Comparative Effects of Total, Water-Extractable, and Water-Unextractable Arabinoxylans from Wheat Bran on Dough and Noodle Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis of AX Content of Wheat Bran
2.3. Extraction of AXs from Wheat Bran
2.3.1. Defatting Process of Wheat Bran
2.3.2. Extraction of TAX, WUAX, and WEAX
2.4. Analysis of Constituent Sugars in AXs
2.5. Analysis of Water Solvent-Retention Capacity (SRC) of Wheat Flours Supplemented with AXs
2.6. Measurement of Sodium Dodecyl Sulfate (SDS)-Sedimentation Volume of Wheat Flours Supplemented with AXs
2.7. Analysis of Dough-Mixing Property of Wheat Flours Supplemented with AXs
2.8. Assessment of Wheat Flours with AXs for Their Performance in Fresh- and Cooked-Noodle Preparation
2.8.1. Preparation of Fresh and Cooked Noodles with AXs
2.8.2. Measurement of Texture of Fresh Noodles
2.8.3. Measurement of Weight Gain of Cooked Noodles and Turbidity of Cooking Water
2.8.4. Analysis of Texture of Cooked Noodles
2.9. Measurement of Total Phenolic Content (TPC) and Antioxidant Activities of Fresh and Cooked Noodles
2.10. Statistical Analysis
3. Results and Discussion
3.1. AX Content of Wheat Bran
3.2. Constituent Sugars in AXs Extracted from Wheat Bran
3.3. SRC of Wheat Flours with AXs
3.4. SDS-Sedimentation Volume of Wheat Flours with AXs
3.5. Dough-Mixing Property of Wheat Flours with AXs
3.6. Texture of Fresh Noodles Supplemented with AXs
3.7. Appearance and Quality of Cooked Noodles with AXs
3.8. TPC and Antioxidant Activity of Fresh and Cooked Noodles with AXs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AX | Arabinoxylan |
TAX | Total arabinoxylan |
WEAX | Water-extractable arabinoxylan |
WUAX | Water-unextractable arabinoxylan |
SRC | Solvent-retention capacity |
SDS | Sodium dodecyl sulfate |
TPC | Total phenolic content |
ABTS | 2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid |
HPAEC-PAD | High-performance anion-exchange chromatography coupled with pulsed amperometric detection |
R/E | Resistance-to-extensibility ratio |
GAE | Gallic acid equivalents |
TE | Trolox equivalents |
ANOVA | Analysis of variance |
HSD | Tukey’s honestly significant difference |
References
- Korea Flour Mills Industrial Association. Flour Consumption per Capita by Year. 2022. Available online: http://www.kofmia.org/data/stat_idx04.jsp (accessed on 5 May 2025).
- Chung, S.Y.; Han, S.H.; Lee, S.W.; Rhee, C. Physicochemical and bread-making properties of air flow pulverized wheat and corn flours. Food Sci. Biotechnol. 2010, 19, 1529–1535. [Google Scholar] [CrossRef]
- Kim, J.H.; Pak, P.J.; Kim, J.G.; Cheong, Y.K.; Kang, C.S.; Lee, N.T.; Chung, N. Comparison of allergy-inducible wheat protein contents among imported and domestic wheat flours in Korea. J. Appl. Biol. Chem. 2016, 59, 1–3. [Google Scholar] [CrossRef]
- An, H.L.; Lee, K.S. Study on the quality characteristics of pan bread with sourdough starters from added domestic wheat flours. J. East. Asian Soc. Diet. Life 2009, 19, 96–1008. [Google Scholar]
- Kweon, M.; Slade, L.; Levine, H.; Gannon, D. Cookie- versus cracker-baking—What’s the difference? Flour functionality requirements explored by SRC and Alveography. Crit. Rev. Food Sci. Nutr. 2014, 54, 115–138. [Google Scholar] [CrossRef]
- Kang, C.S.; Park, C.S.; Park, J.C.; Kim, H.S.; Cheong, Y.K.; Kim, K.H.; Kim, K.J.; Park, K.H.; Kim, J.G. Flour Characteristics and End-Use Quality of Korean Wheat Cultivate I. Flour Characteristics. Korean J. Breed. Sci. 2010, 42, 61–74. [Google Scholar]
- Zannini, E.; Núñez, A.B.; Sahin, A.W.; Arendt, E.K. Arabinoxylans as functional food ingredients: A review. Foods 2022, 11, 1026. [Google Scholar] [CrossRef]
- Cunningham, M.; Azcarate-Peril, M.A.; Barnard, A.; Benoit, V.; Grimaldi, R.; Guyonnet, D.; Holscher, H.D.; Hunter, K.; Manurung, S.; Obis, D.; et al. Shaping the future of probiotics and prebiotics. Trends Microbiol. 2021, 29, 667–685. [Google Scholar] [CrossRef]
- Mendez-Encinas, M.A.; Carvajal-Millan, E.; Rascon-Chu, A.; Astiazaran-Garcia, H.F.; Valencia-Rivera, D.E. Ferulated arabinoxylans and their gels: Functional properties and potential application as antioxidant and anticancer agent. Oxid. Med. Cell. Longev. 2018, 2018, 2314759. [Google Scholar] [CrossRef]
- He, H.J.; Qiao, J.; Liu, Y.; Guo, Q.; Ou, X.; Wang, X. Isolation, structural, functional, and bioactive properties of cereal arabinoxylan—A critical review. J. Agric. Food Chem. 2021, 69, 15437–15457. [Google Scholar] [CrossRef]
- Adams, V.; Ragaee, S.; Goff, H.D.; Abdel-Aal, E.S.M. Properties of arabinoxylans in frozen dough enriched with wheat fiber. Cereal Chem. 2017, 94, 242–250. [Google Scholar] [CrossRef]
- Courtin, C.; Delcour, J.A. Arabinoxylans and endoxylanases in wheat flour bread-making. J. Cereal Sci. 2002, 35, 225–243. [Google Scholar] [CrossRef]
- Saulnier, L.; Sado, P.E.; Branlard, G.; Charmet, G.; Guillon, F. Wheat arabinoxylans: Exploiting variation in amount and composition to develop enhanced varieties. J. Cereal Sci. 2007, 46, 261–281. [Google Scholar] [CrossRef]
- Pietiäinen, S.; Moldin, A.; Ström, A.; Malmberg, C.; Langton, M. Effect of physicochemical properties, pre-processing, and extraction on the functionality of wheat bran arabinoxylans in breadmaking–A review. Food Chem. 2022, 383, 132584. [Google Scholar] [CrossRef]
- Fadel, A.; Mahmoud, A.A.; Ashworth, J.J.; Li, W.; Ng, Y.L.; Plunkett, A. Health-related effects and improving extractability of cereal arabinoxylans. Int. J. Biol. Macromol. 2018, 109, 819–831. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, X.; Guo, Y.; Wang, Q.; Peng, D.; Cao, L. Comparison of the imuunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction. Carbohydr. Polym. 2010, 81, 784–789. [Google Scholar] [CrossRef]
- Nishitsuji, Y.; Whitney, K.; Nakamura, K.; Hayakawa, K.; Simsek, S. Changes in structure and solubility of wheat arabinoxylan during the breadmaking process. Food Hydrocoll. 2020, 109, 106–129. [Google Scholar] [CrossRef]
- Saeed, F.; Ahmad, N.; Nadeem, M.T.; Qamar, A.; Khan, A.U.; Tufail, T. Effect of arabinoxylan on rheological attributes and bread quality of spring wheats. J. Food Process. Preserv. 2016, 40, 1164–1170. [Google Scholar] [CrossRef]
- Zhang, L.; van Boven, A.; Mulder, J.; Grandia, J.; Chen, X.D.; Boom, R.M.; Schutyser, M.A.L. Arabinoxylan-enriched fractions: From dry fractionation of wheat bran to the investigation on bread baking performance. J. Cereal Sci. 2019, 87, 1–8. [Google Scholar] [CrossRef]
- Kiszonas, A.M.; Fuerst, E.P.; Luthria, D.; Morris, C.F. Arabinoxylan content and characterisation throughout the bread baking process. Int. J. Food Sci. Technol. 2015, 50, 1911–1921. [Google Scholar] [CrossRef]
- Fan, L.; Ma, S.; Wang, X.; Zheng, X. Improvement of Chinese noodle quality by supplementation with arabinoxylans from wheat bran. Int. J. Food Sci. Technol. 2016, 51, 602–608. [Google Scholar] [CrossRef]
- Kim, J.; Kweon, M. Quality and noodle-making performance of wheat flour with varied gluten strengths altered by addition of various arabinoxylans. J. Food Sci. 2024, 89, 7494–7508. [Google Scholar] [CrossRef]
- Douglas, S.G. A rapid method for the determination of pentosans in wheat flour. Food Chem. 1981, 7, 139–145. [Google Scholar] [CrossRef]
- Kiszonas, A.M.; Courtin, C.M.; Morris, C.F. A critical assessment of the quantification of wheat grain arabinoxylans using a phloroglucinol colorimetric assay. Cereal Chem. 2012, 89, 143–150. [Google Scholar] [CrossRef]
- Höije, A.; Gröndahl, M.; Tømmeraas, K.; Gatenholm, P. Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohydr. Polym. 2005, 61, 266–275. [Google Scholar] [CrossRef]
- Si, X.; Li, T.; Zhang, Y.; Zhang, W.; Qian, H.; Li, Y.; Zhang, H.; Qi, X.; Wang, L. Interactions between gluten and water-unextractable arabinoxylan during the thermal treatment. Food Chem. 2021, 345, 128785. [Google Scholar] [CrossRef] [PubMed]
- AACCI. Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Guo, G.; Jackson, D.S.; Graybosch, R.A.; Parkhurst, A.M. Asian salted noodle quality: Impact of amylose content adjustments using waxy wheat flour. Cereal Chem. 2003, 80, 437–445. [Google Scholar] [CrossRef]
- Yu, L.; Beta, T. Identification and antioxidant properties of phenolic compounds during production of bread from purple wheat grains. Molecules 2015, 20, 15525–15549. [Google Scholar] [CrossRef]
- Bilal, M.; Li, D.; Xie, C.; Yang, R.; Gu, Z.; Jiang, D.; Xu, X.; Wang, P. Valorization of wheat bran arabinoxylan: A review on nutritional and materials perspectives. Grain Oil Sci. Technol. 2024, 7, 196–208. [Google Scholar] [CrossRef]
- Falck, P.; Aronsson, A.; Grey, C.; Stålbrand, H.; Karlsson, E.N.; Adlercreutz, P. Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase. Bioresour. Technol. 2014, 174, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Mense, A.L.; Brewer, L.R.; Shi, Y.-C. Wheat bran arabinoxylans: Chemical structure, extraction, properties, health benefits, and uses in foods. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13366. [Google Scholar] [CrossRef]
- Zhang, Z.; Smith, C.; Li, W. Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Res. Int. 2014, 65, 423–436. [Google Scholar] [CrossRef]
- Kaur, A.; Yadav, M.P.; Singh, B.; Bhinder, S.; Simon, S.; Singh, N. Isolation and characterization of arabinoxylans from wheat bran and study of their contribution to wheat flour dough rheology. Carbohydr. Polym. 2019, 221, 1606–1613. [Google Scholar] [CrossRef]
- Buksa, K.; Ziobro, R.; Nowotna, A.; Praznik, W.; Gambuś, H. Isolation, modification and characterization of soluble arabinoxylan fractions from rye grain. Eur. Food Res. Technol. 2012, 235, 385–395. [Google Scholar] [CrossRef]
- Dervilly, G.; Saulnier, L.; Roger, P.; Thibault, J.F. Isolation of homogeneous fractions from wheat water-soluble arabinoxylans. Influence of the structure on their macromolecular characteristics. J. Agric. Food Chem. 2000, 48, 270–278. [Google Scholar] [CrossRef]
- Kweon, M.; Slade, L.; Levine, H. Solvent retention capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding—A review. Cereal Chem. 2011, 88, 537–552. [Google Scholar] [CrossRef]
- Baik, B.K.; Czuchajowska, Z.; Pomeranz, Y. Comparison of polyphenol oxidase activities in wheats and flours from Australian and US cultivars. J. Cereal Sci. 1994, 19, 291–296. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, M.; Li, J.; Wen, S.; Bi, C.; Zhao, H.; Wei, C.; Chen, Z.; Yu, J.; Shi, X.; et al. Identification and validation of stable quantitative trait loci for SDS-sedimentation volume in common wheat (Triticum aestivum L.). Front. Plant Sci. 2021, 12, 747775. [Google Scholar] [CrossRef]
- Guo, X.-N.; Yang, S.; Zhu, K.-X. Impact of arabinoxylan with different molecular weight on the thermo-mechanical, rheological, water mobility and microstructural characteristics of wheat dough. Int. J. Food Sci. Technol. 2018, 53, 2150–2158. [Google Scholar]
- Wang, M.; van Vliet, T.; Hamer, R.J. How gluten properties are affected by pentosans. J. Cereal Sci. 2004, 39, 395–402. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, F.; Wang, Y.; Li, J.; Teng, C.; Wang, C.; Li, X. Effects of different molecular weight water extractable arabinoxylans on the physicochemical properties and structure of wheat bran. J. Food Sci. Technol. 2019, 56, 340–349. [Google Scholar] [PubMed]
- Dhaka, V.; Khatkar, B. Influence of gluten addition on rheological, pasting, thermal, textural properties and bread making quality of wheat varieties. Qual. Assur. Saf. Crop Foods 2015, 7, 239–249. [Google Scholar] [CrossRef]
- Goesaert, H.; Brijs, K.; Veraverbeke, W.S.; Courtin, C.M.; Gebruers, K.; Delcour, J.A. Wheat flour constituents: How they impact bread quality, and how to impact their functionality. Trends Food Sci. Technol. 2005, 16, 12–30. [Google Scholar] [CrossRef]
- Huang, M.; Bai, J.; Buccato, D.G.; Zhang, J.; He, Y.; Zhu, Y.; Yang, Z.; Xiao, X.; Daglia, M. Cereal-derived water-unextractable arabinoxylans: Structure feature, effects on baking products and human health. Foods 2024, 13, 2369. [Google Scholar] [CrossRef]
- Frederix, S.A.; Van Hoeymissen, K.E.; Courtin, C.M.; Delcour, J.A. Water-extractable and water-unextractable arabinoxylans affect gluten agglomeration behavior during wheat flour gluten−starch separation. J. Agric. Food Chem. 2004, 52, 7950–7956. [Google Scholar]
- Hong, J.; An, D.; Li, L.; Liu, C.; Li, M.; Buckow, R.; Zheng, X.; Bian, K. Structural, rheological and gelatinization properties of wheat starch granules separated from different noodle-making process. J. Cereal Sci. 2020, 91, 102897. [Google Scholar] [CrossRef]
- Arif, S.; Ahmed, M.; Chaudhry, Q.; Hasnain, A. Effects of water extractable and unextractable pentosans on dough and bread properties of hard wheat cultivars. LWT-Food Sci. Technol. 2018, 97, 736–742. [Google Scholar]
- Rocchetti, G.; Lucini, L.; Chiodelli, G.; Giuberti, G.; Montesano, D.; Masoero, F.; Trevisan, M. Impact of boiling on free and bound phenolic profile and antioxidant activity of commercial gluten-free pasta. Food Res. Int. 2017, 100, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Izydorczyk, M.S.; Biliaderis, C.G. Cereal arabinoxylans: Advances in structure and physicochemical properties. Carbohydr. Polym. 1995, 28, 33–48. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C. Synthesis and properties of feruloyl corn bran arabinoxylan esters. Int. J. Cosmet. Sci. 2016, 38, 238–245. [Google Scholar] [CrossRef]
Bran Source | Content (%) | ||
---|---|---|---|
TAX | WUAX | WEAX | |
GS | 11.25 b | 11.14 b | 0.11 ab |
HJ | 12.19 c | 12.05 c | 0.14 b |
JM | 11.15 a | 11.04 a | 0.10 a |
Bran Source | Extracted AX | Relative Area of Each Sugar (%) | ||||
---|---|---|---|---|---|---|
Arabinose | Xylose | Glucose | Galactose | A/X Ratio | ||
GS | TAX | 28.01 | 56.10 | 13.02 | 2.87 | 0.50 |
WUAX | 23.97 | 67.00 | 7.07 | 1.96 | 0.36 | |
WEAX | 22.29 | 59.59 | 16.00 | 2.12 | 0.37 | |
HJ | TAX | 31.35 | 55.51 | 9.51 | 3.63 | 0.56 |
WUAX | 27.09 | 59.67 | 10.85 | 2.40 | 0.45 | |
WEAX | 20.19 | 46.17 | 30.07 | 3.57 | 0.44 | |
JM | TAX | 25.79 | 61.85 | 9.69 | 2.67 | 0.42 |
WUAX | 23.82 | 68.43 | 5.65 | 2.11 | 0.35 | |
WEAX | 20.54 | 48.14 | 26.80 | 4.51 | 0.43 |
Bran Source | Added AX | Volume at Different Sedimentation Time (mL) | Slope | ||
---|---|---|---|---|---|
20 min | 40 min | 60 min | |||
- | None | 71.5 ± 0.7 b | 62.5 ± 0.7 c | 56.3 ± 0.4 c | 0.21 |
GS | TAX | 70.8 ± 1.8 ab | 62.0 ± 0.0 bc | 56.0 ± 0.0 c | 0.21 |
WUAX | 71.3 ± 0.4 b | 62.3 ± 1.1 c | 56.3 ± 0.4 c | 0.21 | |
WEAX | 71.3 ± 1.1 b | 61.8 ± 1.1 bc | 56.0 ± 0.7 c | 0.21 | |
HJ | TAX | 69.5 ± 0.7 a | 59.8 ± 1.8 a | 55.3 ± 1.8 bc | 0.21 |
WUAX | 69.8 ± 0.4 ab | 59.8 ± 0.4 a | 54.8 ± 0.4 abc | 0.22 | |
WEAX | 70.3 ± 0.4 ab | 60.0 ± 0.0 a | 54.8 ± 0.4 abc | 0.22 | |
JM | TAX | 70.3 ± 1.1 ab | 60.3 ± 0.4 ab | 54.8 ± 1.1 abc | 0.22 |
WUAX | 69.8 ± 0.4 ab | 59.3 ± 0.4 a | 54.0 ± 0.0 ab | 0.23 | |
WEAX | 70.5 ± 1.4 ab | 59.5 ± 0.0 a | 53.5 ± 0.7 a | 0.24 |
Bran Source | Added AX | Water Addition (g) | Resistance (N) | Extensibility (mm) | R/E |
---|---|---|---|---|---|
- | None | 32.2 | 1.09 ± 0.02 bc | 6.33 ± 0.09 b | 0.17 |
GS | TAX | 34.3 | 1.20 ± 0.03 e | 6.57 ± 0.15 d | 0.18 |
WUAX | 34.6 | 1.22 ± 0.07 ef | 6.36 ± 0.15 b | 0.19 | |
WEAX | 33.4 | 1.19 ± 0.01 de | 6.42 ± 0.23 c | 0.19 | |
HJ | TAX | 34.9 | 1.13 ± 0.03 bc | 6.63 ± 0.09 e | 0.17 |
WUAX | 35.2 | 1.27 ± 0.03 f | 6.45 ± 0.14 c | 0.20 | |
WEAX | 33.0 | 0.93 ± 0.01 a | 6.60 ± 0.20 de | 0.14 | |
JM | TAX | 34.1 | 1.08 ± 0.01 b | 6.62 ± 0.26 de | 0.16 |
WUAX | 34.2 | 1.14 ± 0.01 cd | 6.26 ± 0.11 a | 0.18 | |
WEAX | 33.7 | 1.08 ± 0.01 b | 6.77 ± 0.14 f | 0.16 |
Bran Source | Added AX | Turbidity of Cooked Water (ΔA h−1 g Flour−1) | Weight Gain (%) |
---|---|---|---|
- | None | 0.42 ± 0.00 ab | 133.2 ± 0.3 a |
GS | TAX | 0.73 ± 0.01 e | 147.3 ± 0.2 h |
WUAX | 0.41 ± 0.00 a | 142.4 ± 4.7 f | |
WEAX | 0.47 ± 0.00 c | 143.6 ± 2.2 g | |
HJ | TAX | 1.01 ± 0.00 f | 139.7 ± 2.8 c |
WUAX | 0.47 ± 0.01 c | 138.2 ± 2.8 b | |
WEAX | 0.61 ± 0.01 d | 141.7 ± 0.4 e | |
JM | TAX | 0.61 ± 0.01 d | 140.4 ± 0.7 d |
WUAX | 0.43 ± 0.00 b | 139.6 ± 1.0 c | |
WEAX | 0.48 ± 0.01 d | 138.1 ± 0.9 b |
Bran Source | Added AX | Textural Parameter | |||
---|---|---|---|---|---|
Firmness (N) | Adhesiveness (mJ) | Springiness (Ratio) | Chewiness (mJ) | ||
- | None | 16.1 ± 0.2 h | 0.31 ± 0.03 e | 0.88 ± 0.01 d | 13.1 ± 0.2 g |
GS | TAX | 13.9 ± 0.3 c | 0.28 ± 0.02 d | 0.86 ± 0.01 bc | 11.7 ± 0.3 c |
WUAX | 14.3 ± 0.4 e | 0.30 ± 0.03 e | 0.84 ± 0.01 a | 11.8 ± 0.2 c | |
WEAX | 12.3 ± 0.7 a | 0.26 ± 0.02 bc | 0.85 ± 0.01 ab | 10.0 ± 0.4 a | |
HJ | TAX | 14.1 ± 0.7 d | 0.27 ± 0.01 cd | 0.85 ± 0.01 ab | 12.1 ± 0.5 d |
WUAX | 16.5 ± 0.4 i | 0.35 ± 0.02 f | 0.86 ± 0.01 bc | 14.1 ± 0.3 h | |
WEAX | 12.4 ± 0.3 a | 0.23 ± 0.02 a | 0.86 ± 0.01 bc | 9.9 ± 0.4 a | |
JM | TAX | 14.5 ± 0.5 f | 0.28 ± 0.02 d | 0.85 ± 0.01 ab | 12.6 ± 0.3 e |
WUAX | 15.2 ± 0.1 g | 0.31 ± 0.03 e | 0.87 ± 0.01 cd | 12.8 ± 0.2 f | |
WEAX | 12.7 ± 0.4 b | 0.25 ± 0.01 b | 0.88 ± 0.01 d | 10.8 ± 0.4 b |
Added AX | TPC (mg GAE/100 g) | ABTS (mg TE/100 g) | |||
---|---|---|---|---|---|
Fresh Noodle | Cooked Noodle | Fresh Noodle | Cooked Noodle | ||
None | 255.4 ± 2.7 bc | 126.6 ± 6.2 ab | 1003.0 ± 8.8 a | 454.5 ± 3.2 bc | |
TAX | 267.3 ± 5.3 de | 138.4 ± 2.6 de | 1222.4 ± 18.2 g | 431.7 ± 9.4 b | |
GS | WUAX | 255.0 ± 5.2 bc | 131.0 ± 4.9 bcd | 1111.1 ± 2.9 cd | 418.0 ± 8.1 ab |
WEAX | 260.1 ± 5.3 cd | 127.8 ± 4.8 abc | 1180.7 ± 9.3 ef | 484.9 ± 6.0 cd | |
TAX | 246.4 ± 2.1 ab | 127.4 ± 2.7 ab | 1118.6 ± 16.4 cd | 523.7 ± 7.5 e | |
HJ | WUAX | 240.3 ± 8.2 a | 122.2 ± 5.8 a | 1060.2 ± 24.6 b | 383.2 ± 21.4 a |
WEAX | 304.0 ± 10.3 f | 163.5 ± 0.6 f | 1144.0 ± 11.4 de | 680.3 ± 23.3 f | |
TAX | 260.1 ± 4.4 cd | 135.1 ± 3.1 cde | 1086.8 ± 4.8 bc | 491.9 ± 10.2 de | |
JM | WUAX | 240.6 ± 3.4 a | 125.9 ± 3.4 ab | 1053.2 ± 9.9 b | 390.7 ± 14.8 a |
WEAX | 278.3 ± 7.1 e | 140.3 ± 3.4 e | 1185.5 ± 14.4 fg | 500.9 ± 4.0 de |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Kim, B.; An, J.; Kweon, M. Comparative Effects of Total, Water-Extractable, and Water-Unextractable Arabinoxylans from Wheat Bran on Dough and Noodle Properties. Processes 2025, 13, 3051. https://doi.org/10.3390/pr13103051
Han H, Kim B, An J, Kweon M. Comparative Effects of Total, Water-Extractable, and Water-Unextractable Arabinoxylans from Wheat Bran on Dough and Noodle Properties. Processes. 2025; 13(10):3051. https://doi.org/10.3390/pr13103051
Chicago/Turabian StyleHan, Hyeonsu, Bomi Kim, Jaeha An, and Meera Kweon. 2025. "Comparative Effects of Total, Water-Extractable, and Water-Unextractable Arabinoxylans from Wheat Bran on Dough and Noodle Properties" Processes 13, no. 10: 3051. https://doi.org/10.3390/pr13103051
APA StyleHan, H., Kim, B., An, J., & Kweon, M. (2025). Comparative Effects of Total, Water-Extractable, and Water-Unextractable Arabinoxylans from Wheat Bran on Dough and Noodle Properties. Processes, 13(10), 3051. https://doi.org/10.3390/pr13103051