Thermochromically Enhanced Lubricant System for Temperature Measurement in Cold Forming †
Abstract
:1. Introduction
Characterization of Lubricant Systems in Cold Forging
2. Materials and Methods
2.1. Development of a Standardized Test Method for the Calibration of Thermochromic Indicators
- Solubility in water (solubility in salt wax lubricant);
- No impairment of the lubricating effect;
- Response time in the range of one second;
- Irreversible colour change;
- Homogeneous distribution in the lubricant;
- Clear differentiation between colour before and after colour change;
- Temperature range up to 500 °C.
2.2. Measurement Setup for Calibrating the Thermochromic Sensory Lubricants
3. Experiment Results
3.1. Influence of the Indicators on the Friction Coefficients
3.2. Application in Full Forward Extrusion
4. Transfer to an Industrial Multi-Stage Process
4.1. Multi-Stage Sample Process
4.2. Adaptation of the Measuring Principle for Digitization
4.3. Simulation of the Multi-Stage Process
4.4. Analyzing the Surface Quality
4.5. Experimental Temperature Determination
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altan, T.; Ngaile, G.; Shen, G.S. Cold and Hot Forging—Fundamentals and Applications. ASM International: Novelty, OH, USA, 2004; ISBN 0871708051. [Google Scholar]
- Bay, N.; Azushima, A.; Groche, P.; Ishibashi, I.; Merklein, M.; Morishita, M.; Nakamura, T.; Schmid, S.; Yoshida, M. Environmentally benign tribo-systems for metal forming. CIRP Annals 2010, 59, 760–780. [Google Scholar] [CrossRef]
- Groche, P.; Müller, C.; Stahlmann, J.; Zang, S. Mechanical conditions in bulk metal forming tribometers—Part one. Tribol. Int. 2013, 62, 223–231. [Google Scholar] [CrossRef]
- Singer, F. Verfahren zur Vorbehandlung von Eisen- und Stahlwerkstücken für die Spanlose Fertigung, z.B. das Ziehen. Patent No. 673405, 1934. [Google Scholar]
- Sagisaka, Y.; Ishibashi, I.; Nakamura, T.; Sekizawa, M.; Sumioka, Y.; Kawano, M. Evaluation of environmentally friendly lubricants for cold forging. J. Mater. Process. Technol. 2012, 212, 1869–1874. [Google Scholar] [CrossRef]
- Schoppe, J.; Zang, S. Lubrication Systems as a Possibility for Process Monitoring in Cold Bulk Forming. Available online: https://tubiblio.ulb.tu-darmstadt.de/75191/ (accessed on 2 December 2024).
- Groche, P.; Zang, S.; Müller, C.; Bodenmüller, D. A study on the performance of environmentally benign lubricants at elevated temperatures in bulk metal forming. J. Manuf. Process. 2015, 20, 425–430. [Google Scholar] [CrossRef]
- Groche, P.; Volke, P.; Gerlitzky, C.; Ostrowski, J. Adaption von Kaltmassivumformprozessen auf Basis einer Temperaturerfassung. In Neuere Entwicklungen in der Massivumformung; Institut für Umformtechnik: Stuttgart, Germany, 2017; pp. 227–236. [Google Scholar]
- Nshama, W.; Jeswiet, J. Evaluation of temperature and heat transfer conditions at the metal-forming interface. CIRP Ann. 1995, 44, 201–204. [Google Scholar] [CrossRef]
- Lenard, J.G.; Davies, M.E. The distribution of temperatures in a hot/cold die set: The effect of the pressure, temperature, and material. Trans. ASME J. Eng. Mater. 1995, 117, 220–227. [Google Scholar] [CrossRef]
- Grötzinger, K.; Schott, A.; Rekowski, M.; Ehrbrecht, B.; Hehn, T.; Gerasimov, D.; Liewald, M. Analysis of tool heating in cold forging using thin-film sensors. Mater. Res. Proc. 2023, 28, 2027–2036. [Google Scholar]
- Serajzadeh, S. Prediction of temperature distribution and required energy in hot forging process by coupling neural networks and finite element analysis. Mater. Lett. 2007, 61, 3296–3300. [Google Scholar] [CrossRef]
- Qin, Y.; Balendra, R.; Chodnikiewicz, K. A method for the simulation of temperature stabilisation in the tools during multi-cycle cold-forging operations. J. Mater. Process. Technol. 2000, 107, 252–259. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Song, I. Finite element analysis for temperature distributions in a cold forging. J. Mech. Sci. Technol. 2013, 27, 2979–2984. [Google Scholar] [CrossRef]
- Dixit, U.S.; Raj, A.; Petrov, P.A. Determination of temperature distribution in cold forging with the support of inverse analysis. Measurement 2022, 187, 110270. [Google Scholar] [CrossRef]
- Petrov, P.; Matveev, A.; Kulikov, M.; Stepanov, B.; Petrov, M.; Burlakov, I.; Dixit, U.S. Finite-Element Modelling of Forging with Torsion: Investigation of Heat Effect. Procedia Manuf. 2020, 47, 274–281. [Google Scholar] [CrossRef]
- Chang, C.C.; Bramley, A.N. Determination of the heat transfer coefficient at the workpiece—Die interface for the forging process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2002, 216, 1179–1186. [Google Scholar] [CrossRef]
- Malinowski, Z.; Lenard, J.G.; Davies, M.E. A study of the heat-transfer coefficient as a function of temperature and pressure. J. Mater. Process. Technol. 1994, 41, 125–142. [Google Scholar] [CrossRef]
- Seeboth, A.; Lötzsch, D. Thermochromic and Thermotropic Materials; Pan Stanford Publishing: Singapore, 2014. [Google Scholar]
- Volz, S.; Launhardt, J.; Bay, N.; Hu, C.; Moreau, P.; Dubar, L.; Nielsen, C.; Hayakawa, K.; Kitamaura, K.; Groche, P. International round robin test of environmentally benign lubricants for cold forging. CIRP Ann. Manuf. Technol. 2023, 72, 245–250. [Google Scholar] [CrossRef]
- Wang, Z.G.; Komiyama, S.; Yoshikawa, Y.; Suzuki, T.; Osakada, K. Evaluation of lubricants without zinc phosphate precoat in multi-stage cold forging. CIRP Ann. 2015, 64, 285–288. [Google Scholar] [CrossRef]
- Groche, P.; Zang, S.; Kramer, P.; Müller, C.; Rezanov, V. Influence of a heat treatment prior to cold forging operations on the performance of lubricants. Tribol. Int. 2015, 92, 67–71. [Google Scholar] [CrossRef]
- Narayanan, S. Surface Pretreatment by phosphate conversion coatings. Rev. Adv. Mater. Sci. 2005, 9, 130–177. [Google Scholar]
- Griffioen, J.A.; Bair, S.; Winer, W.O. Infrared surface temperature measurements in a sliding ceramic-ceramic contact. In Proceedings of the 12th Leeds-Lyon Symposium on Tribology 1985, Lyon, France, 3–6 September 1985; DolI’son, D., Ed.; Elesvier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Nitzsche, G. Reduzierung des Adhäsionsverschleißes beim Umformen von Aluminiumblechen. Ph.D. Thesis, Shaker Verlag, Aachen, Germany, 2007. [Google Scholar]
- Müller, C.; Filzek, J.; Groche, P.; Oehler, O.; Scherzinger, P.; Twickler, M. Temperaturentstehung und die tribologischen Folgen bei Produktionsbeginn der Kaltmassivumformung. Schmiede J. 2014, 9, 28–32. [Google Scholar]
- Bay, N.; Nakamura, T.; Schmid, S. Green Lubricants for Metal Forming. In Tribology of Manufacturing Processes, Proceedings of the 4th International Conference on Tribology in Manufacturing Processes, Nice, France, 13–15 June 2010; Ecole des Mines: Nice, France, 2010. [Google Scholar]
- Volke, P. Einsatz Konversionsschichtfreier Schmierstoffe bei der Kaltmassivumformung Rostfreier Stähle. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2023. [Google Scholar]
- Zang, S. Bestimmung von Temperaturen und Deren Einflüsse auf Tribologische Systeme der Kaltmassivumformung. Ph.D. Thesis, Shaker Verlag, Aachen, Germany, 2016. [Google Scholar]
- Kuhn, C.; Groche, P. Monitoring lubricant distribution in industrial cold forging with function-enhanced lubrication systems. In Proceedings of the JSTP International Seminar on Precision Forging (9th ISPF), Kyoto, Japan, 11–14 March 2024. [Google Scholar]
- Kuhn, C.; Groche, P. Temperature sensing in cold forging with thermochromically enhanced lubrication systems. In Proceedings of the ICTMP 2024 in Key Engineering Materials, Alcoy, Spain, 26–28 June 2024. [Google Scholar]
Parameter | Value |
---|---|
Material | 16MnCr5 |
Lubricant | Salt wax indicator |
Sliding distance | 60 mm |
Sliding speed | 100 mm/s |
Compression speed | 1 mm/s |
Parameter | Full Forward Extrusion | Backward Cup Extrusion | Tapering |
---|---|---|---|
Overall surface enlargement | +12% | +32% | +1.5% |
Contact pressure | 1400–2000 MPa | 2000–2450 MPa | 1200–1600 MPa |
Temperature (max. simulation) | 263 °C | 396 °C | 251 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuhn, C.; Volke, P.; Groche, P. Thermochromically Enhanced Lubricant System for Temperature Measurement in Cold Forming. Processes 2025, 13, 513. https://doi.org/10.3390/pr13020513
Kuhn C, Volke P, Groche P. Thermochromically Enhanced Lubricant System for Temperature Measurement in Cold Forming. Processes. 2025; 13(2):513. https://doi.org/10.3390/pr13020513
Chicago/Turabian StyleKuhn, Christoph, Patrick Volke, and Peter Groche. 2025. "Thermochromically Enhanced Lubricant System for Temperature Measurement in Cold Forming" Processes 13, no. 2: 513. https://doi.org/10.3390/pr13020513
APA StyleKuhn, C., Volke, P., & Groche, P. (2025). Thermochromically Enhanced Lubricant System for Temperature Measurement in Cold Forming. Processes, 13(2), 513. https://doi.org/10.3390/pr13020513