Interfacial Electrostatics of Low Salinity-Enhanced Oil Recovery: A Review of Theoretical Foundations, Applications and Correlation to Experimental Observations
Abstract
1. Introduction
2. Backgrounds
2.1. Ionizable Group and Surface Complexation Models at the Pore Wall–Low-Salinity Brine Interface
2.2. Ionizable Group and Surface Complexation Models at the Crude Oil–Low-Salinity Brine Interface
3. Theory
3.1. Electrostatics at the Rock–Low-Salinity Brine Interface
3.2. Electrostatics at the Oil–Low-Salinity Brine Interface
3.3. Total Free Energy Model
3.3.1. Oil–Water Interface
3.3.2. Rock–Water Interface
3.3.3. Double Layer Repulsion Model
4. Methodology
4.1. Petroleum Reservoir Model
4.2. Dielectric Permittivity of Low Salinity Brine
4.3. Reduced Surface Potential Calculation
4.4. Debye Length
4.5. Reduced Surface Potential Calculation for Oil–Water Interface
4.6. Reduced Surface Potential Calculation for Rock–Water Interface
4.7. Calculation of Electric Double Layer Free Energy
4.7.1. Free Energy of the Oil–Water Interface Electric Double Layer
4.7.2. Free Energy of the Rock–Water Interface Electric Double Layer
4.8. Experimental Conditions
5. Results and Discussion
5.1. Electrostatics
5.2. Correlation to Literature-Based Observations in Low-Salinity-Enhanced Oil Recovery
5.2.1. Correlation to Atomic Force Microscopy Observations
5.2.2. Correlation to Wettability Enhancement
5.2.3. Correlation to Observation in Colloidal Systems
5.2.4. Relationship of Study Findings to Practical Field Scale Recovery Problems
Enhanced Interfacial Electrostatic Repulsion Using Cationic Surfactants
5.2.5. Limitation of This Study
6. Conclusions
- Theoretical surface and zeta potential become less negative with increasing salinity, like those reported in the literature-based experimental approaches, testifying to decrease electrostatic interaction, which correlates with dominant van der Waals forces at field scale and decreased oil recovery.
- Double layer disjoining pressure decreases with increasing salinity like that reported in the literature based on atomic force microscopy measurements, which correlate with decrease disjoining pressure forces and dewetting at the rock–water interface at field scale.
- As salinity increases, the thermodynamic free energy required to create unit interfacial area increases for oil–water and rock–water interfaces, limiting double layer repulsion and wettability enhancement from the practical viewpoint in water flood oil recovery.
- Theoretical findings based on the analytical solution to the Poisson–Boltzmann equation correlate with experimental observations on low-salinity oil recovery reported in the literature, which highlights the role of the interfacial electrostatic theory in guiding the future design of LSWF oil recovery schemes.
- This paper adds an incremental advancement in LSWF by considering the theoretical calculation of the free energy of formation of an interfacial electrical double layer as a function of salinity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Concentration-M | Zeta Potential—mV | Reference |
---|---|---|
0.004 | 31.5 | [79] |
0.05 | 12.0 | |
0.1 | 10.0 |
Appendix B
Concentration—M | Surface Charge Density—Micro Cm−2 | Reference |
---|---|---|
0.004 | 0.85 | [80] |
0.05 | 1.6 | |
0.1 | 2.7 |
Appendix C
Appendix D
References
- Schön, J.H. Chapter 1—Rocks—Their Classification and General Properties. Dev. Pet. Sci. Sci. Direct 2015, 65, 1–19. [Google Scholar]
- Langer, W.; Knepper, D. Geologic characterization of natural aggregate: A field geologist’s guide to natural aggregate resource assessment. In Aggregate Resources; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Brady, V.; Krumhansl, J.L. A surface complexation model of oil–brine–sandstone interfaces at 100 °C: Low salinity waterflooding. J. Pet. Sci. Eng. 2012, 31, 171–176. [Google Scholar] [CrossRef]
- Bethke, C.M. 10—Surface complexation. In Geochemical and Biogeochemical Reaction Modeling; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Azizian, S.; Khosravi, M. Chapter 12—Advanced oil spill decontamination techniques. Interface Sci. Technol. 2019, 30, 283–332. [Google Scholar]
- Buckley, J.; Liu, Y. Some mechanisms of crude oil/brine/solid interactions. J. Pet. Sci. Eng. 1998, 20, 155–160. [Google Scholar] [CrossRef]
- Daigle, H.; Disabar, J.R.A. Charge Distribution in the Electrical Double Layer at the Oil–Water InterfaceClick to copy article link. Energy Fuels 2024, 38, 20314–20323. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Imae, T. Chapter 10—Graphene-Based Nanolayers Toward Energy Storage Device. In Nanolayer Research: Methodology and Technology for Green Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 353–389. [Google Scholar]
- Martínez-Hincapié, R.; Climent, V.; Feliu, J. New probes to surface free charge at electrochemical interfaces with platinum face free charge at electrochemical interfaces with platinumelectrodes. Curr. Opin. Electrochem. 2019, 14, 16–22. [Google Scholar] [CrossRef]
- Ahmed, T. Chapter 14—Principles of Waterflooding. In Reservoir Engineering Handbook, 4th ed.; Gulf Professional Publishing: Houston, TX, USA, 2010; pp. 909–1095. [Google Scholar]
- Rini, L.D.; Klea, F.; Prajanji, I.G.O.S. Waterflooding Management: Challenges and Solutions During the Injection Process to Obtain Effectively and Environmentally Based Oil Recovery in Oil and Gas Industry. IOP Conf. Ser. Earth Environ. Sci. 2021, 690, 012037. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Rep. 2020, 6, 3150–3178. [Google Scholar] [CrossRef]
- Anto, R.; Bhui, U.K. Surfactant flooding for enhanced oil recovery—Insights on oil solubilization through optical spectroscopic approach. J. Pet. Sci. Eng. 2022, 208, 109803. [Google Scholar] [CrossRef]
- Drummond, C.; Israelachvili, J. Fundamental studies of crude oil–surface water interactions and its relationship to reservoir wettability. J. Pet. Sci. Eng. 2004, 45, 61–81. [Google Scholar] [CrossRef]
- Liu, X.; Yan, W.; Stenby, E.H.; Thormann, E. Release of Crude Oil from Silica and Calcium Carbonate Surfaces: On the Alternation of Surface and Molecular Forces by High- and Low-Salinity Aqueous Salt Solutions. Energy Fuels 2016, 30, 3986–3993. [Google Scholar] [CrossRef]
- Nowrouzi, I.; Manshad, A.K.; Mohammadi, A.H. Effects of MgO, γ-Al2O3, and TiO2 Nanoparticles at Low Concentrations on Interfacial Tension (IFT), Rock Wettability, and Oil Recovery by Spontaneous Imbibition in the Process of Smart Nanofluid Injection into Carbonate Reservoirs. ACS Omega 2022, 7, 22161–22172. [Google Scholar] [CrossRef]
- Khurshid, I.; Afgan, I. Geochemical investigation of electrical conductivity and electrical double layer based wettability alteration during engineered water injection in carbonates. J. Pet. Sci. Eng. 2022, 215, 110627. [Google Scholar] [CrossRef]
- Yang, S.; Ning, Z.; Lyu, F.; Zhou, K. Molecular dynamics simulation of electric double layer effects on microscopic wettability and enhanced oil recovery in tight sandstone reservoirs. Colloids Surf. A Physicochem. Eng. Asp. 2025, 709, 136143. [Google Scholar] [CrossRef]
- Bachmann, D.J.; Miklavcic, S.J. Deformation of Fluid Interfaces Induced by Electrical Double-Layer Forces and Its Effect on Fluid−Solid Interactions. Langmuir 1996, 12, 4197–4204. [Google Scholar] [CrossRef]
- Paunov, V.N.; Kralchevsky, A. Contribution of ionic correlations to excess free energy and disjoining pressure of thin liquid films 2. Electric double layers outside the film. Colloids Surf. 1992, 64, 265–274. [Google Scholar] [CrossRef]
- Katende, A.; Sagala, F. A critical review of low salinity water flooding: Mechanism, laboratory and field application. J. Mol. Liq. 2019, 278, 627–649. [Google Scholar] [CrossRef]
- Fan, P.; Liu, Y.; He, Y.; Hu, Y.; Chao, L.; Wang, Y.; Liu, L.; Li, J. Experimental Study on the Mechanism and Law of Low-Salinity Water Flooding for Enhanced Oil Recovery in Tight Sandstone Reservoirs. ACS Omega 2024, 9, 12665–12675. [Google Scholar] [CrossRef]
- Feldmann, F.; Strobel, G.J.; Masalmeh, S.K.; AlSumaiti, A.M. An experimental and numerical study of low salinity effects on the oil recovery of carbonate rocks combining spontaneous imbibition, centrifuge method and coreflooding experiments. J. Pet. Sci. Eng. 2020, 190, 107045. [Google Scholar] [CrossRef]
- Lager, A.; Webb, K.J.; Black, C.J.J.; Singleton, M.; Sorbie, K. Low Salinity Oil Recovery—An Experimental Investigation1. Petrophysics 2008, 49, 28–35. [Google Scholar]
- Kakati, A.; Kumar, G.; Sangwai, J.S. Oil Recovery Efficiency and Mechanism of Low Salinity-Enhanced Oil Recovery for Light Crude Oil with a Low Acid Number. ACS Omega 2020, 5, 1506–1518. [Google Scholar] [CrossRef]
- AlHammadi, M.; Mahzari, P.; Sohrabi, M. Fundamental investigation of underlying mechanisms behind improved oil recovery by low salinity water injection in carbonate rocks. Fuel 2018, 220, 345–357. [Google Scholar] [CrossRef]
- Hosseini, E.; Sarmadivaleh, M.; Mohammadnazar, D. Numerical modeling and experimental investigation on the effect of low-salinity water flooding for enhanced oil recovery in carbonate reservoirs. J. Pet. Explor. Prod. 2021, 11, 925–947. [Google Scholar] [CrossRef]
- Nasralla, R.A.; Nasr-El-Din, H.A. Double-Layer Expansion: Is It a Primary Mechanism of Improved Oil Recovery by Low-Salinity Waterflooding? SPE Reserv. Eval. Eng. 2014, 17, 49–59. [Google Scholar] [CrossRef]
- Behera, U.S.; Sangwai, J.S.; Baskaran, D.; Byun, H.-S. A Comprehensive Review on Low Salinity Water Injection for Enhanced Oil Recovery: Fundamental Insights, Laboratory and Field Studies, and Economic Aspects. Energy Fuels 2024, 39, 72–103. [Google Scholar] [CrossRef]
- Bhicajee, P.; Romero-Zerón, L. Effect of different low salinity flooding schemes and the addition of alkali on the performance of low-salinity waterflooding during the recovery of heavy oil from unconsolidated sandstone. Fuel 2021, 289, 119981. [Google Scholar] [CrossRef]
- Kaprielova, K.M.; Yutkin, M.P.; Mowafi, M.; Gmira, A.; Ayirala, S.; Yousef, A.; Radke, C.J.; Patzek, T.W. Improved Amott Method to Determine Oil Recovery Dynamics from Water-Wet Limestone Using GEV Statistics. Energies 2024, 17, 3599. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, F.; Chen, Y.; Yang, H.; Saeedi, A.; Hossain, M.M. Effect of electrical double layer and ion exchange on low salinity EOR in a pH controlled system. J. Pet. Sci. Eng. 2019, 174, 418–424. [Google Scholar] [CrossRef]
- Kamble, S.; Agrawal, S.; Cherumukkil, S.; Sharma, V.; Jasra, R.V.; Munshi, P. Revisiting Zeta Potential, the Key Feature of Interfacial Phenomena, with Applications and Recent Advancements. Chem. Sel. 2022, 7, e202103084. [Google Scholar] [CrossRef]
- Warren, G.L.; Patel, S. Electrostatic Properties of Aqueous Salt Solution Interfaces: A Comparison of Polarizable and Non-Polarizable Ion Models. J. Phys. Chem. B 2008, 112, 11679–11693. [Google Scholar] [CrossRef]
- Martins-Costa, M.T.C.; Ruiz-López, M.F. Electrostatics and Chemical Reactivity at the Air-Water Interface. J. Am. Chem. Soc. 2023, 145, 1400–1406. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, B.; Du, J.; Yu, Y.; Yu, Y.; Deng, X. Interfacial electrostatic charges promoted chemistry: Reactions and mechanisms. Adv. Colloid Interface Sci. 2025, 339, 103436. [Google Scholar] [CrossRef]
- Matyushov, D.V. Electrostatics of liquid interfaces. J. Chem. Phys. 2014, 140, 224506. [Google Scholar] [CrossRef]
- Uematsu, Y. Ion adsorption and zeta potential of hydrophobic interfaces. Encycl. Solid-Liq. Interfaces 2024, 519–529. [Google Scholar] [CrossRef]
- Elakneswaran, Y.; Ubaidah, A.; Takeya, M.; Shimokawara, M.; Okano, H. Effect of Electrokinetics and Thermodynamic Equilibrium on Low-Salinity Water Flooding for Enhanced Oil Recovery in Sandstone Reservoirs. ACS Omega 2021, 6, 3727–3735. [Google Scholar] [CrossRef]
- Bourbiaux, B. Low salinity effects on oil recovery performance: Underlying physical mechanisms and practical assessment. Oil Gas. Sci. Technol.-Rev. IFP Energ. Nouv. 2020, 75, 37. [Google Scholar] [CrossRef]
- Collini, H.; Li, S.; Jackson, M.D.; Agenet, N.; Rashid, B.; Couves, J. Zeta potential in intact carbonates at reservoir conditions and its impact on oil recovery during controlled salinity waterflooding. Fuels 2020, 266, 116927. [Google Scholar] [CrossRef]
- Feldmann, F.; Al-Shalabi, E.W.; Hiorth, A. Surface charge change in carbonates during low-salinity imbibition. Sci. Rep. 2024, 14, 13018. [Google Scholar] [CrossRef]
- Delgado, A.; González-Caballero, F.; Bruque, J. On the zeta potential and surface charge density of montmorillonite in aqueous electrolyte solutions. J. Colloid Interface Sci. 1986, 113, 203–211. [Google Scholar] [CrossRef]
- Halle, Y.; Diatta, J.; Meireles, M. Quantitative Assessment of the Accuracy of the Poisson–Boltzmann Cell Model for Salty Suspensions. Langmuir 2014, 30, 6721–6729. [Google Scholar] [CrossRef]
- Fixman, M. The Poisson–Boltzmann equation and its application to polyelectrolytes. J. Chem. Phys. 1979, 70, 4995–5005. [Google Scholar] [CrossRef]
- Ruiz-Cabello, F.J.M.; Trefal, G.; Maroni, P.; Borkovec, M. Accurate Predictions of Forces in the Presence of Multivalent Ions by Poisson–Boltzmann Theory. Langmuir 2014, 30, 4551–4555. [Google Scholar] [CrossRef]
- Overbeek, J.T.G. The role of energy and entropy in the electrical double. Colloids Surf. 1990, 51, 61–75. [Google Scholar]
- Chan, D.Y.; Mitchell, D. The free energy of an electrical double layer. J. Colloid Interface Sci. 1983, 95, 193–197. [Google Scholar] [CrossRef]
- Gregory, J. Interaction of Unequal Double Layers at Constant Charge. J. Colloid Interface Sci. 1975, 51, 44–51. [Google Scholar] [CrossRef]
- Thanh, L.D. The Zeta Potential Calculation for Fluid Saturated Porous Media Using Linearized and Nonlinear Solutions of Poisson–Boltzmann Equation. VNU J. Sci. Math. -Phys. 2018, 34, 1–11. [Google Scholar]
- Grahame, D.C. Entropy, Enthalpy, and Free Energy of the Electrical Double Layer at an Ideal Polarized Electrode. Part I. Thermodynamic Theory. J. Chem. Phys. 1948, 16, 1117–1123. [Google Scholar]
- Su, M.; Xu, Z.; Wang, Y. Poisson–Boltzmann theory with non-linear ion correlations. J. Phys. Condens. Matter 2019, 31, 355101. [Google Scholar] [CrossRef]
- Ezeuko, A.S.; Ojemaye, M.O.; Okoh, O.O.; Okoh, A.I. The effectiveness of silver nanoparticles as a clean-up material for water polluted with bacteria DNA conveying antibiotics resistance genes: Effect of different molar concentrations and competing ions. OpenNano 2022, 7, 100060. [Google Scholar] [CrossRef]
- Jaafar, M. Measurement of Isoelectric Point of Sandstone and Carbonate Rock for Monitoring Water Encroachment. J. Appl. Sci. 2014, 14, 3349–3353. [Google Scholar] [CrossRef]
- Amadu, M.; Miadonye, A. Determination of the Point of Zero Charge pH of Borosilicate Glass Surface Using Capillary Imbibition Method. Int. J. Chem. 2017, 9, 67. [Google Scholar] [CrossRef]
- Isfehani, Z.D.; Fahimpour, J.; Sharifi, M.; Khalili, H.; Tayebi, M.S. Wettability alteration and IFT reduction during carbonated water injection; a critical investigation into the role of pH. J. Pet. Explor. Prod. Technol. 2024, 14, 3295–3310. [Google Scholar] [CrossRef]
- Lowe, B.M.; Skylaris, C.-K.; Green, N.G. Acid-base dissociation mechanisms and energetics at the silica–water interface: An activationless process. J. Colloid Interface Sci. 2015, 451, 231–244. [Google Scholar] [CrossRef]
- Onizhuk, M.O.; Panteleimonov, A.V.; Kholin, Y.V.; Iivanov, V.V. Dissociation constants of silanol groups of silic acids: Quantum chemical estimations. J. Struct. Chem. 2018, 59, 261–271. [Google Scholar] [CrossRef]
- Khalafa, M.H.; Mansoorib, G. Asphaltenes aggregation during petroleum reservoir air and nitrogen flooding. J. Pet. Sci. Eng. 2019, 173, 1121–1129. [Google Scholar] [CrossRef]
- Nolting, D.; Aziz, E.F.; Ottosson, N.; Faubel, M.; Hertel, I.V.; Winter, B. pH-Induced Protonation of Lysine in Aqueous Solution. J. Am. Chem. Soc. 2007, 129, 14068–14073. [Google Scholar] [CrossRef]
- Leunissen, M.E.; Blaaderen, A.V.; Hollingsworth, A.D.; Sullivan, M.T.; Chaikin, M. Electrostatics at the oil–water interface, stability, and order in emulsions and colloids. Proc. Natl. Acad. Sci. USA 2007, 104, 2585–2590. [Google Scholar] [CrossRef] [PubMed]
- Kar, G.; Chander, S.; Mika, T. The potential energy of interaction between dissimilar electrical double layers. J. Colloid Interface Sci. 1973, 44, 347–355. [Google Scholar] [CrossRef]
- Wang, S.; Man, L.; Wang, S.; Wu, L.; Zhu, Y.; Li, Y.; He, Y. Lithofacies types, reservoir characteristics and silica origin of marine shales: A case study of the Wufeng formation–Longmaxi Formation in the Luzhou area, southern Sichuan Basin. Nat. Gas Ind. B 2022, 9, 394–410. [Google Scholar] [CrossRef]
- Yang, Y.-B.; Xiao, W.-L.; Zheng, L.-L.; Lei, Q.-H.; Qin, C.-Z.; He, Y.-A.; Liu, S.-S.; Li, M.; Li, Y.-M.; Zhao, J.-Z.; et al. Pore throat structure heterogeneity and its effect on gas-phase seepage capacity in tight sandstone reservoirs: A case study from the Triassic Yanchang Formation, Ordos Basin. Pet. Sci. 2023, 20, 2892–2907. [Google Scholar] [CrossRef]
- Dehant, V.; Mathews, P. 3.10—Earth Rotation Variations. In Treatise on Geophysics; Elsevier: Amsterdam, The Netherlands, 2007; Volume 3, pp. 295–349. [Google Scholar]
- Rice, R.E.; Horne, F.H. Analytical solutions to the linearized poisson—Boltzmann equation in cylindrical coordinates for different ionic—Strength distributions. J. Colloid Interface Sci. 1985, 105, 172–182. [Google Scholar] [CrossRef]
- Shkel, I.A.; Tsodikov, O.V.; Record, M.T., Jr. Asymptotic solution of the cylindrical nonlinear Poisson–Boltzmann equation at low salt concentration: Analytic expressions for surface potential and preferential interaction coefficient. Proc. Natl. Acad. Sci. USA 2002, 99, 2597–2602. [Google Scholar] [CrossRef]
- Hirasaki, G. SPE Formation Evaluation. Wettability fundamentals and surface forces. SPE Form. Eval. 1991, 6, 217–226. [Google Scholar] [CrossRef]
- Buckley, J.S.; Takamura, K.; Morrow, N.R. Influence of Electrical Surface Charges on the Wetting Properties of Crude Oils. SPE Res. 1988, 4, 317–327. [Google Scholar] [CrossRef]
- Liu, B.; Guo, W.; Anderson, S.R.; Johnstone, S.G.; Wu, S.; Herrington, M.C.; Gebbie, M.A. Exploring how cation entropy influences electric double layer formation and electrochemical reactivity. Soft Matter 2024, 20, 351–364. [Google Scholar] [CrossRef]
- Bossa, G.V.; May, S. Debye-Hückel Free Energy of an Electric Double Layer with Discrete Charges Located at a Dielectric Interface. Membranes 2021, 11, 129. [Google Scholar] [CrossRef]
- Manciu, M.; Ruckenstein, E. On the Chemical Free Energy of the Electrical Double Layer. Langmuir 2003, 19, 1114–1120. [Google Scholar] [CrossRef]
- Russel, W.B.; Saville, D.A.; Schowalter, W.R. Colloidal Dispersions; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Besley, E. Recent Developments in the Methods and Applications of Electrostatic Theory. Acc. Chem. Res. 2023, 56, 2267–2277. [Google Scholar] [CrossRef]
- Saadi, F.A.; Wolf, K.-H.; Kruijsdijk, C.V. Characterization of Fontainebleau Sandstone: Quartz Overgrowth and its Impact on Pore-Throat. J. Pet. Environ. Biotechnol. 2017, 8, 328. [Google Scholar] [CrossRef]
- Sogryn, A. Equations for Calculating the Dielectric Constant of Saline Water. IEEE Trans. Microw. Theory Tech. 1971, 19, 733–736. [Google Scholar] [CrossRef]
- Chavan, M.; Dandekar, A.; Patil, S.; Khataniar, S. Low salinity based enhanced oil recovery literature review and associated screening criteria. Pet. Sci. 2019, 16, 1344–1360. [Google Scholar] [CrossRef]
- Leroy, P.; Maineult, A. Exploring the electrical potential inside cylinders beyond the Debye–Huckel approximation: A computer code to solve the Poisson–Boltzmann equation for multivalent electrolytes. Geophys. J. Int. 2018, 214, 58–69. [Google Scholar] [CrossRef]
- Plassard, L.; Mouret, A.; Nieto-Draghi, C.; Dalmazzone, C.; Langevin, D.; Argillier, J.-F. Impact of Electrolytes on Produced Water Destabilization. Langmuir 2024, 320, 10847–10855. [Google Scholar] [CrossRef]
- Duffy, T.S.; Raman, B.; Hall, D.M.; Machesky, M.L.; Johns, R.T. Experimentation and modeling of surface chemistry of the silica-water. Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, 233–243. [Google Scholar]
- Takeya, M.; Ubaidah, A.; Shimokawara, M.; Okano, H.; Nawa, T.; Elakneswaran, Y. Crude oil/brine/rock interface in low salinity waterflooding: Experiments triple-layer surface complexation model, and DLVO theory. J. Pet. Sci. Eng. 2020, 188, 106913. [Google Scholar]
- Solomon, T. The Definition and Unit of Ionic Strength. J. Chem. Educ. 2001, 78, 1691. [Google Scholar] [CrossRef]
- Chow, R.; Takamura, K. Electrophoretic Mobilities of Bitumen and Conventional Crude-inWater Emulsions Using the Laser Doppler Apparatus in the Presence of Multivalent Cations. J. Colloid Interface Sci. 1988, 125, 212–225. [Google Scholar] [CrossRef]
- Lu, G.W.; Gao, P. Chapter 3—Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. In Handbook of Non-Invasive Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2010; pp. 59–94. [Google Scholar]
- Kolltveit, Y. Relationship Between Crude Oil Composition and Physical-Chemical Properties. Master’s Thesis, University of Bergen, Bergen, Norway, 2016. Available online: https://bora.uib.no/bora-xmlui/handle/1956/12605 (accessed on 9 October 2025).
- Bonto, M.; Eftekhari, A.; Nick, H. An overview of the oil-brine interfacial behavior and a new surface complexation model. Sci. Rep. 2019, 9, 6027. [Google Scholar] [CrossRef] [PubMed]
- Zhuravlev, L.T. Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 1987, 3, 316–318. [Google Scholar] [CrossRef]
- Vlasova, N.N. A comparison of surface complexation models for quantitative description of acidic properties of fumed silica. Himia Fizika ta Tehnologia Poverhni 2008, 14, 6–15. [Google Scholar]
- Sverjensky, D.A. Prediction of surface charge on oxides in salt solutions: Revisions for 1:1 (M+L−) electrolytes. Geochim. Et Cosmochim. Acta 2005, 69, 225–257. [Google Scholar] [CrossRef]
- Miadonye, A.; Amadu, M. How pH induced surface charge modification explains the effect of petrophysical and hydrological factors on recovery trends of water drive gas reservoirs. J. Nat. Gas Sci. Eng. 2022, 98, 104386. [Google Scholar] [CrossRef]
- Ge, Z.; Wang, Y. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics SimulationsClick to copy article link. J. Phys. Chem. B 2017, 121, 3394–3402. [Google Scholar] [CrossRef] [PubMed]
- Alias, A. Emulsion Stability. 2013. Available online: https://www.slideshare.net/akarim717/emulsion-stability (accessed on 6 July 2025).
- Pochapski, D.J.; Santos, C.C.D.; Leite, G.W.; Pulcinelli, S.; Santilli, C.V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir 2021, 37, 13379–13389. [Google Scholar] [CrossRef] [PubMed]
- Mateos, H.; Palazzo, G. Chapter 3—Colloidal stability. In Colloidal Foundations of Nanoscience, 2nd ed.; Science Direct: Amsterdam, The Netherlands, 2022; pp. 57–83. [Google Scholar]
- Vizcarra, C.L.; Mayo, S.L. Electrostatics in computational protein design. Curr. Opin. Chem. Biol. 2005, 9, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zheng, M.; Luo, J.; Wang, Z.L. Effects of Surface Functional Groups on Electron Transfer at Liquid–Solid Interfacial Contact Electrification. ACS Nano 2020, 14, 10733–10741. [Google Scholar] [CrossRef]
- Wu, J. Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chem. Rev. 2022, 122, 10821–10859. [Google Scholar] [CrossRef]
- Jiang, Q.; Wen, Z. Thermodynamics of Interfaces. In Thermodynamics of Materials; Springer: Berlin/Heidelberg, Germany, 2011; pp. 207–293. [Google Scholar]
- Li, X.; PuhakkaI, E.; LiuI, L.; Zhang, W.; Ikonen, J.; Lindberg, A.; Siitari-Kauppi, M. Multi-site surface complexation modelling of Se(IV) sorption. Chem. Geol. 2019, 533, 119433. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Wang, L.; Kłos, J.; Peng, Z.; Kim, N.; Bluhm, H.; Gaskell, K.; Liu, P.; Lee, S.B.; et al. Probing the electrical double layer by operando X-ray photoelectron spectroscopy through a graphene-carbon nanotube composite window. EcoMat 2020, 2, e12023. [Google Scholar] [CrossRef]
- Diez, G.G.; Morata, A.; Rodríguez, J.D.S.; Dávila, D. Towards a full integration of vertically aligned silicon nanowires in MEMS using silane as a precursor. Nanotechnology 2015, 26, 195302. [Google Scholar] [CrossRef]
- Ding, H.; Rahman, S. Experimental and theoretical study of wettability alteration during low salinity water flooding-an state of the art review. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 622–639. [Google Scholar] [CrossRef]
- Hassenkam, T.; Matthiesen, J.; Pedersen, C.S.; Dalby, K.N.; Stipp, S.L.; Collins, I.R. Observation of the Low Salinity Effect by Atomic Force Adhesion Mapping on Reservoir Sandstones. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 14–18 April 2012. [Google Scholar]
- Morrow, N.R.; Mason, G. Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci. 2001, 6, 321–337. [Google Scholar] [CrossRef]
- Morrow, N.R. Wettability and Its Effect on Oil Recovery. J. Pet. Technol. 1990, 42, 1476–1484. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Yusuff, A.S. An overview of chemical enhanced oil recovery: Recent advances and prospects. Int. Nano Lett. 2019, 9, 171–202. [Google Scholar] [CrossRef]
- Ding, F.G. Pore wettability for enhanced oil recovery, contaminant adsorption and oil/water separation: A review. Adv. Colloid Interface Sci. 2021, 289, 102377. [Google Scholar] [CrossRef] [PubMed]
- Puntervold, T.; MamonovIván, A.; Torrijos, D.P.; Strand, S. Adsorption of Crude Oil Components onto Carbonate and Sandstone Outcrop Rocks and Its Effect on Wettability. Energy Fuels 2021, 35, 5738–5747. [Google Scholar] [CrossRef]
- Marcano, M.C.; Kim, S.; Taylor, S.D.; Becker, U. Exploring wettability by imaging the adsorption of crude oil, re-dissolved asphaltene, and phenol solutions onto calcite. Implications to sorption mechanisms and molecular structure of surface-active compounds in crude oil. Chem. Geol. 2019, 525, 462–478. [Google Scholar] [CrossRef]
- Cruz, J.L.M.D.L.; Castellanos-Ramírez, I.V.; Ortiz-Tapia, A.; Buenrostro-González, E.; Durán-Valencia, C.D.L.A.; López-Ramírez, S. Study of monolayer to multilayer adsorption of asphaltenes on reservoir rock minerals. Colloids Surf. A Physicochem. Eng. Asp. 2009, 340, 149–154. [Google Scholar] [CrossRef]
- Yuan, L.; Habibi, A.; Dehghanpour, H. Liquid imbibition in tight rocks: The role of disjoining pressure. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127037. [Google Scholar] [CrossRef]
- Kuchin, I.; Matar, O.; Craster, R.; Starov, V. Influence of the Disjoining Pressure on the Equilibrium Interfacial Profile in Transition Zone Between a Thin Film and a Capillary Meniscus. Colloids Interface Sci. Commun. 2014, 1, 18–22. [Google Scholar] [CrossRef]
- Leng, Y.; Cummings, T. Hydration structure of water confined between mica surfaces. J. Chem. Phy. 2006, 124, 74711. [Google Scholar] [CrossRef]
- Berg, S.; Cense, A.; Jansen, E.; Bakker, K. Direct Experimental Evidence of Wettability Modification by Low Salinity. Petrophysics 2010, 51, 314–322. [Google Scholar]
- Khishvand, M.; Alizadeh, A.H.; Kohshour, I.O.; Piri, M.; Prasad, R.S. In situ characterization of wettability alteration and displacement mechanisms governing recovery enhancement due to low-salinity waterflooding. Resour. Res. 2017, 53, 4427–4443. [Google Scholar] [CrossRef]
- Al-Bayati, A.; Karunarathne, C.I.; Jehani, A.S.A.; Al-Yaseri, A.Z.; Keshavarz, A.; Iglauer, S. Wettability Alteration during Low-Salinity Water Flooding. Energy Fuels 2022, 36, 871–879. [Google Scholar] [CrossRef]
- Ritvo, G.; Dassa, O.; Kochba, M. Salinity and pH effect on the colloidal properties of suspended particles in super intensive aquaculture systems. Aquaculture 2003, 218, 379–386. [Google Scholar] [CrossRef]
- Kaiser, M.J. Chapter Fifteen—Field Development Opportunities. In Decommissioning Forecasting and Operating Cost Estimation: Gulf of Mexico Well Trends, Structure Inventory and Forecast Models; Elsevier: Amsterdam, The Netherlands, 2019; pp. 317–335. [Google Scholar]
- Ahmed, T. Chapter 17—Fractured Reservoirs. In Reservoir Engineering Handbook, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1338–1432. [Google Scholar]
- Bello, A.; Ivanova, A.; Rodionov, A.; Karamov, T.; Morkovkin, A.; Cheremisin, A. An experimental study of the physical mechanisms of fluid flow in tight carbonate core samples by binary surfactants. Heliyon 2025, 11, e42221. [Google Scholar] [CrossRef] [PubMed]
- Lamch, Ł.; Szczęsna, W.; Balicki, S.J.; Bartman, M.; Szyk-Warszyńska, L.; Warszyński, P.; Wilk, K.A. Multiheaded Cationic Surfactants with Dedicated Functionalities: Design, Synthetic Strategies, Self-Assembly and Performance. Molecules 2023, 28, 5806. [Google Scholar] [CrossRef]
- Yoshimura, T.; Nagata, Y.; Esumi, K. Interactions of quaternary ammonium salt-type gemini surfactants with sodium poly(styrene sulfonate). J. Colloid Interface Sci. 2004, 275, 618–622. [Google Scholar] [CrossRef]
- Goloub, T.P.; Koopal, L.K.; Bijsterbosch, B.H.; Sidorova, M.P. Adsorption of Cationic Surfactants on Silica. Surface Charge Effects. Langmuir 1996, 12, 3188–3194. [Google Scholar] [CrossRef]
- Guo, H.; Song, K.; Hilfer, R. A Brief Review of Capillary Number and its Use in Capillary Desaturation Curves. Transp. Porous Media 2022, 144, 3–31. [Google Scholar] [CrossRef]
- Warszyński, P.; Szyk-Warszyńska, L.; Wilk, K.A.; Lamch, Ł. Adsorption of cationic multicharged surfactants at liquid–gas interface. Curr. Opin. Colloid Interface Sci. 2022, 59, 101577. [Google Scholar] [CrossRef]
- Writer, S. Carbonate Evolution. 2008. Available online: https://www.oilandgasmiddleeast.com/products-services/article-4852-carbonate-evolution#:~:text=The%20significance%20of%20carbonate%20reserves,are%20held%20in%20carbonate%20reservoirs (accessed on 25 July 2025).
- Omari, A.; Cao, R.; Zhu, Z.; Xu, X. A comprehensive review of recent advances on surfactant architectures and their applications for unconventional reservoirs. J. Pet. Sci. Eng. 2021, 206, 109025. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Huang, X.; Cao, M.; Wang, Y. Aggregation behavior of a series of anionic sulfonate gemini surfactants and their corresponding monomeric surfactant. J. Colloid Interface Sci. 2008, 319, 534–541. [Google Scholar] [CrossRef]
- Arain, A.H.; Negash, B.M.; Yekeen, N.; Farooqi, A.S.; Alshareef, R.S. Synergising nanoparticles and low salinity waterflooding for enhanced oil recovery: A state-of-the-art review. J. Mol. Liq. 2024, 400, 124495. [Google Scholar] [CrossRef]
- Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front. Mol. Biosci. 2020, 7, 587012. [Google Scholar] [CrossRef]
- Gorohovs, M.; Dekhtyar, Y. Surface Functionalization of Nanoparticles for Enhanced Electrostatic Adsorption of Biomolecules. Molecules 2025, 30, 3206. [Google Scholar] [CrossRef]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273–283. [Google Scholar] [CrossRef]
- Li, X.; Li, F.; Huang, Z.; Ji, H.; Wang, H.; Chen, L.; Zhang, Z.; Shi, X. Characterization and simulation of conglomerate reservoirs using core data of Triassic Baikouquan Formation, Mahu Depression. Sci. Rep. 2025, 15, 29293. [Google Scholar] [CrossRef]
- Fang, C.; Yang, Y.; Sun, S.; Qiao, R. Low salinity effect on the recovery of oil trapped by nanopores: A molecular dynamics study. Fuels 2020, 261, 116443. [Google Scholar] [CrossRef]
- Maiki, E.P.; Sun, R.; Ren, S.; AlRassas, A.M. Experimental and Molecular Dynamics Simulation to Investigate Oil Adsorption and Detachment from Sandstone/Quartz Surface by Low-Salinity Surfactant Brines. ACS Omega 2024, 9, 20277–20292. [Google Scholar] [CrossRef] [PubMed]
- Firooz, A.F.G.Z.; Hashemi, A.; Tamsilian, Y. Molecular dynamics modeling and simulation of silicon dioxide-low salinity water nanofluid for enhanced oil recovery. J. Mol. Liq. 2021, 339, 116834. [Google Scholar] [CrossRef]
- Kaye, G.; Laby, T. Tables of Physical and Chemical Constants; Longmans, Green and Co.: London, UK, 1911. [Google Scholar]
- Saw, R.K.; Mandal, A. A mechanistic investigation of low salinity water flooding coupled with ion tuning for enhanced oil recovery. RSC Adv. 2020, 10, 42570–42583. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miadonye, A.; Amadu, M. Interfacial Electrostatics of Low Salinity-Enhanced Oil Recovery: A Review of Theoretical Foundations, Applications and Correlation to Experimental Observations. Processes 2025, 13, 3255. https://doi.org/10.3390/pr13103255
Miadonye A, Amadu M. Interfacial Electrostatics of Low Salinity-Enhanced Oil Recovery: A Review of Theoretical Foundations, Applications and Correlation to Experimental Observations. Processes. 2025; 13(10):3255. https://doi.org/10.3390/pr13103255
Chicago/Turabian StyleMiadonye, Adango, and Mumuni Amadu. 2025. "Interfacial Electrostatics of Low Salinity-Enhanced Oil Recovery: A Review of Theoretical Foundations, Applications and Correlation to Experimental Observations" Processes 13, no. 10: 3255. https://doi.org/10.3390/pr13103255
APA StyleMiadonye, A., & Amadu, M. (2025). Interfacial Electrostatics of Low Salinity-Enhanced Oil Recovery: A Review of Theoretical Foundations, Applications and Correlation to Experimental Observations. Processes, 13(10), 3255. https://doi.org/10.3390/pr13103255