Implementation of Fuzzy PID Controller to an Isolated Wind/Battery/Super Magnetic Energy Storage Power System
Abstract
:1. Introduction
- An FPID regulator has been designed to enhance the performance of the suggested microgrid, including the SMES. The performance of the wind, battery, and SMES power system versus changes in wind velocity and load demand using the suggested FPID has been implemented.
- A microcontroller kit was used to create a Hardware-in-the-Loop (HIL) emulator to assess the suggested system and verify the simulation outcomes.
- A simple analytical model in state space form has been developed for the system’s converters and components.
- The microgrid’s responses to the proposed FPID and the responses with the conventional PI have been compared in two cases; with and without SMES.
- The microgrid’s performance using the proposed FPID has been investigated under parameter uncertainties.
2. Structure of the Proposed Microgrid
3. Proposed Microgrid Components: An Overview
3.1. The Wind-Turbine Model
3.2. The Generator Model
3.3. The AC/DC/DC Converter Model
3.4. The Super Magnetic Energy Storage Model
3.5. The Battery Energy Storage Model
- − Charging state:
- − Discharge state:
3.6. The Output Converter Model
4. Fuzzy PID Control
- In order to ensure excellent tracking performance, kP should take a greater value when |e| is larger. kD should have a lower value to avoid integral saturation. Simultaneously, the integral part must be constrained, kI should likewise be extremely tiny, and typically let kI = 0 to prevent more overshoot during the system response.
- To guarantee system reaction speed and a lesser overshoot, KP must be reduced when |e| has a moderate amount, and kI and kD have to be suitable. (The system responsiveness is more affected by the value of kD, thus kI should be set appropriately).
- To achieve excellent steady-state response, kP and kI should take bigger values when |e| is less. kD should be suitable to prevent chattering. kD may be smaller when |Δe| is greater. kD may accept a somewhat larger amount when it is smaller. Typically, kD takes a modest value.
5. The Control System of the Microgrid
5.1. The SMES’s Converter Controller
5.2. The ESS Chopper Controller
5.3. The Output Converter Controller
6. Discussion of the Simulation Results
- The FPID controller with SMES.
- The PID controller with SMES.
- The FPID controller without SMES.
- The PID controller without SMES.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ESS | energy storage system |
SMES | superconducting magnetic energy storage system |
FPID | fuzzy-order proportional–integral-derivative |
PID | proportional–integral–derivative |
PMSG | permanent magnet synchronous generators |
AC | alternating current |
DC | direct current |
PWM | pulse width modulation |
rs | stator resistance |
(isd, isq) | stator current’s d-q components |
(Ld, Lq) | stator current’s d-q inductances |
p | number of pole pairs |
λm | permanent flux connection is |
(Vp, Ip) | PMSG phase out put input voltage and current |
(Vd, Id) | rectifier’s average output voltage and current |
(Vdc, Idc) | average output voltage and current of the boost converter |
d1 | the boost converter duty ratio |
(Ism, Vsm) | is the average current and voltage of the SMES coil |
(Idc, Vdc) | average current and voltage of the DC link |
k | duty cycle of the boost converter switch |
(rb, Eb) | internal resistance and the voltage of the ESS |
(C, L) | capacitance and inductance of the filter of ESS converter |
(vb, il) | capacitor voltage and inductor current |
S1 | logic-state function |
Io | output current |
(Lf, Cf) | filter inductance and capacitance of the load inverter |
Q | switching state function of the load inverter |
Vc | capacitor voltage of the load inverter |
If | filter current of the load inverter |
(e, Δe) | error and its derivative |
(kP, kI, and kD) | PID controller gains |
T | sampling period |
(en, Δen) | normalized error and its derivative |
(AP, Ad) | predetermined constants for the PID parameters |
(ΔP, Δd) | change in the pre-determined PID parameters values |
α | integral parameter adjusting value |
R | turbine blade radius |
Pm | turbine’s output power |
ρ | air density |
vw | wind velocity |
β | blade pitch angle |
Cp | wind turbine’s performance coefficient |
ωm | mechanical angular speed of the turbine |
λ | tip-speed ratio |
Ls | SMES’s inductance |
Lb | battery converter inductance |
μG | Microgrid |
HIL | Hardware-In-the-Loop |
References
- Atawi, I.; Zaid, S. Model predictive control of h7 transformerless inverter powered by pv. Intell. Autom. Soft Comput. 2022, 31, 449–469. [Google Scholar] [CrossRef]
- Atawi, I.E.; Kassem, A.M.; Zaid, S.A. Modeling, Management, and Control of an Autonomous Wind/Fuel Cell Micro-Grid System. Processes 2019, 7, 85. [Google Scholar] [CrossRef]
- Albalawi, H.; Kassem, A.M.; Zaid, S.A.; Lakhouit, A.; Arshad, M.A. Energy management of an isolated wind/photovoltaic microgrid using cuckoo search algorithm. Intell. Autom. Soft Comput. 2022, 34, 2051–2066. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Chandorkar, M.; Lee, T.; Loh, P.C. Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control. IEEE Trans. Ind. Electron. 2013, 60, 1254–1262. [Google Scholar] [CrossRef]
- Rosso, R.; Wang, X.; Liserre, M.; Lu, X.; Engelken, S. Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends—A Review. IEEE Open J. Ind. Appl. 2021, 2, 93–109. [Google Scholar] [CrossRef]
- Kirubadevi, S.; Sutha, S. PMSG based wind energy conversion system using intelligent mppt with hgrsc converter. Intell. Autom. Soft Comput. 2022, 34, 895–910. [Google Scholar] [CrossRef]
- Merabet, A.; Ahmed, K.T.; Ibrahim, H.; Beguenane, R.; Ghias, A.M.Y.M. Energy Management and Control System for Laboratory Scale Microgrid Based Wind-PV-Battery. IEEE Trans. Sustain. Energy 2017, 8, 145–154. [Google Scholar] [CrossRef]
- Ahmed, S.D.; Al-Ismail, F.S.M.; Shafiullah, M.; Al-Sulaiman, F.A.; El-Amin, I.M. Grid Integration Challenges of Wind Energy: A Review. IEEE Access 2020, 8, 10857–10878. [Google Scholar] [CrossRef]
- Bitaraf, H.; Rahman, S. Reducing Curtailed Wind Energy Through Energy Storage and Demand Response. IEEE Trans. Sustain. Energy 2018, 9, 228–236. [Google Scholar] [CrossRef]
- Karimulla, S.; Ravi, K. Integration of renewable energy sources into the smart grid using enhanced sca. Intell. Autom. Soft Comput. 2022, 32, 1557–1572. [Google Scholar] [CrossRef]
- Albalawi, H.; Zaid, S.A.; Buswig, Y.M.; El-Rab, H.W.; Lakhouit, A.; Arshad, M.A. Wind energy management of a standalone system operating at maximum power point. Int. J. Power Electron. Drive Syst. 2022, 13, 1684–1695. [Google Scholar] [CrossRef]
- Zaid, S.A.; Albalawi, H.; Alatawi, K.S.; El-Rab, H.W.; El-Shimy, M.E.; Lakhouit, A.; Alhmiedat, T.A.; Kassem, A.M. Novel Fuzzy Controller for a Standalone Electric Vehicle Charging Station Supplied by Photovoltaic Energy. Appl. Syst. Innov. 2021, 4, 63. [Google Scholar] [CrossRef]
- Alrashidi, M. Comparative analysis for evaluating wind energy resources using intelligent optimization algorithms and numerical methods. Comput. Syst. Sci. Eng. 2023, 47, 491–513. [Google Scholar] [CrossRef]
- Liu, H.; Xie, X.; He, J.; Xu, T.; Yu, Z.; Wang, C.; Zhang, C. Subsynchronous Interaction Between Direct-Drive PMSG Based Wind Farms and Weak AC Networks. IEEE Trans. Power Syst. 2017, 32, 4708–4720. [Google Scholar] [CrossRef]
- Yaramasu, V.; Wu, B.; Sen, P.C.; Kouro, S.; Narimani, M. High-power wind energy conversion systems: State-of-the-art and emerging technologies. Proc. IEEE 2015, 103, 740–788. [Google Scholar] [CrossRef]
- Harrouz, A.; Colak, I.; Kayisli, K. Control of a small wind turbine system application. In Proceedings of the IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016; pp. 1128–1133. [Google Scholar] [CrossRef]
- Lee, D.-J.; Wang, L. Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part I: Time-domain simulations. IEEE Trans. Energy Convers. 2008, 23, 311–320. [Google Scholar] [CrossRef]
- Mammadov, F.F. Fuzzy Logic Controller Application in Hybrid Solar and Wind Energy System. In Proceedings of the International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 21–22 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Vadim, M.; Nazarov, M. Energy consumption conditions optimization of the autonomous system based on carbon-free energy. In Proceedings of the Ural Smart Energy Conference (USEC), Ekaterinburg, Russia, 13–15 November 2020; pp. 93–96. [Google Scholar] [CrossRef]
- Bhim, S.; Kasal, G.K. Voltage and frequency controller for a three-phase four-wire autonomous wind energy conversion system. IEEE Trans. Energy Convers. 2008, 23, 509–518. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, Y.; Cai, C.; Chen, Y.; Li, N.; Yang, M. Study on the optimal configuration of a wind-solar-battery-fuel cell system based on a regional power supply. IEEE Access 2021, 9, 47056–47068. [Google Scholar] [CrossRef]
- Liu, X.; Wang, P.; Loh, P.C. A hybrid AC/DC microgrid and its coordination control. IEEE Trans. Smart Grid 2011, 2, 278–286. [Google Scholar] [CrossRef]
- Al Sumarmad, K.A.; Sulaiman, N.; Wahab, N.I.A.; Hizam, H. Microgrid energy management system based on fuzzy logic and monitoring platform for data analysis. Energies 2022, 15, 4125. [Google Scholar] [CrossRef]
- Zaid, S.A.; Kassem, A.M.; Alatwi, A.M.; Albalawi, H.; AbdelMeguid, H.; Elemary, A. Optimal Control of an Autonomous Microgrid Integrated with Super Magnetic Energy Storage Using an Artificial Bee Colony Algorithm. Sustainability 2023, 15, 8827. [Google Scholar] [CrossRef]
- Kumar, R.A.; Daya, J.L.F. A Novel Self-Tuning Fuzzy Based PID Controller for Speed Control of Induction Motor Drive. In Proceedings of the International Conference on Control Communication and Computing (ICCC), Thiruvananthapuram, India, 13–15 December 2013; pp. 62–67. [Google Scholar]
- Fini, A.M.O.; Gogani, M.B.; Pourgholi, M. Fuzzy Gain Scheduling of PID Controller Implemented on Real Time Level Control. In Proceedings of the 4th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), Zahedan, Iran, 9–11 September 2015; pp. 1–5. [Google Scholar]
- El-Shimy, E.M.; Zaid, S.A. Fuzzy PID Controller for Fast Direct Torque Control of Induction Motor Drives. J. Electr. Syst. 2016, 12, 687–700. [Google Scholar]
- Kotb, K.M.; Elmorshedy, M.F.; Salama, H.S.; Dán, A. Enriching the stability of solar/wind DC microgrids using battery and superconducting magnetic energy storage based fuzzy logic control. J. Energy Storage 2022, 45, 103751. [Google Scholar] [CrossRef]
- Elmorshedy, M.; Amin, M.M.; El-Sousy, F.F.M.; Mohammed, O.A. DC-bus voltage control of MPPT-based wind generation system using hybrid BESS-SMES system for pulse loads in ship power applications. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition, Phoenix, AZ, USA, 14–17 June 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Said, S.M.; Aly, M.; Hartmann, B.; Alharbi, A.G.; Ahmed, E.M. SMES-based fuzzy logic approach for enhancing the reliability of microgrids equipped with PV generators. IEEE Access 2019, 7, 92059–92069. [Google Scholar] [CrossRef]
- Kumar, M.; Sen, S.; Kumar, S.; Samantaray, J. An Adaptive Fuzzy Controller-Based Distributed Voltage Control Strategy for a Remote Microgrid System with Solar Energy and Battery Support. IEEE Trans. Ind. Appl. 2024, 60, 4870–4887. [Google Scholar] [CrossRef]
- Bharathi, G.; Kantharao, P.; Srinivasarao, R. Fuzzy logic control (FLC)-based coordination control of DC microgrid with energy storage system and hybrid distributed generation. Int. J. Ambient. Energy 2021, 43, 4255–4271. [Google Scholar] [CrossRef]
- Jin, J.X.; Wang, J.; Yang, R.H.; Zhang, T.L.; Mu, S.; Fan, Y.J.; Xing, Y.Q. A superconducting magnetic energy storage with dual functions of active filtering and power fluctuation suppression for photovoltaic microgrid. J. Energy Storage 2021, 38, 102508. [Google Scholar] [CrossRef]
- Al Alahmadi, A.A.; Belkhier, Y.; Ullah, N.; Abeida, H.; Soliman, M.S.; Khraisat, Y.S.; Alharbi, Y.M. Hybrid wind/PV/battery Energy management-based intelligent non-integer control for smart dc-microgrid of smart university. IEEE Access 2021, 9, 98948–98961. [Google Scholar] [CrossRef]
- Fayegh, S.K.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Chen, X.; Xie, Q.; Bian, X.; Shen, B. Energy-saving superconducting magnetic energy storage (SMES) based interline DC dynamic voltage restorer. CSEE J. Power Energy Syst. 2022, 8, 238–248. [Google Scholar] [CrossRef]
- Hassan, I.D.; Bucci, R.M.; Swe, K.T. 400 MW SMES power conditioning system development and simulation. IEEE Trans. Power Electron. 1993, 8, 237–249. [Google Scholar] [CrossRef]
- Acharya, D.; Das, D.K. Human Conception Optimizer-Based Optimal Type-2 Fuzzy PID Controller Design for Artificial Respiratory System. IEEE Tran. Syst. Man Cyber. Syst. 2024, 54, 5388–5399. [Google Scholar] [CrossRef]
- Shen, J.; Xin, B.; Cui, H.; Gao, W. Control of single-axis rotation INS by tracking differentiator based fuzzy PID. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2976–2986. [Google Scholar] [CrossRef]
- Li, H.X.; Gatland, H. Conventional fuzzy control and its enhancement. IEEE Trans. Syst. Man Cybern. Part B 1996, 26, 791–797. [Google Scholar]
- Kakigano, H.; Miura, Y.; Ise, T. Distribution Voltage Control for DC Microgrids Using Fuzzy Control and Gain-Scheduling Technique. In IEEE Transactions on Power Electronics; IEEE: Piscataway, NJ, USA, 2013; Volume 28, pp. 2246–2258. [Google Scholar] [CrossRef]
- Arcos-Aviles, D.; Pascual, J.; Marroyo, L.; Sanchis, P.; Guinjoan, F. Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. In IEEE Transactions on Smart Grid; IEEE: Piscataway, NJ, USA, 2018; Volume 9, pp. 530–543. [Google Scholar] [CrossRef]
Reference | μG Type | RESs | Storage | Controller | Disturbances | Robustness Verified | ||
---|---|---|---|---|---|---|---|---|
AC/DC | Grid | Environment | Load | |||||
[28] | DC | off | WT + PV | BS + SMES | Fuzzy | yes | yes | no |
[29] | AC | on | PV | SMES | Fuzzy | no | no | no |
[30] | DC | off | WT | BS + SMES | PI | yes | no | no |
[31] | DC | off | PV | BS | AFPID | yes | yes | yes |
[32] | DC | off | PV | BS | Fuzzy | yes | yes | no |
[33] | AC | on | PV | BS + SMES | FPID | no | no | no |
[34] | DC | on | WT + PV | BS | Fuzzy | no | no | no |
This study | DC | Off | WT | BS + SMES | FPID | yes | yes | yes |
Δkp | Δkd | α | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Δe | Δe | Δe | ||||||||||||||||||||
NB | NM | NS | ZE | PS | PM | PB | NB | NM | NS | ZE | PS | PM | PB | NB | NM | NS | ZE | PS | PM | PB | ||
e | NB | B | B | B | B | B | S | B | B | B | B | B | B | B | S | S | S | S | S | S | S | S |
NM | B | B | B | B | S | B | B | B | B | B | B | B | B | S | MS | MS | S | S | S | MS | MS | |
NS | B | B | B | B | B | B | B | B | B | B | B | B | S | S | M | MS | MS | S | MS | MS | M | |
ZE | B | B | B | B | B | B | B | S | S | S | B | S | S | S | B | M | MS | MS | MS | M | B | |
PS | B | B | S | B | B | B | B | S | S | B | B | B | B | B | M | MS | MS | S | MS | MS | B | |
PM | B | B | S | B | B | B | B | S | B | B | B | B | B | B | MS | MS | S | S | S | MS | MS | |
PB | B | S | B | B | B | B | B | S | B | B | B | B | B | B | S | S | S | S | S | S | S |
Variable | Value | Wind Turbine | Value |
---|---|---|---|
Load | 110 V & 50 Hz | R | 1 m |
DC-Bus voltage | 300 V | ρ | 1.25 kg/m2 |
Filter | 2 µF, 3 mH | A | 4 m2 |
height | 4 m |
Time (s) | Disturbance (%) | Overshoot (%) | Settling Time (s) | ΔVdc (%) | |||
---|---|---|---|---|---|---|---|
FPID | PID | FPID | PID | FPID | PID | ||
0 | Δωs = +50%, ΔPl = +50% | ~0.65 | ~0.9 | ~0.04 | ~0.04 | ~0 | ~0 |
0.3 | Δωs = 36% | ~0.65 | ~0.8 | ~0.035 | ~0.035 | ~0 | ~0 |
0.5 | ΔPl = +50% | ~0.2 | ~0.16 | ~0.02 | ~0.02 | ~0 | ~0 |
0.7 | Δωs = +14% | ~0.8 | ~1.1 | ~0.03 | ~0.03 | ~0 | ~0 |
0.9 | ΔPl = −50% | ~0.22 | ~0.3 | ~0.03 | ~0.03 | ~0 | ~0 |
1 | Δωs = −100% | ~0.45 | ~0.6 | ~0.07 | ~0.07 | ~0 | ~0 |
1.2 | ΔPl = +50% | ~0.2 | ~0.3 | ~0.015 | ~0.015 | ~0 | ~0 |
1.3 | Δωs = +57% | ~0.55 | ~0.62 | ~0.03 | ~0.03 | ~0 | ~0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaid, S.A.; Alatawi, K.S. Implementation of Fuzzy PID Controller to an Isolated Wind/Battery/Super Magnetic Energy Storage Power System. Processes 2025, 13, 515. https://doi.org/10.3390/pr13020515
Zaid SA, Alatawi KS. Implementation of Fuzzy PID Controller to an Isolated Wind/Battery/Super Magnetic Energy Storage Power System. Processes. 2025; 13(2):515. https://doi.org/10.3390/pr13020515
Chicago/Turabian StyleZaid, Sherif A., and Khaled S. Alatawi. 2025. "Implementation of Fuzzy PID Controller to an Isolated Wind/Battery/Super Magnetic Energy Storage Power System" Processes 13, no. 2: 515. https://doi.org/10.3390/pr13020515
APA StyleZaid, S. A., & Alatawi, K. S. (2025). Implementation of Fuzzy PID Controller to an Isolated Wind/Battery/Super Magnetic Energy Storage Power System. Processes, 13(2), 515. https://doi.org/10.3390/pr13020515