scholar] [CrossRef]
- Wang, L.; Littlewood, J.; Murphy, R.J. Environmental sustainability of bioethanol production from wheat straw in the UK. Renew. Sustain. Energy Rev. 2013, 28, 715–725. [Google Scholar] [CrossRef]
- Buchspies, B.; Kaltschmitt, M. Life cycle assessment of bioethanol from wheat and sugar beet discussing environmental impacts of multiple concepts of co-product processing in the context of the European Renewable Energy Directive context of the European Renewable Energy Directive. Biofuels 2016, 7, 141–153. [Google Scholar]
- Hsu, D.D.; Inman, D.; Heath, G.A.; Wolfrum, E.J.; Mann, M.K.; Aden, A. Life cycle environmental impacts of selected US ethanol production and use pathways in 2022. Environ. Sci. Technol. 2022, 44, 5289–5297. [Google Scholar] [CrossRef]
- Malik, K.; Capareda, S.C.; Kamboj, B.R.; Malik, S.; Singh, K.; Arya, S.; Bishnoi, D.K. Biofuels Production: A Review on Sustainable Alternatives to Traditional Fuels and Energy Sources. Fuels 2024, 5, 157–175. [Google Scholar] [CrossRef]
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Shakelly, N.; Pérez-Cardona, J.R.; Deng, S.; Maani, T.; Li, Z.; Sutherland, J.W. Comparative life cycle assessment of bioethanol production from different generations of biomass and waste feedstocks. Procedia CIRP 2023, 116, 630–635. [Google Scholar] [CrossRef]
- Thinkstep AG. GaBi LCA Databases. 2020. Available online: https://www.gabi-software.com/international/databases/gabi-data-search/ (accessed on 25 November 2024).
- Zhang, F.; Wang, Q.; Hong, J.; Chen, W.; Qi, C.; Ye, L. Life cycle assessment of diammonium-and monoammonium-phosphate fertilizer production in China. J. Clean. Prod. 2017, 141, 1087–1094. [Google Scholar]
- Aribi, S.; Jday, M.R.; Hajjaji, N. Life cycle assessment of di-ammonium phosphate (DAP) fertilizer production in Tunisia. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2018; pp. 359–362. [Google Scholar]
- Basha, J.S.; Jafary, T.; Vasudevan, R.; Bahadur, J.K.; Al Ajmi, M.; Al Neyadi, A.; Soudagar, M.E.M.; Mujtaba, M.; Hussain, A.; Ahmed, W.; et al. Potential of Utilization of Renewable Energy Technologies in Gulf Countries. Sustainability 2021, 13, 10261. [Google Scholar] [CrossRef]
- Lv, J.X.; Gu, F.; Zhang, W.J.; Guo, J.F. Life cycle assessment and life cycle costing of sanitary ware manufacturing: A case study in China. J. Clean. Prod. 2019, 238, 117938. [Google Scholar] [CrossRef]
- Zhou, H.R.; Qian, Y.; Kraslawski, A.; Yang, Q.C.; Yang, S.Y. Lifecycle assessment of alternative liquid fuels production in China. Energy 2017, 139, 507–522. [Google Scholar] [CrossRef]
- Pa, A.; Bi, X.T.; Sokhansanj, S. Evaluation of wood pellet application for residential heating British Columbia based on a streamlined life cycle analysis. Biomass Bioenergy 2013, 49, 109–122. [Google Scholar]
- Al-Athamin, E.A.; Hemidat, S.; Al-Hamaiedeh, H.; Aljbour, S.H.; El-Hasan, T.; Nassour, A. A techno-economic analysis of sustainable material recovery facilities: The case of Al-Karak solid waste sorting plant, Jordan. Sustainability 2021, 13, 13043. [Google Scholar] [CrossRef]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Van Zelm, R. ReCiPe2016: A harmonized life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Tao, M.; Zhang, X.; Wang, S.; Cao, W.; Jiang, Y. Life cycle assessment on lead–zinc ore mining and beneficiation in China. J. Clean. Prod. 2019, 237, 117833. [Google Scholar]
- Qudrat-Ullah, H. A review and analysis of renewable energy policies and CO2 emissions of Pakistan. Energy 2022, 238, 121849. [Google Scholar]
- Zhou, Y.; Xiao, C.Q.; Yang, S.; Yin, H.Q.; Yang, Z.Y.; Chi, R.A. Life cycle assessment of feed grade mono-dicalcium phosphate production in China, a case study. J. Clean. Prod. 2021, 290, 125182. [Google Scholar] [CrossRef]
- Farooq, A.; Bangviwat, A.; Gheewala, S.H. Life cycle cost analysis of ethanol production from sugarcane molasses for gasoline substitution as transportation fuel in Pakistan. J. Sustain. Energy Environ. 2020, 11, 49–59. [Google Scholar]
- Obiora, C. Optimal Cost of Production of Bioethanol: A Review. 2022. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4171036 (accessed on 25 March 2025).
- Ghani, H.U.; Gheewala, S.H. Comparative Life Cycle Assessment of Byproducts from Sugarcane Industry in Pakistan based on Biorefinery Concept. Biomass Convers. Biorefinery 2018, 8, 979–990. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Kapoor, A.; Arora, P.; Banu, J.R.; Das, S.; Pipesh, S.; Kazmi, A.A. Mechanicalbiological treatment of municipal solid waste: Case study of 100 TPD Goa plant, India. J. Environ. Manag. 2021, 292, 112741. [Google Scholar] [CrossRef]
- Patel, K.; Singh, S.K. Environmental sustainability, energy efficiency and uncertainty analysis of agricultural residue-based bioethanol production: A comprehensive life cycle assessment study. Biomass Bioenergy 2024, 191, 107439. [Google Scholar]
- Aguilar-Sánchez, P.; Navarro-Pineda, F.S.; Sacramento-Rivero, J.C.; Barahona-Pérez, L.F. Lifecycle assessment of bioethanol production from sweet sorghum stalks cultivated in the state of Yucatan, Mexico. Clean. Technol. Environ. 2018, 20, 1685–1696. [Google Scholar] [CrossRef]
- Lyu, H.; Yang, S.; Zhang, J.; Feng, Y.; Geng, Z. Impacts of utilization patterns of cellulosic C5 sugar from cassava straw on bioethanol production through life cycle assessment. Bioresour. Technol. 2021, 323, 124586. [Google Scholar] [CrossRef]
- Maga, D.; Thonemann, N.; Hiebel, M.; Sebastião, D.; Lopes, T.F.; Fonseca, C.; Gírio, F. Comparative life cycle assessment of first- and second-generation ethanol from sugarcane in Brazil. Int. J. Life Cycle Assess. 2019, 24, 266–280. [Google Scholar]
- Soleymani Angili, T.; Grzesik, K.; Rödl, A.; Kaltschmitt, M. Life cycle assessment of bioethanol production: A review of feedstock, technology and methodology. Energies 2021, 14, 2939. [Google Scholar] [CrossRef]
- AbdElhafez, S.E.; Taha, T.; Mansy, A.E.; El-Desouky, E.; Abu-Saied, M.A.; Eltaher, K.; Ali, R.M. Experimental optimization with the emphasis on techno-economic analysis of production and purification of high value-added bioethanol from sustainable corn stover. Energies 2022, 15, 6131. [Google Scholar] [CrossRef]
- Joyia MA, K.; Ahmad, M.; Chen, Y.F.; Mustaqeem, M.; Ali, A.; Abbas, A.; Gondal, M.A. Trends and advances in sustainable bioethanol production technologies from first to fourth generation: A critical review. Energy Convers. Manag. 2024, 321, 119037. [Google Scholar]
- Ali, F.; Dawood, A.; Hussain, A.; Alnasir, M.H.; Khan, M.A.; Butt, T.M.; Janjua, N.K.; Hamid, A. Discover Sustainability. In Fueling the Future: Biomass Applications for Green and Sustainable Energy; Springer Nature: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Dahman, Y.; Syed, K.; Begum, S.; Roy, P.; Mohtasebi, B. Biofuels: Their characteristics and analysis. In Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and Other Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 277–325. [Google Scholar]
- Yaverino-Gutiérrez, M.A.; Wong, A.Y.C.H.; Ibarra-Muñoz, L.A.; Chávez AC, F.; Sosa-Martínez, J.D.; Tagle-Pedroza, A.S.; Balagurusamy, N. Perspectives and progress in bioethanol processing and social economic impacts. Sustainability 2024, 16, 608. [Google Scholar] [CrossRef]
- The World Bank. Biomass Resource Mapping in Pakistan. June 2016. Available online: http://documents.worldbank.org/curated/en/104071469432331115/pdf/107200-REPLACEMENTPUBLIC-Pakistan-Biomass-Mapping-Final-Report-WB-ESMAP-June2016.pdf (accessed on 26 May 2018).
- Din, Z.U.; Zainal, Z. Biomass integrated gasification–SOFC systems: Technology overview. Renew. Sustain. Energy Rev. 2016, 53, 1356–1376. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Mubarak, M.U.; Zahir, M.; Ahmad, S.; Wakeel, A. Sugar beet yield and industrial sugar contents improved by potassium fertilization under scarce and adequate moisture conditions. J. Integr. Agric. 2016, 15, 2620–2626. [Google Scholar]
Category | Unit | Corn Stover | Wheat Straw | Rice Husk |
---|---|---|---|---|
Inputs | ||||
Cultivation stage | ||||
Fertilizers | kg | 35 | 50 | 29.6 |
Pesticides | kg | 2.5 | 3 | 3.4 |
Transportation | ||||
Feedstock transportation | kg | 6 | 3.67 | 5.5 |
Fuel | L | 1.5 | 4.5 | 2.4 |
Preprocessing | ||||
Processed feedstock | kg | 4 | 3 | 3.5 |
Conversion into Bioethanol | ||||
Electricity | kwh | 5.388 | 12.878 | 4.75 |
Steam | MJ | 96 | 65 | 59 |
Bioethanol | kg | 1 | 1 | 1 |
Outputs | ||||
CO2 | kg | 0.0897 | 0.293 | 0.0507 |
CO | kg | 0.0327 | 0.107 | 0.0185 |
CH4 | kg | 0.0579 | 0.189 | 0.0327 |
NOx | kg | 0.16 | 0.522 | 0.904 |
SO2 | kg | 0.335 | 1.09 | 0.189 |
NMVOC | 0.00423 | 0.0138 | 0.0024 | |
Emissions to Water | ||||
NH3 | kg | 0.000982 | 0.00321 | 0.000555 |
N2O | kg | 9.31 × 10−6 | 2.25 × 10−5 | 1.80 × 10−5 |
Heavy metals | kg | 0.000254 | 0.00083 | 0.000144 |
Categories | Unit | Corn Stover | Wheat Straw | Rice Husk |
---|---|---|---|---|
Climate Change | kg CO2 eq. | 43.5 | 142 | 24.7 |
Fine particulate matter formation | kg PM2.5 eq. | 0.143 | 0.466 | 0.0807 |
Fossil depletion | kg oil eq. | 10.5 | 34.3 | 5.94 |
Freshwater consumption | m3 | 0.165 | 0.539 | 0.0933 |
Freshwater ecotoxicity | kg 1,4-DB eq. | 0.00202 | 0.00659 | −1.17 |
Freshwater eutrophication | kg P eq. | 3.74 × 10−5 | 0.000122 | 2.11 × 10−5 |
Human toxicity, cancer | kg 1,4-DB eq. | 0.017 | 0.0555 | 0.00961 |
Human toxicity, non-cancer | kg 1,4-DB eq. | 4.14 | 13.5 | −4.05 |
Ionizing radiation | kBq. Co-60 eq. to air | 0.0881 | 0.288 | 0.0498 |
Land use | Annual crop eq. y | 0.914 | 2.99 | 0.517 |
Marine ecotoxicity | kg 1,4-DB eq. | 0.029 | 0.0948 | −0.088 |
Marine eutrophication | kg N eq. | 0.000429 | 0.0014 | 0.000242 |
Metal depletion | kg Cu eq. | 0.0088 | 0.0287 | 0.00498 |
Photochemical ozone formation, ecosystem | kg NOx eq. | 0.161 | 0.525 | 0.0912 |
Photochemical ozone formation, human health | kg NOx eq. | 0.161 | 0.524 | 0.0911 |
Stratospheric ozone depletion | kg CFC-11 eq. | 8.65 × 10−6 | 2.83 × 10−5 | 4.89 × 10−6 |
Terrestrial acidification | kg SO2 eq. | 0.394 | 1.29 | 0.223 |
Terrestrial ecotoxicity | kg 1,4-DB eq. | 38.7 | 126 | −811 |
Person Equivalent | Corn Stover Values | Wheat Straw Values | Rice Husk Values |
---|---|---|---|
Climate Change | 0.0054375 | 0.01775 | 0.0030875 |
Fine particulate matter formation | 0.005592587 | 0.018224794 | 0.003156096 |
Fossil depletion | 0.0106785 | 0.0348831 | 0.00604098 |
Freshwater consumption | 0.00061875 | 0.00202125 | 0.000349875 |
Freshwater ecotoxicity | 8.02384 × 10−5 | 0.000261768 | −0.04647474 |
Freshwater eutrophication | 5.75 × 10−5 | 0.000187725 | 3.25 × 10−5 |
Human toxicity, cancer | 0.001650751 | 0.005389217 | 0.00093316 |
Human toxicity, non-cancer | 0.00013248 | 0.000432 | −0.0001296 |
Ionizing radiation | 0.0001836 | 0.000600192 | 0.000103783 |
Land use | 0.000148068 | 0.00048438 | 0.000083754 |
Maine ecotoxicity | 0.000667551 | 0.002182201 | −0.00202567 |
Marine eutrophication | 9.29017 × 10−5 | 0.000303176 | 5.24061 × 10−5 |
Metal depletion | 7.04 × 10−8 | 2.296 × 10−7 | 3.984 × 10−8 |
Photochemical ozone formation, ecosystem | 0.00907074 | 0.0295785 | 0.005138208 |
Photochemical ozone formation. human health | 0.00782782 | 0.02547688 | 0.004429282 |
Stratospheric ozone depletion | 1.35 × 10−4 | 4.43 × 10−4 | 7.66 × 10−5 |
Terrestrial acidification | 0.009614388 | 0.03147858 | 0.005441646 |
Terrestrial ecotoxicity | 0.0025542 | 0.008316 | −0.053526 |
Categories | Unit | Corn Stover | Wheat Straw | Rice Husk |
---|---|---|---|---|
Ecosystems | ||||
Climate change terrestrial ecosystems | species. yr | 1.22 × 10−7 | 3.99 × 10−7 | 6.91 × 10−8 |
Climate change freshwater ecosystems | species. yr | 3.33 × 10−12 | 1.09 × 10−11 | 1.89 × 10−12 |
Photochemical ozone formation, ecosystems | species. yr | 2.07 × 10−8 | 6.78 × 10−8 | 1.18 × 10−8 |
Freshwater consumption, freshwater ecosystems | species. Yr | 2.87 × 10−13 | 9.39 × 10−13 | 1.63 × 10−13 |
Freshwater consumption, terrestrial ecosystems | species. yr | 9.55 × 10−10 | 3.12 × 10−9 | 5.41 × 10−10 |
Land use | species. yr | 8.11 × 10−9 | 2.65 × 10−8 | 4.49 × 10−9 |
Marine ecotoxicity | species. yr | 3.04 × 10−12 | 9.96 × 10−12 | −9.24 × 10−12 |
Marine eutrophication | species. yr | 7.06 × 10−13 | 2.31 × 10−12 | 4 × 10−13 |
Freshwater ecotoxicity | species. yr | 1.4 × 10−12 | 4.58 × 10−12 | −8.12 × 10−10 |
Freshwater eutrophication | species. yr | 2.5 × 10−11 | 8.19 × 10−11 | 1.42 × 10−11 |
Terrestrial acidification | species. yr | 8.35 × 10−8 | 2.73 × 10−7 | 4.73 × 10−8 |
Terrestrial ecotoxicity | species. yr | 4.41 × 10−10 | 1.44 × 10−9 | −9.24 × 10−9 |
Human health | ||||
Climate change, human health | DALY | 4.04 × 10−5 | 0.000132 | 2.29 × 10−5 |
Human toxicity, cancer | DALY | 5.63 × 10−8 | 1.84 × 10−7 | 3.19 × 10−8 |
Human toxicity, non-cancer | DALY | 9.42 × 10−7 | 3.08 × 10−6 | −9.23 × 10−7 |
Fine particulate matter formation | DALY | 8.96 × 10−5 | 0.000293 | 5.07 × 10−5 |
Freshwater consumption, human health | DALY | 1.06 × 10−8 | 3.48 × 10−8 | 6.03 × 10−9 |
Ionizing radiation | DALY | 7.48 × 10−10 | 2.45 × 10−9 | 4.24 × 10−10 |
Stratospheric ozone depletion | DALY | 4.59 × 10−9 | 1.5 × 10−8 | 2.6 × 10−9 |
Photochemical ozone formation, human health | DALY | 1.46 × 10−7 | 4.77 × 10−7 | 8.29 × 10−8 |
Resources | ||||
Fossil depletion | $ | 0.749 | 2.45 | 0.424 |
Metal depletion | $ | 0.00442 | 0.0144 | 0.0025 |
Environmental Impact Categories | Unit | Variation | Base Value | Corn Stover | Base Value of Wheat Straw | Wheat Straw | Base Value of Rice Husk | Rice Husk | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Electricity | Electricity | Electricity | |||||||||
CV | CR | CV | CR | CV | CR | ||||||
Climate change | kg CO2 eq. | 10% | 43.5 | 0.105 | 1.318% | 142 | 0.2 | 1.428% | 24.7 | −0.86 | 0.741% |
Fine particulate matter formation | kg PM2.5 eq. | 10% | 0.413 | 0.035 | 1.324% | 0.466 | 0.01 | 2.192% | 0.0807 | −0.028 | 0.740% |
Fossil depletion | kg oil eq. | 10% | 10.5 | 2.56 | 1.32% | 34.3 | 0.7 | 2.083% | 5.94 | −0.208 | 0.740% |
Freshwater consumption | m3 | 10% | 0.165 | 0.04 | 1.32% | 0.539 | 0.011 | 2.082% | 0.0933 | −0.032 | 0.840% |
Freshwater ecotoxicity | kg 1,4-DB eq. | 10% | 0.00202 | −0.0132 | 1.032% | 0.00659 | 0.00013 | 2.012% | −1.17 | 0.000 | 1.00% |
Freshwater eutrophication | kg P eq. | 10% | 3.7 × 10−5 | 9.10 × 10−6 | 1.320% | 0.000122 | 20 × 10−6 | 1.666% | 2.11 × 10−5 | −7.4 × 10−6 | 0.260% |
Human toxicity, cancer | kg 1,4-DB eq. | 10% | 0.017 | 0.0042 | 1.328% | 0.0555 | 0.0011 | 2.022% | 0.00961 | −0.003 | 0.739% |
Human toxicity, non-cancer | kg 1,4-DB eq. | 10% | 4.14 | 1.01 | 1.31% | 13.5 | 0.3 | 2.272% | −4.05 | −0.82 | 1.253% |
Ionizing radiation | kBq Co-60 eq. to air | 10% | 0.0881 | 0.0215 | 1.321% | 0.288 | 0.006 | 2.127% | 0.0498 | −0.017 | 0.741% |
Land use | Annual crop eq.·y | 10% | 0.914 | 0.223 | 1.302% | 2.99 | 0.06 | 2.047% | 0.517 | −0.181 | 0.740% |
Marine ecotoxicity | kg 1,4-DB eq. | 10% | 0.029 | 0.0071 | 1.324% | 0.0948 | 0.0019 | 2.045% | −0.088 | −0.005 | 1.069% |
Marine eutrophication | kg N eq. | 10% | 0.000429 | 0.00010 | 1.324% | 0.0014 | 30 × 10−5 | 2.189% | 0.000242 | −0.008 | 0.740% |
Metal depletion | kg Cu eq. | 10% | 0.0088 | 0.0023 | 1.353% | 0.0287 | 0.0005 | 1.773% | 0.00498 | −0.017 | 0.741% |
Photochemical ozone formation, ecosystem | kg NOx eq. | 10% | 0.161 | 0.039 | 1.319% | 0.525 | 0.01 | 1.941% | 0.0912 | −0.031 | 0.741% |
Photochemical ozone formation, human health | kg NOx eq. | 10% | 0.161 | 0.04 | 1.330% | 0.524 | 0.01 | 1.945% | 0.0911 | −0.031 | 0.740% |
Stratospheric ozone depletion | kg CFC-11 eq. | 10% | 8.65 × 10−6 | 2.11 × 10−6 | 3.231% | 2.83 × 10−5 | 6.00 × 10−7 | 2.166% | 4.89 × 10−6 | −1.71 × 10−6 | 1.597% |
Terrestrial acidification | kg SO2 eq. | 10% | 0.394 | 0.096 | 1.322% | 1.29 | 0.03 | 2.380% | 0.223 | −0.078 | 0.740% |
Terrestrial ecotoxcity | kg 1,4-DB eq. | 10% | 38.7 | 9.4 | 1.320% | 126 | 0.02 | 1.612% | −811 | −0.8 | 0.996% |
Categories | Unit | Basic Scenario | Average | SD | 10% | 90% |
---|---|---|---|---|---|---|
Climate Change | kg CO2 eq. | 142 | 142 | 2.55% | 132 | 168 |
Fine particulate matter formation | kg PM2.5 eq. | 0.466 | 0.466 | 2.8% | 0.43 | 0.55 |
Fossil depletion | kg oil eq. | 34.3 | 34.3 | 3.65% | 33.2 | 35.3 |
Freshwater consumption | m3 | 0.539 | 0.539 | 2.45% | 0.41 | 0.67 |
Freshwater ecotoxicity | kg 1,4-DB eq. | 0.00659 | 0.00659 | 2.26% | 0.00609 | 0.0078 |
Freshwater eutrophication | kg P eq. | 0.000122 | 0.000122 | 3.69% | 0.000113 | 0.0001444 |
Human toxicity, cancer | kg 1,4-DB eq. | 0.0555 | 0.0555 | 2.91% | 0.0513 | 0.0656 |
Human toxicity, non-cancer | kg 1,4-DB eq. | 13.5 | 13.5 | 3.54% | 12.5 | 16 |
Ionizing radiation | kBq. Co-60 eq. to air | 0.288 | 0.288 | 2.57% | 0.266 | 0.34 |
Land use | Annual crop eq. y | 2.99 | 2.99 | 2.43% | 1.85 | 3.06 |
Marine ecotoxicity | kg 1,4-DB eq. | 0.0948 | 0.0948 | 2.37% | 0.0876 | 0.112 |
Marine eutrophication | kg N eq. | 0.0014 | 0.0014 | 2.15% | 0.00129 | 0.00166 |
Metal depletion | kg Cu eq. | 0.0287 | 0.0287 | 3.4% | 0.0267 | 0.0295 |
Photochemical ozone formation, ecosystem | kg NOx eq. | 0.525 | 0.525 | 3.33% | 0.485 | 0.621 |
Photochemical ozone formation, human health | kg NOx eq. | 0.524 | 0.524 | 3.33% | 0.484 | 0.62 |
Stratospheric ozone depletion | kg CFC-11 eq. | 2.83 × 10−5 | 2.83 × 10−5 | 2.34% | 2.61 × 10−5 | 3.34 × 10−5 |
Terrestrial acidification | kg SO2 eq. | 1.29 | 1.29 | 2.22% | 1.19 | 1.52 |
Terrestrial ecotoxicity | kg 1,4-DB eq. | 126 | 126 | 2.93% | 117 | 150 |
Categories | Unit | Corn Stover | Wheat Straw | Rice Husk | |||
---|---|---|---|---|---|---|---|
CS | PS | CS | PS | CS | PS | ||
Climate change | kg CO2 eq. | 43.5 | 33 | 142 | 140 | 24.7 | 33.3 |
Fine particulate matter formation | kg PM2.5 eq. | 0.143 | 0.108 | 0.466 | 0.456 | 0.0807 | 0.109 |
Fossil depletion | kg oil eq. | 10.5 | 7.94 | 34.3 | 33.6 | 5.94 | 8.02 |
Freshwater consumption | m3 | 0.165 | 0.125 | 0.539 | 0.528 | 0.0933 | 0.126 |
Freshwater ecotoxicity | kg 1,4-DB eq. | 0.00201 | 0.0153 | 0.00659 | 0.00646 | −1.17 | −1.17 |
Freshwater eutrophication | kg P eq. | 3.74 × 10−5 | 2.83 × 10−5 | 0.000122 | 0.00012 | 2.11 × 10−5 | 2.85 × 10−5 |
Human toxicity, cancer | kg 1,4-DB eq. | 0.017 | 0.0128 | 0.0555 | 0.0544 | 0.00961 | 0.013 |
Human toxicity, non-cancer | kg 1,4-DB eq. | 4.14 | 3.13 | 13.5 | 13.2 | −4.05 | −3.23 |
Ionizing radiation | kBq Co-60 eq. to air | 0.0881 | 0.0666 | 0.288 | 0.282 | 0.0498 | 0.0672 |
Land use | Annual crop eq.·y | 0.914 | 0.691 | 2.99 | 2.93 | 0.517 | 0.698 |
Marine ecotoxicity | kg 1,4-DB eq. | 0.029 | 0.0219 | 0.0948 | 0.0929 | −0.088 | −0.0823 |
Marine eutrophication | kg N eq. | 0.000429 | 0.000324 | 0.0014 | 0.00137 | 0.000242 | 0.000327 |
Metal depletion | kg Cu eq. | 0.0088 | 0.0065 | 0.0287 | 0.0282 | 0.00498 | 0.00672 |
Photochemical ozone formation, ecosystem | kg NOx eq. | 0.161 | 0.122 | 0.525 | 0.515 | 0.0912 | 0.123 |
Photochemical ozone formation, human health | kg NOx eq. | 0.161 | 0.121 | 0.524 | 0.514 | 0.0911 | 0.123 |
Stratospheric ozone depletion | kg CFC-11 eq. | 8.65 × 10−6 | 6.54 × 10−6 | 2.83 × 10−5 | 2.77 × 10−5 | 4.89 × 10−6 | 6.60 × 10−6 |
Terrestrial acidification | kg SO2 eq. | 0.394 | 0.298 | 1.29 | 1.26 | 0.223 | 0.301 |
Terrestrial ecotoxcity | kg 1,4-DB eq. | 38.7 | 29.3 | 126 | 124 | −811 | −803 |
Component | Economic Assumption | Description |
---|---|---|
Initial capital investment
| $478,515 | |
$257,522 | [53] | |
$220,993 | Obtained from NEPRA | |
Operational cost
| $16,748 $53,202 $39,266 $51,812 $64,893 $225,921 | [53] [54] [55] [56] Obtained from NEPRA |
Pollutants | Emissions a | Coefficient b,c | External Cost |
---|---|---|---|
NMVOC | 0.0138 | 1.31 | 0.0180 |
CH4 | 0.0011 | 0.22 | 0.0002 |
SO2 | 1.09 | 3.62 | 3.945 |
CO | 0.107 | 0.64 | 0.068 |
CO2 | 135 | 0.03 | 4.05 |
NOx | 0.522 | 4.74 | 2.474 |
PM | 0.343 | 10.73 | 3.680 |
Total External cost | 14.23 $ |
Product Type | Feedstock Waste | Material Recovery | Metals | Total |
---|---|---|---|---|
Working days in a month | 22 | 22 | 22 | |
Per-day income ($) | 6720 | 2400 | 480 | 9600 a |
Per-month income ($) | 150,000 | 40,000 | 21,200 | 211,200 b |
Per-year income ($) | 1,902,800 | 504,780 | 126,820 | 2,534,400 c |
Country | Feedstock | Assessment Method/Software | System Boundary | Functional Unit | Study Highlights | References |
---|---|---|---|---|---|---|
USA | Rice straw, Wheat straw, corn stover, switch grass | Eco-invent v3.6 database | Cradle-to-gate | 1 kg of bioethanol | Integration of process simulation technique into LCA for unbiased comparison. | [41] |
India | Rice straw | SimaPro Software | Cradle-to-gate | 1 L of bioethanol | All relative environmental impacts from rice husk are less than 80%. | [58] |
Mexico | Sweet sorghum | SimaPro | Cradle-to-grave | 1 MJ of produced bioethanol | The bioethanol derived from corn stover in Chinese context are positive in terms of greenhouse gas reduction and fossil energy savings relative to conventional gasoline | [59] |
China | Cassava straw, cassava root | GaBi Software | cradle-to-gate | 1000 kg of bioethanol | Cassava shows the best net energy gain (1.34) and renewability (5.16) contributing to Thailand’s commitment to achieving net-zero emissions by 2050 | [60] |
Brazil | Sugarcane, bagasse | GaBi Software | cradle -to-gate | 1 kg of bioethanol | Second generation feedstock contributes significantly to the reduction of the environmental impact as they make the overall process circular as majority of the resources needed are produced as byproducts in the same process. | [61] |
Germany | First and second generation feedstock | SimaPro | cradle -to-grave | 1 t of biomass feedstock | The biomass feedstock showing the best environmental performance in most indicators assessed was wheat straw, and this is clearly linked to the high yields of this crop. | [62] |
Pakistan | Corn Stover, Wheat Straw & Rice Husk | GaBi Software | cradle-to-gate | 1 kg of bioethanol | Comparison of bioethanol production from corn stover, ice husk and wheat straw were compared and results were compared, and reliability of the simulation is validated. | Present Study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajid, K.; Rehan, M.; Nizami, A.-S. Optimizing Bioethanol Production by Comparative Environmental and Economic Assessments of Multiple Agricultural Feedstocks. Processes 2025, 13, 1027. https://doi.org/10.3390/pr13041027
Sajid K, Rehan M, Nizami A-S. Optimizing Bioethanol Production by Comparative Environmental and Economic Assessments of Multiple Agricultural Feedstocks. Processes. 2025; 13(4):1027. https://doi.org/10.3390/pr13041027
Chicago/Turabian StyleSajid, Khadija, Mohammad Rehan, and Abdul-Sattar Nizami. 2025. "Optimizing Bioethanol Production by Comparative Environmental and Economic Assessments of Multiple Agricultural Feedstocks" Processes 13, no. 4: 1027. https://doi.org/10.3390/pr13041027
APA StyleSajid, K., Rehan, M., & Nizami, A.-S. (2025). Optimizing Bioethanol Production by Comparative Environmental and Economic Assessments of Multiple Agricultural Feedstocks. Processes, 13(4), 1027. https://doi.org/10.3390/pr13041027