Molecular Simulation of Ultra-Microstructural Characteristics of Adsorption Pores in Terms of Coal and Gas Adsorption Properties
Abstract
:1. Introduction
2. Experimental and Simulation Methodology
2.1. Molecular Model Construction
2.2. Liquid Nitrogen Adsorption Experiment
2.3. Simulation of Coal Pore Structure Characteristics
2.4. Optimization of the Model
2.5. Adsorption Simulation
3. Results and Discussion
3.1. Pore Structure Characteristics of Coal
- (1)
- PV distribution characteristics
- (2)
- Pore SSA distribution characteristics
- (3)
- Pore shape characteristics
3.2. Simulation of Pore Structure Characteristics in Coal Macromolecular Models
- (1)
- SSA simulation
- (2)
- PV simulations
3.3. Adsorption Simulation on Coal Macromolecular Models
3.3.1. CH4 Isothermal Adsorption Simulation
3.3.2. CH4 Adsorption Simulation at Different Temperatures
3.3.3. Isothermal Adsorption Simulation for Different Adsorbates
3.3.4. Energy Variations in Coal Before and After Adsorption of Different Adsorbates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
rk | Pore radius of the experimental coal sample | nm |
σ1 | Surface tension of the condensed phase | N/m |
V | Actual adsorption capacity on the coal sample surface | mL |
Monolayer saturation adsorption capacity of nitrogen | mL | |
Vm1 | Adsorption volume of the liquid under the action of liquid nitrogen | cm3/g |
R | Gas constant | J·mol−1·K−1 |
Tb | Experimental temperature | K |
P | Pressure of the adsorbate | Pa |
P0 | Saturation vapor pressure of nitrogen at −196 °C | Pa |
Surface Area | Connolly SSA | m2/g |
Surface Area per cell | Surface area of the coal macromolecular model | Å2 |
Density | Density of the coal macromolecular model | g/cm3 |
Cell Volume | Volume of the coal macromolecular model | Å3 |
Pore Volume | Connolly PV | cm3/g |
Cell Free Volume | Free volume of the coal macromolecular model | Å3 |
Density | Density of the coal macromolecular model | g/cm3 |
Cell Volume | Volume of the coal macromolecular model | Å3 |
M | Mass of a single unit cell | g |
Vmol | Molar volume of a gas at a standard temperature and pressure | cm3 |
References
- Ge, S.; Fan, J.; Liu, S.; Song, M.; Xian, Y.; Wang, B.; Teng, T. Low carbon modern coal-based energy technology system and development strategy. J. China Coal Soc. 2024, 49, 203–223. [Google Scholar]
- Zhang, D.; Zhu, J.; Zhao, X.; Gao, Y.; Geng, M.; Chen, G.; Jiao, J.; Liu, S. Dynamic assessment of coalbed methane resources and availability in China. J. China Coal Soc. 2018, 43, 1598–1604. [Google Scholar]
- Xu, F.; Hou, W.; Xiong, X.; Xu, B.; Wu, P.; Wang, H.; Feng, K.; Yun, J.; Li, S.; Zhang, L.; et al. The status and development strategy of coalbed methane industry in China. Petroleum Explor. Dev. 2023, 50, 765–783. [Google Scholar] [CrossRef]
- Cheng, Y.; Hu, B. Main occurrence form of methane in coal: Micropore filling. J. China Coal Soc. 2021, 46, 2933–2948. [Google Scholar]
- Zhou, J.; Guo, X.; Zhao, B.; Jin, Z.; Deng, C. Study on the influence of microscopic components and pore structure of coal-rock system on methane adsorption. Min. Saf. Environ. Prot. 2024, 51, 51–60. [Google Scholar]
- Yi, M.; Cheng, Y.; Wang, Z.; Wang, C.; Hu, B.; He, X. Effect of particle size and adsorption equilibrium time on pore structure characterization in low pressure N2 adsorption of coal: An experimental study. Adv. Powder Technol. 2020, 31, 4275–4281. [Google Scholar] [CrossRef]
- Liu, H.; Mou, J.; Cheng, Y. Impact of pore structure on gas adsorption and diffusion dynamics for long-flame coal. J. Nat. Gas Sci. Eng. 2015, 22, 203–213. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, S.; Huang, X.; Shi, X.; Zhang, T.; Zhang, L.; Wang, F. Accurate characterization method of pores and various minerals in coal based on CT scanning. Fuel 2024, 358, 130128. [Google Scholar] [CrossRef]
- Zhao, P.; He, B.; Zhang, B.; Liu, J. Porosity of gas shale: Is the NMR-based measurement reliable. Pet. Sci. 2022, 19, 509–517. [Google Scholar] [CrossRef]
- Han, W.; Zhou, G.; Gao, D.; Zhang, Z.; Wei, Z.; Wang, H.; Yang, H. Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion-nitrogen adsorption porosimetry. Powder Technol. 2020, 362, 386–398. [Google Scholar] [CrossRef]
- Dantas, S.; Struckhoff, K.C.; Thommes, M.; Neimark, A.V. Pore size characterization of micro-mesoporous carbons using CO2 adsorption. Carbon 2021, 173, 842–848. [Google Scholar] [CrossRef]
- Wen, H.; Liu, M.; Fan, S.; Wei, G.; Liu, Y.; Hao, J. Experimental study on variations of pore-fissure in coal-rock leached by liquid CO2. J. Xi’an Univ. Sci. Technol. 2020, 40, 935–944. [Google Scholar]
- Luo, M.; Glover, P.W.J.; Zhao, P.; Li, D. 3D digital rock modeling of the fractal properties of pore structures. Mar. Pet. Geol. 2020, 122, 104706. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, M.; Jiang, W.; Xu, L.; Ji, L.; Cao, G.; Hao, W. Pore-morphology-based pore structure characterization for various porous media. Chem. Eng. Sci. 2023, 280, 118982. [Google Scholar] [CrossRef]
- Liu, S.; Sun, H.; Zhang, D.; Yang, K.; Li, X.; Wang, D.; Li, Y. Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics. Energy 2023, 275, 127470. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Zhang, L.; Hou, J. Characterization on pore structure of tectonic coals based on the method of mercury intrusion, carbon dioxide adsorption and nitrogen adsorption. J. China Coal Soc. 2019, 44, 1188–1196. [Google Scholar]
- Ren, P.; Xu, H.; Tang, D.; Li, Y.; Chen, Z.; Sun, C.; Zhang, F.; Chen, S.; Xin, F.; Cao, L. Pore structure and fractal characterization of main coal-bearing synclines in western Guizhou, China. J. Nat. Gas Sci. Eng. 2019, 63, 58–69. [Google Scholar] [CrossRef]
- Li, S.; Zhou, Y.; Hu, B.; Qin, X.; Kong, X.; Bai, Y.; Zhang, J. Structural characteristics of adsorption pores in low-rank coals and their effects on methane adsorption performance. Coal Geol. Explor. 2023, 51, 127–136. [Google Scholar]
- Zhang, S.; Tang, S.; Li, Z.; Liu, B.; Wang, R. Effect of pore structure on competitive sorption and diffusion of mixed methane and carbon dioxide in anthracite, South Qinshui Basin, China. Int. J. Coal Geol. 2022, 253, 103956. [Google Scholar] [CrossRef]
- Dong, K.; Zhai, Z.; Guo, A. Effects of pore parameters and functional groups in coal on CO2/CH4 adsorption. ACS Omega 2021, 48, 32395–32407. [Google Scholar] [CrossRef]
- Ren, X.; Wen, Z.; Song, H.; Liang, S. Experimental study on change of coal adsorption characteristics by using Fenton reagent. Coal Technol. 2016, 35, 173–175. [Google Scholar]
- Han, Q.; Deng, C.; Jin, Z.; Gao, T. Molecular Simulation of the Adsorption Characteristics of Methane in Pores of Coal with Different Metamorphic Degrees. Molecules 2021, 26, 7217. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Liu, S.; Zhang, R. Pore characterization and its impact on methane adsorption capacity for organic-rich marine shales. Fuel 2016, 181, 227. [Google Scholar] [CrossRef]
- Jiang, J.; Cheng, Y.; Zhang, S. Quantitative characterization of pore structure and gas adsorption and diffusion properties of low-rank coal. J. China Coal Soc. 2021, 46, 3221–3233. [Google Scholar]
- Wang, Y. Characteristics of nano-pore structure of Dongqu No.2 coal and its interaction with CH4/CO2/H2O/N2. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2022. [Google Scholar]
- Wang, H.; Xiang, J.; Deng, X. Molecular Simulation of the Pore Structure and Adsorption Properties of Coal under Compression Stress. Energy Fuels 2023, 37, 1887–1895. [Google Scholar] [CrossRef]
- Yan, J.; Jia, B.; Liu, B.; Zhang, J. Simulation Study on Molecular Adsorption of Coal in Chicheng Coal Mine. Molecules 2023, 28, 3302. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, Y.; Wei, J.; Wang, J.; Si, L.; Wang, Q. Study on Molecular Model Construction and Gas Adsorption Simulation of Anthracite in the Qinshui Basin. Langmuir 2023, 39, 12944–12955. [Google Scholar] [CrossRef]
- Liu, X. Study on Microstructural Characteristics of Coal Surface and the Mechanism of Electromagnetic Radiation. Ph.D. Thesis, China University of Mining & Technology, Beijing, China, 2019. [Google Scholar]
- Wang, Z.; Hao, C.; Wang, X.; Wang, G.; Ni, G.; Cheng, Y. Effects of micro-mesopore structure characteristics on methane adsorption capacity of medium rank coal. Fuel 2023, 351, 128910. [Google Scholar] [CrossRef]
- Xiao, P.; Du, Y. Experiment on the influence of microstructure of tectonic coal on its adsorption characteristics. J. Xi’an Univ. Sci. Technol. 2021, 41, 237–245. [Google Scholar]
- Xin, F.; Xu, H.; Tang, D.; Liu, D.; Cao, C. Problems in pore property testing of lignite: Analysis and correction. Int. J. Coal Geol. 2021, 245, 103829. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Liu, S.; Li, W.; Tang, X. Temperature effect on gas adsorption capacity in different sized pores of coal: Experiment and numerical modeling. J. Pet. Sci. Eng. 2018, 165, 821–830. [Google Scholar] [CrossRef]
- Xiao, T.; Li, S.; Long, H.; Kong, X.; Bai, Y.; Qin, A. Experimental research on adsorption characteristics of N2, CH4, and CO2 in coal under different temperatures and gas pressures. Energy Sci. Eng. 2023, 11, 637–653. [Google Scholar] [CrossRef]
- Jia, J.; Xing, Y.; Li, B.; Jia, P.; Wu, Y.; Yang, Q.; Wang, D. Molecular simulations of multivariate competitive adsorption of CH4, CO2 and H2O in gas-fat coal. Colloids Surf. A 2024, 683, 132917. [Google Scholar] [CrossRef]
- Kang, G.; Zhang, B.; Kang, T.; Guo, J.; Zhao, G. Effect of Pressure and Temperature on CO2/CH4 Competitive Adsorption on Kaolinite by Monte Carlo Simulations. Materials 2020, 13, 2851. [Google Scholar] [CrossRef]
Coal Sample | Element Formula | Ultimate Analysis | |||
---|---|---|---|---|---|
C | H | O | N | ||
DS-L | C153H139N3O29 | 73.99 | 5.64 | 18.68 | 1.69 |
CZ-A | C188H138N2O7 | 89.00 | 5.48 | 4.41 | 1.10 |
Coal Sample | BJH PV (mL/g) | Total PV (mL/g) | ||
---|---|---|---|---|
Micropores | Small Pores | Mesopores | ||
DS-L | 0.003318 | 0.006256 | 0.00288 | 0.012454 |
CZ-A | 0.009209 | 0.005768 | 0.004665 | 0.019642 |
Coal Sample | BET SSA (m2/g) | Total SSA (m2/g) | ||
---|---|---|---|---|
Micropores | Small Pores | Mesopores | ||
DS-L | 3.308 | 1.449 | 0.081 | 4.839 |
CZ-A | 4.712 | 0.519 | 0.130 | 5.362 |
Coal Sample | Total SSA (Am2/g) | Total PV (m3/g) | |
---|---|---|---|
DS-L | Experiment | 4.839 | 0.012454 |
Simulation | 40.3707 | 0.022873 | |
CZ-A | Experiment | 5.362 | 0.019642 |
Simulation | 45.5005 | 0.034971 |
Pressure (MPa) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
DS-L | 0 | 1.76 | 2.85 | 2.98 | 3.09 | 3.18 | 3.25 | 3.31 | 3.35 | 3.38 | 3.4 |
CZ-A | 0 | 2.28 | 3.98 | 4.36 | 4.67 | 4.89 | 5.08 | 5.19 | 5.28 | 5.35 | 5.37 |
Pressure (MPa) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
DS-L | 0 | 15.84 | 25.65 | 26.82 | 27.81 | 28.62 | 29.25 | 29.79 | 30.15 | 30.42 | 30.6 |
CZ-A | 0 | 20.43 | 35.66 | 39.06 | 41.84 | 43.81 | 45.52 | 46.50 | 47.31 | 47.94 | 48.12 |
Pressure (MPa) | DS-L | CZ-A | ||||
---|---|---|---|---|---|---|
303.15 K | 313.15 K | 323.15 K | 303.15 K | 313.15 K | 323.15 K | |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 15.84 | 14.04 | 12.96 | 20.43 | 18.73 | 17.74 |
2 | 25.65 | 23.94 | 22.95 | 35.66 | 32.70 | 31.81 |
3 | 26.82 | 25.2 | 24.12 | 39.066 | 36.19 | 34.59 |
4 | 27.81 | 26.28 | 25.2 | 41.84 | 39.25 | 37.45 |
5 | 28.62 | 27 | 26.01 | 43.81 | 41.57 | 39.07 |
6 | 29.25 | 27.72 | 26.45 | 45.52 | 43.46 | 40.41 |
7 | 29.79 | 28.35 | 26.9 | 46.50 | 44.53 | 41.66 |
8 | 30.15 | 28.89 | 27.35 | 47.31 | 45.34 | 42.56 |
9 | 30.42 | 29.25 | 27.62 | 47.94 | 45.88 | 43.28 |
10 | 30.6 | 29.34 | 27.8 | 48.12 | 45.96 | 43.81 |
Pressure (MPa) | DS-L | CZ-A | ||||
---|---|---|---|---|---|---|
CH4 | CO2 | H2O | CH4 | CO2 | H2O | |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 15.84 | 18.92 | 68.04 | 20.43 | 23.21 | 77.41 |
2 | 25.65 | 29.64 | 93.42 | 35.66 | 40.68 | 116.12 |
3 | 26.82 | 32.79 | 102.21 | 39.066 | 47.76 | 134.4 |
4 | 27.81 | 34.31 | 110.52 | 41.84 | 51.79 | 144.61 |
5 | 28.62 | 36.38 | 118.35 | 43.81 | 54.84 | 152.77 |
6 | 29.25 | 38.27 | 124.74 | 45.52 | 56.72 | 157.25 |
7 | 29.79 | 39.35 | 128.07 | 46.50 | 57.97 | 161.10 |
8 | 30.15 | 39.84 | 130.95 | 47.31 | 58.96 | 164.51 |
9 | 30.42 | 40.15 | 133.02 | 47.94 | 59.58 | 167.46 |
10 | 30.6 | 40.28 | 135 | 48.12 | 59.85 | 170.24 |
Total Energy (Kcal/mol) | Valence Electron Energy (Kcal/mol) | Non-Bond Interaction Energy (Kcal/mol) | ||||||
---|---|---|---|---|---|---|---|---|
Bond | Angle | Torsion | Inversion | van der Waals | Electrostatic | H-Bond | ||
Before adsorption | 474.014 | 83.528 | 132.248 | 146.933 | 5.908 | 277.366 | −152.935 | −1.082 |
After CH4 adsorption | 443.325 | 83.527 | 132.136 | 146.932 | 5.907 | 241.572 | −163.057 | −1.094 |
After CO2 adsorption | 432.986 | 83.527 | 133.056 | 146.933 | 5.906 | 235.158 | −172.356 | −2.321 |
After H2O adsorption | 385.784 | 83.342 | 132.247 | 146.931 | 5.907 | 283.237 | −246.236 | −32.756 |
Total Energy (Kcal/mol) | Valence Electron Energy (Kcal/mol) | Non-Bond Interaction Energy (Kcal/mol) | ||||||
---|---|---|---|---|---|---|---|---|
Bond | Angle | Torsion | Inversion | van der Waals | Electrostatic | H-Bond | ||
Before adsorption | 3595.511 | 1973.913 | 124.974 | 125.717 | 5.436 | 1233.536 | −185.102 | −3.327 |
After CH4 adsorption | 3157.256 | 1900.921 | 114.130 | 114.620 | 4.392 | 852.129 | −225.942 | −3.432 |
After CO2 adsorption | 2546.362 | 1836.315 | 120.074 | 113.646 | 5.931 | 901.308 | −426.909 | −5.366 |
After H2O adsorption | 1532.596 | 1364.367 | 132.368 | 120.575 | 6.354 | 1122.354 | −1412.704 | −235.653 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Wang, Y.; Zhao, Y.; Wang, Q.; Wen, Z.; Tang, L. Molecular Simulation of Ultra-Microstructural Characteristics of Adsorption Pores in Terms of Coal and Gas Adsorption Properties. Processes 2025, 13, 771. https://doi.org/10.3390/pr13030771
Chen P, Wang Y, Zhao Y, Wang Q, Wen Z, Tang L. Molecular Simulation of Ultra-Microstructural Characteristics of Adsorption Pores in Terms of Coal and Gas Adsorption Properties. Processes. 2025; 13(3):771. https://doi.org/10.3390/pr13030771
Chicago/Turabian StyleChen, Pan, Yanping Wang, Yanxia Zhao, Qi Wang, Zhihui Wen, and Ligang Tang. 2025. "Molecular Simulation of Ultra-Microstructural Characteristics of Adsorption Pores in Terms of Coal and Gas Adsorption Properties" Processes 13, no. 3: 771. https://doi.org/10.3390/pr13030771
APA StyleChen, P., Wang, Y., Zhao, Y., Wang, Q., Wen, Z., & Tang, L. (2025). Molecular Simulation of Ultra-Microstructural Characteristics of Adsorption Pores in Terms of Coal and Gas Adsorption Properties. Processes, 13(3), 771. https://doi.org/10.3390/pr13030771