Recent Advances in Zero Discharge Treatment Technologies for Desulfurization Wastewater in Coal-Fired Power Plants: A Mini-Review
Abstract
:1. Introduction
2. ZLD Technology for the Recovery and Reuse of DWW
2.1. Thermal Process Method
2.1.1. Thermal Concentration–Crystallization Technology
2.1.2. Flue Gas Evaporation–Drying (FGED) Technology
2.2. Membrane Method
2.2.1. High Efficiency Reverse Osmosis (HERO)
2.2.2. Forward Osmosis (FO)
2.2.3. Membrane Distillation (MD)
2.2.4. Electrodialysis (ED)
3. ZLD in DWW Recovery Applications
3.1. Thermal Examples
3.1.1. Thermal Concentration–Crystallization Technology
3.1.2. Flue Gas Evaporation–Drying Technology
3.2. Membrane Method Example
3.2.1. FO Method
3.2.2. RO Method
3.2.3. MD Method
3.3. Technical Comparison
3.3.1. Comparison with Traditional Techniques
3.3.2. Comparison of Thermal and Membrane Techniques
3.4. Challenges and Future Directions
4. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sivalingam, S.; Vishal, G.; Anush, B. Chapter 4—Environmental and health effects of acid rain. In Health and Environmental Effects of Ambient Air Pollution; Dehghani, M.H., Karri, R.R., Vera, T., Hassan, S.K.M., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 91–107. [Google Scholar]
- Li, W.; Wu, H.; Tong, H.; Du, Z.; Wang, H.; Zhou, C.; Zhang, Z.; Yang, H. Formation and migration of soluble ions in condensable particulate matter in limestone-gypsum wet flue gas desulfurization system. Fuel 2024, 357, 129807. [Google Scholar]
- Han, Y.; Zhu, Y. SO3 removal rate and emission test of the limestone-gypsum wet desulfurization system for coal-fired power plants. J. Phys. Conf. Ser. 2023, 2598, 012014. [Google Scholar] [CrossRef]
- Yin, T.; Zhang, Y.; Dong, D.; Wang, T.; Wang, J. Highly efficient capacitive removal of Cd2+ over MoS2-Carbon framework composite material in desulphurisation wastewater from coal-fired power plants. J. Cleaner Prod. 2022, 355, 131814. [Google Scholar]
- Sun, Z.; Zhao, N.; Feng, Y.; Liu, F.; Cai, C.; Che, G.; Zhang, Y.; Wu, H.; Yang, L. Experimental study on the treatment of desulfurization wastewater from coal-fired power plant by spray evaporation. Environ. Sci. Pollut. Res. 2022, 29, 90791–90802. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, H.; Zhan, L.; Zheng, S.; Wu, H.; Yang, L. Review of Migration, Transformation, and Control of Volatile Components during Desulfurization Wastewater Evaporation: Advances and Perspectives. Energy Fuels 2023, 37, 15248–15266. [Google Scholar]
- Zhang, B.; Guo, X.; Sun, H.; Mao, Z.; Wang, X.; Wang, X. Zero discharge advanced treatment control system for wet desulfurization wastewater in power plant adapted to water quality fluctuation. Desalin. Water Treat. 2025, 321, 100985. [Google Scholar]
- Cattaneo, C.R.; Muñoz, R.; Korshin, G.V.; Naddeo, V.; Belgiorno, V.; Zarra, T. Biological desulfurization of biogas: A comprehensive review on sulfide microbial metabolism and treatment biotechnologies. Sci. Total Environ. 2023, 893, 164689. [Google Scholar] [CrossRef]
- Pundir, A.; Thakur, M.S.; Radha; Goel, B.; Prakash, S.; Kumari, N.; Sharma, N.; Parameswari, E.; Senapathy, M.; Kumar, S.; et al. Innovations in textile wastewater management: A review of zero liquid discharge technology. Environ. Sci. Pollut. Res. 2024, 31, 12597–12616. [Google Scholar]
- Zhang, H.; Zhao, H.; Feng, B.; Wang, X.; Liu, X.; Dong, Y. Solvent extraction desalination applied to desulphurization wastewater towards zero liquid discharge: Parameters analysis and energy evaluation. J. Cleaner Prod. 2024, 441, 140961. [Google Scholar]
- Buyukada-Kesici, E.; Topuz, E.; Pala, B.; Koseoglu-Imer, D.Y.; Aydiner, C. 10—Implementation of zero liquid discharge policy in industrial water management. In Resource Recovery in Industrial Waste Waters; Sillanpää, M., Khadir, A., Gurung, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 199–228. [Google Scholar]
- Abdelfattah, I.; El-Shamy, A.M. Review on the escalating imperative of zero liquid discharge (ZLD) technology for sustainable water management and environmental resilience. J. Environ. Manag. 2024, 351, 119614. [Google Scholar]
- Florides, F.; Giannakoudi, M.; Ioannou, G.; Lazaridou, D.; Lamprinidou, E.; Loukoutos, N.; Spyridou, M.; Tosounidis, E.; Xanthopoulou, M.; Katsoyiannis, I.A. Water Reuse: A Comprehensive Review. Environments 2024, 11, 81. [Google Scholar] [CrossRef]
- Yang, J.; Hou, Z.; Meng, F.; Qi, J.; Zhu, Z.; Wang, Y.; Gao, J.; Cui, P. Sustainability Analysis for the Wastewater Treatment Technical Route for Coal-to-Synthetic Natural Gas Industry through Zero Liquid Discharge Versus Standard Liquid Discharge. ACS Sustain. Chem. Eng. 2020, 8, 8425–8435. [Google Scholar] [CrossRef]
- Prado de Nicolás, A.; Molina-García, Á.; García-Bermejo, J.T.; Vera-García, F. Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives. Renew. Sustain. Energy Rev. 2023, 187, 113733. [Google Scholar] [CrossRef]
- Jensen, F.; Whitfield, L. Leveraging participation in apparel global supply chains through green industrialization strategies: Implications for low-income countries. Ecol. Econ. 2022, 194, 107331. [Google Scholar] [CrossRef]
- Xiong, R.; Wei, C. Current status and technology trends of zero liquid discharge at coal chemical industry in China. J. Water Process Eng. 2017, 19, 346–351. [Google Scholar] [CrossRef]
- Yadav, A.; Labhasetwar, P.K.; Shahi, V.K. Membrane distillation crystallization technology for zero liquid discharge and resource recovery: Opportunities, challenges and futuristic perspectives. Sci. Total Environ. 2022, 806, 150692. [Google Scholar] [CrossRef] [PubMed]
- Moltedo, J.J.; Schwarz, A.; Gonzalez-Vogel, A. Evaluation of percrystallization coupled with electrodialysis for zero liquid discharge in the pulping industry. J. Environ. Manag. 2022, 303, 114104. [Google Scholar] [CrossRef]
- Arola, K.; Van der Bruggen, B.; Mänttäri, M.; Kallioinen, M. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2049–2116. [Google Scholar] [CrossRef]
- Azerrad, S.P.; Isaacs, M.; Dosoretz, C.G. Integrated treatment of reverse osmosis brines coupling electrocoagulation with advanced oxidation processes. Chem. Eng. J. 2019, 356, 771–780. [Google Scholar] [CrossRef]
- Date, M.; Patyal, V.; Jaspal, D.; Malviya, A.; Khare, K. Zero liquid discharge technology for recovery, reuse, and reclamation of wastewater: A critical review. J. Water Process Eng. 2022, 49, 103129. [Google Scholar] [CrossRef]
- Panagopoulos, A. Techno-economic assessment of zero liquid discharge (ZLD) systems for sustainable treatment, minimization and valorization of seawater brine. J. Environ. Manag. 2022, 306, 114488. [Google Scholar] [PubMed]
- Shetty Kodialbail, V.; Sophia, S. Chapter 1—Concept of zero liquid dischare—Present scenario and new opportunities for economically viable solution. In Concept of Zero Liquid Discharge; Hussain, C.M., Kodialbail, V.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 3–31. [Google Scholar]
- Xu, F.; Zhao, S.; Li, B.; Li, H.; Ling, Z.; Zhang, G.; Liu, M. Current Status of Zero Liquid Discharge Technology for Desulfurization Wastewater. Water 2024, 16, 900. [Google Scholar] [CrossRef]
- Liu, X.; Yang, B.; Li, R. Flue Gas Treatment of Desulphurization Wastewater. IOP Conf. Ser. Earth Environ. Sci 2021, 634, 012022. [Google Scholar]
- Shuangchen, M.; Jin, C.; Gongda, C.; Weijing, Y.; Sijie, Z. Research on desulfurization wastewater evaporation: Present and future perspectives. Renew. Sustain. Energy Rev. 2016, 58, 1143–1151. [Google Scholar]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar]
- Ahmed, S.F.; Mehejabin, F.; Momtahin, A.; Tasannum, N.; Faria, N.T.; Mofijur, M.; Hoang, A.T.; Vo, D.-V.N.; Mahlia, T.M.I. Strategies to improve membrane performance in wastewater treatment. Chemosphere 2022, 306, 135527. [Google Scholar] [PubMed]
- Muhammad, Y.; Lee, W. Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review. Sci. Total Environ. 2019, 681, 551–563. [Google Scholar]
- Nazmkhah, A.; Oghyanous, F.A.; Etemadi, H.; Yegani, R. Optimizing dose of coagulant and pH values for membrane fouling control in a submerged membrane bioreactor. J. Chem. Technol. Biotechnol. 2022, 97, 2794–2804. [Google Scholar]
- Subramani, A.; Jacangelo, J.G. Treatment technologies for reverse osmosis concentrate volume minimization: A review. Sep. Purif. Technol. 2014, 122, 472–489. [Google Scholar]
- Valladares Linares, R.; Li, Z.; Sarp, S.; Bucs, S.S.; Amy, G.; Vrouwenvelder, J.S. Forward osmosis niches in seawater desalination and wastewater reuse. Water Res. 2014, 66, 122–139. [Google Scholar]
- Kiss, A.A.; Kattan Readi, O.M. An industrial perspective on membrane distillation processes. J. Chem. Technol. Biotechnol. 2018, 93, 2047–2055. [Google Scholar] [CrossRef]
- Abdel-Karim, A.; Leaper, S.; Skuse, C.; Zaragoza, G.; Gryta, M.; Gorgojo, P. Membrane cleaning and pretreatments in membrane distillation—A review. Chem. Eng. J. 2021, 422, 129696. [Google Scholar] [CrossRef]
- Loganathan, K.; Chelme-Ayala, P.; Gamal El-Din, M. Treatment of basal water using a hybrid electrodialysis reversal–reverse osmosis system combined with a low-temperature crystallizer for near-zero liquid discharge. Desalination 2015, 363, 92–98. [Google Scholar] [CrossRef]
- Liu, X.; Ma, J.; Li, E.; Zhu, J.; Chu, H.; Zhou, X.; Zhang, Y. Multistage membrane-integrated zero liquid discharge system for ultra-efficient resource recovery from steel industrial brine: Pilot-scale investigation and spatial membrane fouling. J. Membr. Sci. 2024, 699, 122655. [Google Scholar] [CrossRef]
- Shaffer, D.L.; Werber, J.R.; Jaramillo, H.; Lin, S.; Elimelech, M. Forward osmosis: Where are we now? Desalination 2015, 356, 271–284. [Google Scholar] [CrossRef]
- Patel, D.; Mudgal, A.; Patel, V.; Patel, J.; Park, K.; Davies, P.; Alegre, R.R. Energy, exergy, economic and environment analysis of standalone forward osmosis (FO) system for domestic wastewater treatment. Desalination 2023, 567, 116995. [Google Scholar] [CrossRef]
- Curcio, E.; Drioli, E. Membrane Distillation and Related Operations—A Review. Sep. Purif. Rev. 2005, 34, 35–86. [Google Scholar] [CrossRef]
- He, C.; Xu, D.; Luo, C.; Liu, Z. Review on wastewater treatment technology in coal-fired power plants towards zero liquid discharge in China. Desalination 2025, 601, 118520. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, M.; Huang, S.; Cao, Z.; Lu, L.; Zhang, X. Study on mass transfer performance and membrane resistance in concentration of high salinity solutions by electrodialysis. Sep. Purif. Technol. 2022, 281, 119907. [Google Scholar] [CrossRef]
- Wang, J.; Liu, M.; Feng, Z.; Liu, J.; Li, X.; Yu, Y. Effects of di-ions structure of the core layer ionomer on anion exchange membrane characteristics of anti-protein fouling and electrodialysis desalination. Desalination 2024, 576, 117334. [Google Scholar]
- Nayar, K.G.; Fernandes, J.; McGovern, R.K.; Al-Anzi, B.S.; Lienhard, J.H. Cost and energy needs of RO-ED-crystallizer systems for zero brine discharge seawater desalination. Desalination 2019, 457, 115–132. [Google Scholar]
- EPA, U.S. Steam Electric Power Generating Point Source Category: Final Detailed Study Report; Environmental Protection Agency: Washington, DC, USA, 2009. [Google Scholar]
- Ruozheng, L.; Chong, Z.; Wanqiang, Y.; Wenming, M.; Zhilong, J.; Can, W.; Xuan, C.; Haibin, J. Experimental Study of Flue Gas Desulfurization Wastewater Zero Discharge from Coal-fired Power Plant. In Proceedings of the 2016 International Forum on Energy, Environment and Sustainable Development, Shenzhen, China, 16–17 April 2016. [Google Scholar]
- Liang, Z.; Zhang, L.; Yang, Z.; Qiang, T.; Pu, G.; Ran, J. Evaporation and crystallization of a droplet of desulfurization wastewater from a coal-fired power plant. Appl. Therm. Eng. 2017, 119, 52–62. [Google Scholar]
- Chen, H.; Zhan, L.; Gu, L.; Feng, Q.; Zhao, N.; Feng, Y.; Wu, H.; Yang, L. Chloride release characteristics of desulfurization wastewater droplet during evaporation process using the single droplet drying method. Fuel 2021, 305, 121551. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, L.; Chen, S.; Bai, L.; Wu, X. Promoting the removal of fine particles and zero discharge of desulfurization wastewater by spray-turbulent agglomeration. Fuel 2020, 270, 117461. [Google Scholar]
- Lee, S.; Kim, Y.; Hong, S. Treatment of industrial wastewater produced by desulfurization process in a coal-fired power plant via FO-MD hybrid process. Chemosphere 2018, 210, 44–51. [Google Scholar]
- Anderson, W.V.; Cheng, C.-M.; Butalia, T.S.; Weavers, L.K. Forward Osmosis–Membrane Distillation Process for Zero Liquid Discharge of Flue Gas Desulfurization Wastewater. Energy Fuels 2021, 35, 5130–5140. [Google Scholar]
- Ma, C.; Li, Q.; Dai, C.; Wang, L.; Zhao, B.; Zhang, Z.; Xue, S.; Tian, W. Pilot-scale study of forward osmosis for treating desulfurization wastewater. Water Sci. Technol. 2020, 82, 2857–2863. [Google Scholar] [CrossRef]
- Conidi, C.; Macedonio, F.; Ali, A.; Cassano, A.; Criscuoli, A.; Argurio, P.; Drioli, E. Treatment of Flue Gas Desulfurization Wastewater by an Integrated Membrane-Based Process for Approaching Zero Liquid Discharge. Membranes 2018, 8, 117. [Google Scholar] [CrossRef]
- Jia, F.; Wang, J. Treatment of flue gas desulfurization wastewater with near-zero liquid discharge by nanofiltration-membrane distillation process. Sep. Sci. Technol. 2018, 53, 146–153. [Google Scholar]
- Li, B.; Yun, Y.; Liu, G.; Li, C.; Li, X.; Hilal, M.; Yang, W.; Wang, M. Direct contact membrane distillation with softening Pre-treatment for effective reclaiming flue gas desulfurization wastewater. Sep. Purif. Technol. 2021, 277, 119637. [Google Scholar]
- Chen, X.; Li, T.; Dou, X.; Meng, L.; Xu, S. Reverse Osmosis Membrane Combined with Ultrasonic Cleaning for Flue Gas Desulfurization Wastewater Treatment. Water 2022, 14, 875. [Google Scholar] [CrossRef]
- Qian, J.; Liu, R.; Wei, L.; Lu, H.; Chen, G.-H. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage. Water Res. 2015, 80, 189–199. [Google Scholar]
- Panagopoulos, A.; Giannika, V. Techno-economic analysis (TEA) of zero liquid discharge (ZLD) systems for treatment and utilization of brine via resource recovery. Chem. Eng. Process. Process Intensif. 2024, 200, 109773. [Google Scholar]
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [PubMed]
- Bernardo, P.; Drioli, E. Membrane gas separation progresses for process intensification strategy in the petrochemical industry. Pet. Chem. 2010, 50, 271–282. [Google Scholar]
- Al-Sahali, M.; Ettouney, H. Developments in thermal desalination processes: Design, energy, and costing aspects. Desalination 2007, 214, 227–240. [Google Scholar]
- Roy, S.; Ragunath, S. Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges. Energies 2018, 11, 2997. [Google Scholar] [CrossRef]
- Suwaileh, W.; Johnson, D.; Hilal, N. Membrane desalination and water re-use for agriculture: State of the art and future outlook. Desalination 2020, 491, 114559. [Google Scholar]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R.; Hilal, N. Alternative heating techniques in membrane distillation: A review. Desalination 2020, 496, 114713. [Google Scholar]
- Castel, C.; Favre, E. Membrane separations and energy efficiency. J. Membr. Sci. 2018, 548, 345–357. [Google Scholar]
- Radha; Sharma, N.; Prakash, S.; Kumari, N.; Sharma, D.; Laller, R.; Pundir, A.; Puri, S. From Challenges to Opportunities: Exploring Minimum Liquid Discharge and Zero Liquid Discharge Strategies for Wastewater Management and Resource Recovery. In Role of Science and Technology for Sustainable Future: Volume 2—Applied Sciences and Technologies; Sobti, R.C., Ed.; Springer Nature Singapore: Singapore, 2024; pp. 371–394. [Google Scholar]
- Turek, M.; Mitko, K.; Piotrowski, K.; Dydo, P.; Laskowska, E.; Jakóbik-Kolon, A. Prospects for high water recovery membrane desalination. Desalination 2017, 401, 180–189. [Google Scholar]
- Venzke, C.D.; Giacobbo, A.; Ferreira, J.Z.; Bernardes, A.M.; Rodrigues, M.A.S. Increasing water recovery rate of membrane hybrid process on the petrochemical wastewater treatment. Process Saf. Environ. Prot. 2018, 117, 152–158. [Google Scholar]
- Zhao, S.; Yan, S.; Wang, D.K.; Wei, Y.; Qi, H.; Wu, T.; Feron, P.H.M. Simultaneous heat and water recovery from flue gas by membrane condensation: Experimental investigation. Appl. Therm. Eng. 2017, 113, 843–850. [Google Scholar]
- Wu, Z.-W.; Yang, H.-C. Solar energy technologies for desalination and utilization of hypersaline brines. Sustain. Energy Fuels 2025, 9, 673–692. [Google Scholar]
- Lu, H.; Wang, J.; Wang, T.; Wang, N.; Bao, Y.; Hao, H. Crystallization techniques in wastewater treatment: An overview of applications. Chemosphere 2017, 173, 474–484. [Google Scholar]
- Nakhodazadeh, M.R.; Hashemifard, S.A.; Matsuura, T.; Abbasi, M.; Khosravi, A. Challenges and potentials of hybrid Membrane-crystallization processes in sustainable zero liquid discharge process and energy cost estimation. Sep. Purif. Technol. 2025, 354, 128644. [Google Scholar]
- Ting, W.H.T.; Tan, I.A.W.; Salleh, S.F.; Abdul Wahab, N.; Atan, M.F.; Abdul Raman, A.A.; Kong, S.L.; Lam, L.S. Sustainable saline wastewater treatment using eutectic freeze crystallization: Recent advances, challenges and future prospects. J. Environ. Chem. Eng. 2024, 12, 112919. [Google Scholar]
- Ye, X.; An, X.; Zhang, H.; Wang, S.; Guo, B.; Yu, A. Process simulation on atomization and evaporation of desulfurization wastewater and its application. Powder Technol. 2021, 389, 178–188. [Google Scholar]
- Wang, Y.; Zhan, L.; Luo, Q.; Chen, H.; Mao, J.; Wan, J.; Liu, C.; Chen, H.; Zheng, S.; Chen, Z.; et al. Investigation on the rotary atomization evaporation of high-salinity desulfurization wastewater: Performance and products insights. J. Environ. Manag. 2024, 371, 123044. [Google Scholar]
- Jafarian, H.; Dadashi Firouzjaei, M.; Aghapour Aktij, S.; Aghaei, A.; Pilevar Khomami, M.; Elliott, M.; Wujcik, E.K.; Sadrzadeh, M.; Rahimpour, A. Synthesis of heterogeneous metal organic Framework-Graphene oxide nanocomposite membranes for water treatment. Chem. Eng. J. 2023, 455, 140851. [Google Scholar]
- Rao, Z.; Feng, K.; Tang, B.; Wu, P. Surface Decoration of Amino-Functionalized Metal–Organic Framework/Graphene Oxide Composite onto Polydopamine-Coated Membrane Substrate for Highly Efficient Heavy Metal Removal. ACS Appl. Mater. Interfaces 2017, 9, 2594–2605. [Google Scholar] [CrossRef] [PubMed]
- Kamran, U.; Rhee, K.Y.; Lee, S.-Y.; Park, S.-J. Innovative progress in graphene derivative-based composite hybrid membranes for the removal of contaminants in wastewater: A review. Chemosphere 2022, 306, 135590. [Google Scholar] [CrossRef] [PubMed]
- Pasaoglu, M.E.; Kaya, R.; Koyuncu, I. Novel Membrane Technologies in the Treatment and Recovery of Wastewaters. In Wastewater Management and Technologies; Debik, E., Bahadir, M., Haarstrick, A., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 87–106. [Google Scholar]
- Rastgar, M.; Moradi, K.; Burroughs, C.; Hemmati, A.; Hoek, E.; Sadrzadeh, M. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chem. Rev. 2023, 123, 10156–10205. [Google Scholar] [CrossRef]
- Osman, A.I.; Chen, Z.; Elgarahy, A.M.; Farghali, M.; Mohamed, I.M.A.; Priya, A.K.; Hawash, H.B.; Yap, P.-S. Membrane Technology for Energy Saving: Principles, Techniques, Applications, Challenges, and Prospects. Adv. Energy Sustain. Res. 2024, 5, 2400011. [Google Scholar] [CrossRef]
- Panagopoulos, A. Assessing the Energy Footprint of Desalination Technologies and Minimal/Zero Liquid Discharge (MLD/ZLD) Systems for Sustainable Water Protection via Renewable Energy Integration. Energies 2025, 18, 962. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Giannika, V. Decarbonized and circular brine management/valorization for water & valuable resource recovery via minimal/zero liquid discharge (MLD/ZLD) strategies. J. Environ. Manag. 2022, 324, 116239. [Google Scholar] [PubMed]
- Krishnan, A.; Sundaram, T.; Nagappan, B.; Devarajan, Y.; Bhumika. Integrating artificial intelligence in nanomembrane systems for advanced water desalination. Results Eng. 2024, 24, 103321. [Google Scholar] [CrossRef]
- Osman, A.I.; Nasr, M.; Farghali, M.; Bakr, S.S.; Eltaweil, A.S.; Rashwan, A.K.; Abd El-Monaem, E.M. Machine learning for membrane design in energy production, gas separation, and water treatment: A review. Environ. Chem. Lett. 2024, 22, 505–560. [Google Scholar] [CrossRef]
- Ignacz, G.; Bader, L.; Beke, A.K.; Ghunaim, Y.; Shastry, T.; Vovusha, H.; Carbone, M.R.; Ghanem, B.; Szekely, G. Machine learning for the advancement of membrane science and technology: A critical review. J. Membr. Sci. 2025, 713, 123256. [Google Scholar]
Parameters | Description | Typical Range |
---|---|---|
pH value | Low acidity, mainly caused by the accumulation of acidic substances (e.g., sulfate) in the desulfurization process | 2.0–7.85 |
Suspended solids | Contain unreacted limestone, gypsum particles, and dust | 100–1000 mg/L |
Heavy metal ions | Contain mercury (Hg) | 0.1–50 mg/L |
Total hardness | Mainly caused by calcium (Ca2+) and magnesium (Mg2+) ions, which can easily lead to equipment scaling | 500–5000 mg/L |
Chemical oxygen demand (COD) | Reflects the content of organic matter and reducing inorganic matter in wastewater, and its value is affected by desulfurizer and coal composition | 200–2000 mg/L |
Chloride ions (Cl−) | High concentrations of chloride ions are highly corrosive and may be the result of the combustion of coal or the desulfurization processes | 500–10,000 mg/L |
Sulfates (SO42−) | Mainly come from the absorption reaction of SO₂ in flue gas | 1000–20,000 mg/L |
ZLD Technology | Main Features | Advantages | Disadvantages | References |
---|---|---|---|---|
Thermal | Evaporation of wastewater feed in brine concentrators | Solid waste recycling | Energy intensive | Yaqub et al. [30] Amanda et al. [15] |
HERO | For steel industry wastewater | Minimizes solid waste disposal | Secondary deposition of inorganics | Huaqiang Chu et al. [37] |
3.96 kWhe/m3 of wastewater feed | Efficient water recovery (91%) | Complicated cleaning method | ||
FO | Based on osmotic pressure differences | Cost-efficient compared with RO High salinity upper limit Economical | Limited performance in the field Lower water flux | Shaffer et al. [38] Patel at al. [39] |
21 KWHe/m3 of wastewater feed | Less likely to clog than RO | Concentration polarization and the regeneration of draw solutions | ||
MD | High salinity limitation (>200,000 ppm) | Lower menbrane clogging | Ineffective for volatiles or surfactants | Curcio et al. [40] Chan He et al. [41] |
22–60 KWHe/m3 | Resistance to fouling and high recovery rates | Lower water flux | ||
ED | Selective motion on ion exchange membranes | Relatively stable | High energy requirement | Bo Sun et al. [42] Juan Wang et al. [43] McGovern et al. [44] |
7–15 KWHe/m3 of wastewater feed | Less fouling for silica-rich feedwater | Cost investment Not effective against neutral pollutants |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, B.; Zeng, X.; Ling, Z.; Zhao, S.; Li, B.; Han, X. Recent Advances in Zero Discharge Treatment Technologies for Desulfurization Wastewater in Coal-Fired Power Plants: A Mini-Review. Processes 2025, 13, 982. https://doi.org/10.3390/pr13040982
Liao B, Zeng X, Ling Z, Zhao S, Li B, Han X. Recent Advances in Zero Discharge Treatment Technologies for Desulfurization Wastewater in Coal-Fired Power Plants: A Mini-Review. Processes. 2025; 13(4):982. https://doi.org/10.3390/pr13040982
Chicago/Turabian StyleLiao, Binsheng, Xianyang Zeng, Zhongqian Ling, Sanmei Zhao, Bin Li, and Xinlu Han. 2025. "Recent Advances in Zero Discharge Treatment Technologies for Desulfurization Wastewater in Coal-Fired Power Plants: A Mini-Review" Processes 13, no. 4: 982. https://doi.org/10.3390/pr13040982
APA StyleLiao, B., Zeng, X., Ling, Z., Zhao, S., Li, B., & Han, X. (2025). Recent Advances in Zero Discharge Treatment Technologies for Desulfurization Wastewater in Coal-Fired Power Plants: A Mini-Review. Processes, 13(4), 982. https://doi.org/10.3390/pr13040982