Optimization of FeSO4-Al2(SO4)3 Composite Flocculant for Enhanced Phosphorus Removal in Wastewater Treatment: A Response Surface Methodology Study
Abstract
:1. Introduction
2. Experimental Part
2.1. Reagents and Materials
2.2. Wastewater Treatment Procedure
2.3. Analytical Methods
2.4. Raw Water Characteristics
3. Results and Discussion
3.1. Phosphorus Removal Effectiveness of Single Reagents
3.2. Phosphorus Removal Effectiveness of Composite Reagents
3.3. Optimal Conditions for Composite Reagents
- FeSO4/(FeSO4 + Al2(SO4)3) ratio (0.05–0.5);
- Composite reagent dosage (10–30 mg/L);
- Rapid mixing speed (40–70 rpm) and time (1–7 min);
- Polyacrylamide (PAM) dosage (0.5–1.5 mg/L);
- Slow mixing speed (10–30 rpm) and time (5–15 min).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Latif, E.F. Applying novel methods in conventional activated sludge plants to treat low-strength wastewater. Environ. Monit. Assess. 2024, 196, 652, Erratum in 2022, 194, 323. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.-K. A comparative analysis of two different wastewater treatment processes in actual wastewater treatment plants. Quant. Bio-Sci. 2018, 37, 19–26. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, G.; Tian, H. Current state of sewage treatment in China. Water Res. 2014, 66, 85–98. [Google Scholar] [CrossRef]
- Jing, H.E.; Xinnan, W.A.N. Application and development of membrane bioreactor in wastewater treatment. Guangdong Weiliang Yuansu Kexue 2006, 13, 16–22. [Google Scholar]
- Rahman, T.U.; Roy, H.; Islam, M.R.; Tahmid, M.; Fariha, A.; Mazumder, A.; Tasnim, N.; Pervez, M.N.; Cai, Y.; Naddeo, V.; et al. The advancement in membrane bioreactor (mbr) technology toward sustainable industrial wastewater management. Membranes 2023, 13, 181. [Google Scholar] [CrossRef]
- Xiaohua, Z.; Cuiyan, F.U.; Jing, L.I.; Hongchao, G.A.O.; Guanghui, Z. Influence factors of membrane bioreactors in wasterwater treatment. Technol. Water Treat. 2008, 34, 7–13. [Google Scholar]
- Han, C.; Cao, M.; Zhang, B. Progress of flocculation applied to dyeing wastewater treatment. Ind. Water Treat. 2006, 26, 5–9. [Google Scholar]
- Manzoor, K.; Batool, M.; Naz, F.; Nazar, M.F.; Hameed, B.H.; Zafar, M.N. A comprehensive review on application of plant-based bioadsorbents for congo red removal. Biomass Convers. Biorefinery 2024, 14, 4511–4537. [Google Scholar] [CrossRef]
- Amor, C.; Marchao, L.; Lucas, M.S.; Peres, J.A. Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water 2019, 11, 205. [Google Scholar] [CrossRef]
- Derco, J.; Guasova, P.; Legan, M.; Zakhar, R.; Gotvajn, A.Z. Sustainability strategies in municipal wastewater treatment. Sustainability 2024, 16, 9038. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S. Experimental study on advanced treatment of urban wastewater by using combined velocity-changeable bio-filter. China Water Wastewater 2004, 20, 13–16. [Google Scholar]
- Emparan, Q.; Harun, R.; Danquah, M.K. Role of phycoremediation for nutrient removal from wastewaters: A review. Appl. Ecol. Environ. Res. 2019, 17, 889–915. [Google Scholar] [CrossRef]
- Katare, A.K.; Tabassum, A.; Sharma, A.K.; Sharma, S. Treatment of pharmaceutical wastewater through activated sludge process—A critical review. Environ. Monit. Assess. 2023, 195, 1466. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Yang, S.; Li, Y.-Y.; Wen, W.; Wang, X.C.; Chen, R. Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: A review of achievements, challenges, and perspectives. Bioresour. Technol. 2018, 267, 756–768. [Google Scholar] [CrossRef]
- Akpor, O.B.; Muchie, M. Bioremediation of polluted wastewater influent: Phosphorus and nitrogen removal. Sci. Res. Essays 2010, 5, 3222–3230. [Google Scholar]
- Khan, S.; Thaher, M.; Abdulquadir, M.; Faisal, M.; Mehariya, S.; Al-Najjar, M.A.A.; Al-Jabri, H.; Das, P. Utilization of microalgae for urban wastewater treatment and valorization of treated wastewater and biomass for biofertilizer applications. Sustainability 2023, 15, 16019. [Google Scholar] [CrossRef]
- Moretti, C.J.; Das, D.; Kistner, B.T.; Gullicks, H.; Hung, Y.-T. Activated sludge and other aerobic suspended culture processes. Water 2011, 3, 806–818. [Google Scholar] [CrossRef]
- Ye, L.; Li, D.; Zhang, J.; Zhang, J.; Zeng, H. Advance of research on the technology of nitrite-denitrifying phosphorus removal. J. Beijing Univ. Technol. 2016, 42, 585–593. [Google Scholar]
- Qiu, Z.; Zhou, Z.; Hu, D. Advances on reject water treatment for wastewater treatment plants. Water Wastewater Eng. 2018, 44, 127–131. [Google Scholar]
- Bai, C.; Wan, C.; Huang, W.; Wei, X.; Yang, C.; Zhai, W. Application of msbr+high efficiency sedimentation tank process in wastewater treatment plant with stringent discharge standard. Technol. Water Treat. 2024, 50, 147–151+156. [Google Scholar]
- Chen, Y.; Zhang, F.; Gan, F. Application optimization of high efficiency settling tank in wastewater advanced treatment project. Water Wastewater Eng. 2022, 48, 46–50+56. [Google Scholar]
- Wang, H.; Yu, X.; Li, Y.; Cui, Y.; Zhang, K. Effect of sludge return ratio on the treatment characteristics of high-efficiency sedimentation tank. Desalination Water Treat. 2014, 52, 5118–5125. [Google Scholar] [CrossRef]
- Xiao, D.; Nan, J.; Zhang, X.; He, W.; Fan, Y.; Lin, X. Pilot-scale study of turbid particle evolutional/removal characteristics during coagulation-sedimentation-filtration (csf): Effects of coagulant dosage and secondary dosing after breakage. J. Water Process Eng. 2024, 68, 106325. [Google Scholar] [CrossRef]
- Rao, M. Experimental Study on Treatment of Low Turbidity and Micropolluted Water by Combined Application of High-Density Sedimentation Tank and Powder Active Carbon. Master’s Thesis, Beijing University of Chemical Technology, Beijing, China, 2009. [Google Scholar]
- Sherman, J.J.; Van Horn, H.H.; Nordstedt, R.A. Use of flocculants in dairy wastewaters to remove phosphorus. Appl. Eng. Agric. 2000, 16, 445–452. [Google Scholar] [CrossRef]
- Liu, T.; Yang, S.; Wei, X.; Guo, S. Application of high-efficiency sedimentation tank and hydro-clear shallow media rapid filter for advanced treatment in a wastewater treatment plant. China Water Wastewater 2021, 37, 82–86. [Google Scholar]
- Lin, M.; Zhao, Z.; Cui, F.; Niu, C.; Wang, Y. Powdered activated carbon adsorption for water works to cope with the sudden pollution of ethylbenzene in raw water. J. Harbin Inst. Technol. 2012, 44, 48–51. [Google Scholar]
- Cao, X.; Liu, Y.; Fu, X.; Yang, J.; Wang, W. The effect of pam and pac compound conditioning on sludge rheology and dewatering. Appl. Chem. Ind. 2023, 52, 2571–2575+2579. [Google Scholar]
- Tang, W.; Zhao, X. Study on the treatment of boiler raw water in winter with flocculants combination. Ind. Water Treat. 2015, 35, 110–112. [Google Scholar]
- Penn, C.; Chagas, I.; Klimeski, A.; Lyngsie, G. A review of phosphorus removal structures: How to assess and compare their performance. Water 2017, 9, 583. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Li, J. Phosphorus pollution and its prevention and control measures. Environ. Prot. Chem. Ind. 2002, 22, 68–70. [Google Scholar]
- Zhang, Z.; Xu, Z.; Yang, L. Removal effect of nitrogen and phosphorus on micro-polluted raw water treatment processess. Technol. Water Treat. 2009, 35, 11–14+38. [Google Scholar]
PAC* | FeSO4 | FeCl3 | PFS | PAFC | Al2(SO4)3 | |
---|---|---|---|---|---|---|
Concentration of TP (mg/L) | 0.01 ± 0.00 | 0.134 ± 0.011 | 0.053 ± 0.006 | 0.186 ± 0.005 | 0.057 ± 0.002 | 0.003 ± 0.001 |
Removal Efficiency (%) | 98 | 68 | 87 | 56 | 86 | 99 |
PAC* | FeSO4 | FeCl3 | PFS | PAFC | Al2(SO4)3 | |
---|---|---|---|---|---|---|
Concentration of TP (mg/L) | 0.35 ± 0.02 | 0.39 ± 0.002 | 0.41 ± 0.003 | 0.49 ± 0.007 | 0.43 ± 0.005 | 0.44 ± 0.003 |
Removal Efficiency (%) | 67 | 63 | 62 | 54 | 60 | 59 |
Removal Efficiency (%) | PAC | FeSO4 | FeCl3 | PFS | PAFC |
---|---|---|---|---|---|
PAC | 98%* | - | - | - | |
FeSO4 | 83% | - | - | ||
FeCl3 | 95% | 87% | |||
PFS | 71% | 90% | 90% | ||
PAFC | 93% | 96% | 72% | 54% | |
Al2(SO4)3 | 97% | 97% | 53% | 85% | 100% |
Removal Efficiency (%) | PAC | FeSO4 | FeCl3 | PFS | PAFC |
---|---|---|---|---|---|
PAC | 42.21* | ||||
FeSO4 | 40.95 | ||||
FeCl3 | 41.58 | 37.17 | |||
PFS | 41.58 | 36.54 | |||
PAFC | 46.62 | 37.8 | 45.36 | 38.43 | |
Al2(SO4)3 | 24.51 | 47.25 | 33.39 | 42.84 | 43.47 |
Concentration of FeSO4-Al2(SO4)3 | 5 | 10 | 15 | 20 | 25 | 30 |
---|---|---|---|---|---|---|
Concentration of TP (mg/L) | 0.28 ± 0.02 | 0.22 ± 0.02 | 0.20 ± 0.02 | 0.15 ± 0.01 | 0.12 ± 0.01 | 0.09 ± 0.01 |
Removal Efficiency (%) | 30 | 45 | 50 | 62 | 70 | 77 |
Ratio of FeSO4-Al2(SO4)3 (Total Amount 20 mg/L) | 1:19 | 5:15 | 10:10 | 15:05 | 19:01 | PAC* = 20 mg/L |
---|---|---|---|---|---|---|
Concentration of TP (mg/L) | 0.11 ± 0.002 | 0.12 ± 0.002 | 0.12 ± 0.003 | 0.15 ± 0.01 | 0.15 ± 0.01 | 0.26 ± 0.003 |
Removal Efficiency (%) | 73 | 71 | 70 | 64 | 62 | 35 |
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | Factor 7 | Response 1 | ||
---|---|---|---|---|---|---|---|---|---|
Std | Run | A:Mixture Ratio | B:Mixture Dose (mg/L) | C:Fast Stirring (rpm) | D:Fast Stirring Time (min) | E:PAM Dose (mg/L) | F:Slow Stirring (rpm) | G:Slow Stirring Time (min) | TP Removal (%) |
58 | 1 | 0.275 | 20 | 55 | 4 | 1 | 20 | 10 | 84.9 |
4 | 2 | 0.275 | 20 | 55 | 7 | 1.5 | 10 | 10 | 85.4 |
55 | 3 | 0.275 | 10 | 70 | 4 | 1 | 30 | 10 | 71.2 |
35 | 4 | 0.275 | 20 | 40 | 7 | 1 | 20 | 5 | 86.8 |
23 | 5 | 0.275 | 10 | 55 | 4 | 1.5 | 20 | 15 | 77.3 |
6 | 6 | 0.275 | 20 | 55 | 7 | 0.5 | 30 | 10 | 93.5 |
41 | 7 | 0.05 | 20 | 40 | 4 | 0.5 | 20 | 10 | 93.1 |
31 | 8 | 0.05 | 30 | 55 | 7 | 1 | 20 | 10 | 97.5 |
52 | 9 | 0.275 | 30 | 70 | 4 | 1 | 10 | 10 | 96.8 |
14 | 10 | 0.5 | 20 | 55 | 4 | 1 | 10 | 15 | 94.4 |
16 | 11 | 0.5 | 20 | 55 | 4 | 1 | 30 | 15 | 97.5 |
8 | 12 | 0.275 | 20 | 55 | 7 | 1.5 | 30 | 10 | 95.8 |
49 | 13 | 0.275 | 10 | 40 | 4 | 1 | 10 | 10 | 77.7 |
20 | 14 | 0.275 | 30 | 55 | 4 | 1.5 | 20 | 5 | 99.3 |
1 | 15 | 0.275 | 20 | 55 | 1 | 0.5 | 10 | 10 | 94.4 |
2 | 16 | 0.275 | 20 | 55 | 7 | 0.5 | 10 | 10 | 92.1 |
18 | 17 | 0.275 | 30 | 55 | 4 | 0.5 | 20 | 5 | 94.7 |
54 | 18 | 0.275 | 30 | 40 | 4 | 1 | 30 | 10 | 95.6 |
28 | 19 | 0.5 | 30 | 55 | 1 | 1 | 20 | 10 | 95.8 |
13 | 20 | 0.05 | 20 | 55 | 4 | 1 | 10 | 15 | 99.1 |
33 | 21 | 0.275 | 20 | 40 | 1 | 1 | 20 | 5 | 97.5 |
45 | 22 | 0.05 | 20 | 40 | 4 | 1.5 | 20 | 10 | 91.9 |
39 | 23 | 0.275 | 20 | 40 | 7 | 1 | 20 | 15 | 94.9 |
32 | 24 | 0.5 | 30 | 55 | 7 | 1 | 20 | 10 | 96.5 |
43 | 25 | 0.05 | 20 | 70 | 4 | 0.5 | 20 | 10 | 99.3 |
40 | 26 | 0.275 | 20 | 70 | 7 | 1 | 20 | 15 | 87.2 |
57 | 27 | 0.275 | 20 | 55 | 4 | 1 | 20 | 10 | 87.9 |
3 | 28 | 0.275 | 20 | 55 | 1 | 1.5 | 10 | 10 | 89.8 |
5 | 29 | 0.275 | 20 | 55 | 1 | 0.5 | 30 | 10 | 90.3 |
17 | 30 | 0.275 | 10 | 55 | 4 | 0.5 | 20 | 5 | 71 |
38 | 31 | 0.275 | 20 | 70 | 1 | 1 | 20 | 15 | 91 |
44 | 32 | 0.5 | 20 | 70 | 4 | 0.5 | 20 | 10 | 88.9 |
51 | 33 | 0.275 | 10 | 70 | 4 | 1 | 10 | 10 | 74.2 |
29 | 34 | 0.05 | 10 | 55 | 7 | 1 | 20 | 10 | 80 |
36 | 35 | 0.275 | 20 | 70 | 7 | 1 | 20 | 5 | 92.1 |
53 | 36 | 0.275 | 10 | 40 | 4 | 1 | 30 | 10 | 73.5 |
7 | 37 | 0.275 | 20 | 55 | 1 | 1.5 | 30 | 10 | 92.6 |
59 | 38 | 0.275 | 20 | 55 | 4 | 1 | 20 | 10 | 90.5 |
10 | 39 | 0.5 | 20 | 55 | 4 | 1 | 10 | 5 | 93.5 |
27 | 40 | 0.05 | 30 | 55 | 1 | 1 | 20 | 10 | 98.9 |
25 | 41 | 0.05 | 10 | 55 | 1 | 1 | 20 | 10 | 86.8 |
12 | 42 | 0.5 | 20 | 55 | 4 | 1 | 30 | 5 | 87.2 |
19 | 43 | 0.275 | 10 | 55 | 4 | 1.5 | 20 | 5 | 94.7 |
26 | 44 | 0.5 | 10 | 55 | 1 | 1 | 20 | 10 | 93.3 |
11 | 45 | 0.05 | 20 | 55 | 4 | 1 | 30 | 5 | 92.4 |
9 | 46 | 0.05 | 20 | 55 | 4 | 1 | 10 | 5 | 99.6 |
47 | 47 | 0.05 | 20 | 70 | 4 | 1.5 | 20 | 10 | 90.3 |
24 | 48 | 0.275 | 30 | 55 | 4 | 1.5 | 20 | 15 | 74 |
34 | 49 | 0.275 | 20 | 70 | 1 | 1 | 20 | 5 | 94.7 |
21 | 50 | 0.275 | 10 | 55 | 4 | 0.5 | 20 | 15 | 88.2 |
56 | 51 | 0.275 | 30 | 70 | 4 | 1 | 30 | 10 | 83.3 |
37 | 52 | 0.275 | 20 | 40 | 1 | 1 | 20 | 15 | 88.6 |
15 | 53 | 0.05 | 20 | 55 | 4 | 1 | 30 | 15 | 90.7 |
46 | 54 | 0.5 | 20 | 40 | 4 | 1.5 | 20 | 10 | 88.2 |
48 | 55 | 0.5 | 20 | 70 | 4 | 1.5 | 20 | 10 | 89.5 |
50 | 56 | 0.275 | 30 | 40 | 4 | 1 | 10 | 10 | 89.9 |
22 | 57 | 0.275 | 30 | 55 | 4 | 0.5 | 20 | 15 | 93.8 |
42 | 58 | 0.5 | 20 | 40 | 4 | 0.5 | 20 | 10 | 91.2 |
30 | 59 | 0.5 | 10 | 55 | 7 | 1 | 20 | 10 | 77.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, J.; Zhang, Y.; Chen, L.; Chen, X.; Li, Y.; Min, X.; Chen, Q.; Chen, T.; Wang, K.; Luo, Y. Optimization of FeSO4-Al2(SO4)3 Composite Flocculant for Enhanced Phosphorus Removal in Wastewater Treatment: A Response Surface Methodology Study. Processes 2025, 13, 882. https://doi.org/10.3390/pr13030882
Tu J, Zhang Y, Chen L, Chen X, Li Y, Min X, Chen Q, Chen T, Wang K, Luo Y. Optimization of FeSO4-Al2(SO4)3 Composite Flocculant for Enhanced Phosphorus Removal in Wastewater Treatment: A Response Surface Methodology Study. Processes. 2025; 13(3):882. https://doi.org/10.3390/pr13030882
Chicago/Turabian StyleTu, Jiancheng, Yanping Zhang, Liling Chen, Xin Chen, Yiping Li, Xiaohong Min, Qiu Chen, Tao Chen, Kunlei Wang, and Yiqiang Luo. 2025. "Optimization of FeSO4-Al2(SO4)3 Composite Flocculant for Enhanced Phosphorus Removal in Wastewater Treatment: A Response Surface Methodology Study" Processes 13, no. 3: 882. https://doi.org/10.3390/pr13030882
APA StyleTu, J., Zhang, Y., Chen, L., Chen, X., Li, Y., Min, X., Chen, Q., Chen, T., Wang, K., & Luo, Y. (2025). Optimization of FeSO4-Al2(SO4)3 Composite Flocculant for Enhanced Phosphorus Removal in Wastewater Treatment: A Response Surface Methodology Study. Processes, 13(3), 882. https://doi.org/10.3390/pr13030882