G20 Countries and Sustainable Development: Do They Live up to Their Promises on CO2 Emissions?
Abstract
:1. Introduction
2. The G20 and Its Environmental Agenda
2.1. The G20 and the Behavior of Its CO2 Emissions over Time
2.2. Climate Policies in the G20 Countries
2.3. Literature Review on the Modeling Approaches to CO2 Emissions in the G20
3. Methods
3.1. The Multilevel Perspective
3.2. Dataset Design
3.3. Empirical Modeling
4. Results
5. Discussion
6. Final Considerations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scholz, I.; Brandi, C. Implementing the 2030 Agenda for Sustainable Development: Achievements and Limitations of the G20 Presidency in 2017. Glob. Summitry 2017, 3, 156–175. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Minx, J.C.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.; et al. Climate Change 2014 Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Sarkodie, S.A.; Strezov, V. A Review on Environmental Kuznets Curve Hypothesis Using Bibliometric and Meta-Analysis. Sci. Total Environ. 2019, 649, 128–145. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Li, D.D.; Rishi, M. Determinants of CO2 Emission for Post-Soviet Union Independent Countries. Clim. Policy 2017, 17, 591–615. [Google Scholar] [CrossRef]
- Mahdi Ziaei, S. Effects of Financial Development Indicators on Energy Consumption and CO2 Emission of European, East Asian and Oceania Countries. Renew. Sustain. Energy Rev. 2015, 42, 752–759. [Google Scholar] [CrossRef]
- Mar’I, M.; Seraj, M.; Tursoy, T. The Role of Fiscal Policy in G20 Countries in the Context of the Environmental Kuznets Curve Hypothesis. Energies 2023, 16, 2215. [Google Scholar] [CrossRef]
- Shahbaz, M.; Hye, Q.M.A.; Tiwari, A.K.; Leitão, N.C. Economic Growth, Energy Consumption, Financial Development, International Trade and CO2 Emissions in Indonesia. Renew. Sustain. Energy Rev. 2013, 25, 109–121. [Google Scholar] [CrossRef]
- Tripathy, P.; Khatua, M.; Behera, P.; Satpathyy, L.D.; Jena, P.K.; Mishra, B.R. Dynamic Link between Bilateral FDI, the Quality of Environment and Institutions: Evidence from G20 Countries. Environ. Sci. Pollut. Res. 2022, 29, 27150–27171. [Google Scholar] [CrossRef]
- Courgeau, D. (Ed.) Methodology and Epistemology of Multilevel Analysis: Approaches from Different Social Sciences; Methodos Series; Kluwer Academic: Dordrecht, The Netherlands, 2003; ISBN 978-1-4020-1475-8. [Google Scholar]
- Mathieu, J.E.; Chen, G. The Etiology of the Multilevel Paradigm in Management Research. J. Manag. 2011, 37, 610–641. [Google Scholar] [CrossRef]
- Braun, M.T.; Kozlowski, S.W.J.; Kuljanin, G. Multilevel Theory, Methods, and Analyses in Management. In Oxford Research Encyclopedia of Business and Management; Oxford University Press: Oxford, UK, 2021; ISBN 978-0-19-022485-1. [Google Scholar]
- Kozlowski, S.W.J.; Chao, G.T.; Grand, J.A.; Braun, M.T.; Kuljanin, G. Advancing Multilevel Research Design: Capturing the Dynamics of Emergence. Organ. Res. Methods 2013, 16, 581–615. [Google Scholar] [CrossRef]
- Mathieu, J.E.; Aguinis, H.; Culpepper, S.A.; Chen, G. “Understanding and Estimating the Power to Detect Cross-Level Interaction Effects in Multilevel Modeling”: Correction to Mathieu, Aguinis, Culpepper, and Chen (2012). J. Appl. Psychol. 2012, 97, 981. [Google Scholar] [CrossRef]
- Kirton, J.J. G20 Governance for a Globalized World; Routledge: London, UK, 2016; ISBN 978-1-317-13111-3. [Google Scholar]
- Cooper, A.F. Ramesh Thakur the Group of Twenty (G20); Routledge: London, UK, 2013; ISBN 978-0-203-07123-6. [Google Scholar]
- Hajnal, P.I. The G8 System and the G20; Routledge: London, UK, 2016; ISBN 978-1-317-03091-1. [Google Scholar]
- Cooper, A.F. The G20 as an Improvised Crisis Committee and/or a Contested ‘Steering Committee’ for the World. Int. Aff. 2010, 86, 741–757. [Google Scholar] [CrossRef]
- Fadeeva, Z.; Van Berkel, R. Unlocking Circular Economy for Prevention of Marine Plastic Pollution: An Exploration of G20 Policy and Initiatives. J. Environ. Manag. 2021, 277, 111457. [Google Scholar] [CrossRef]
- Nansai, K.; Tohno, S.; Chatani, S.; Kanemoto, K.; Kagawa, S.; Kondo, Y.; Takayanagi, W.; Lenzen, M. Consumption in the G20 Nations Causes Particulate Air Pollution Resulting in Two Million Premature Deaths Annually. Nat. Commun. 2021, 12, 6286. [Google Scholar] [CrossRef]
- Lee, M.; Ser, Y.; Selvachandran, G.; Thong, P.; Cuong, L.; Son, L.; Tuan, N.; Gerogiannis, V. A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models. Mathematics 2022, 10, 1329. [Google Scholar] [CrossRef]
- Shah, W.U.H.; Hao, G.; Yan, H.; Zhu, N.; Yasmeen, R.; Dincă, G. Role of Renewable, Non-Renewable Energy Consumption and Carbon Emission in Energy Efficiency and Productivity Change: Evidence from G20 Economies. Geosci. Front. 2024, 15, 101631. [Google Scholar] [CrossRef]
- Nath, A.J.; Lal, R.; Das, A.K. Fired Bricks: CO2 Emission and Food Insecurity. Glob. Chall. 2018, 2, 1700115. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Myers, S.S. Impact of Anthropogenic CO2 Emissions on Global Human Nutrition. Nat. Clim. Change 2018, 8, 834–839. [Google Scholar] [CrossRef]
- Houghton, R.A.; Nassikas, A.A. Negative Emissions from Stopping Deforestation and Forest Degradation, Globally. Glob. Change Biol. 2018, 24, 350–359. [Google Scholar] [CrossRef]
- Waluyo, T.; Digdowiseiso, K.; Putera, E.A.B.; Sugiyanto, E. The Costs of Reduction Emission from Deforestation and Forest Degradation. Concepts Issues. J. Environ. Manag. Tour. 2019, 10, 63. [Google Scholar] [CrossRef]
- Kim, S.; Byun, J.; Park, H.; Lee, N.; Han, J.; Lee, J. Energy-Efficient Thermal Waste Treatment Process with No CO2 Emission: A Case Study of Waste Tea Bag. Energy 2022, 241, 122876. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Guzmán, C. Reducing CO2 Emissions from Drinking Water Treatment Plants: A Shadow Price Approach. Appl. Energy 2018, 210, 623–631. [Google Scholar] [CrossRef]
- Puntoon, W.; Tarkhamtham, P.; Tansuchat, R. The Impacts of Economic Growth, Industrial Production, and Energy Consumption on CO2 Emissions: A Case Study of Leading CO2 Emitting Countries. Energy Rep. 2022, 8, 414–419. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Zhang, X.; Tang, K. Whether China’s Industrial Sectors Make Efforts to Reduce CO2 Emissions from Production?—A Decomposed Decoupling Analysis. Energy 2018, 160, 796–809. [Google Scholar] [CrossRef]
- Churchill, S.A.; Pan, L.; Paramati, S.R. Air Pollution and Tourism: Evidence from G20 Countries. J. Travel. Res. 2022, 61, 223–234. [Google Scholar] [CrossRef]
- Yao, X.; Tang, X. Does Financial Structure Affect CO2 Emissions? Evidence from G20 Countries. Financ. Res. Lett. 2021, 41, 101791. [Google Scholar] [CrossRef]
- Nascimento, L.; Kuramochi, T.; Iacobuta, G.; Den Elzen, M.; Fekete, H.; Weishaupt, M.; Van Soest, H.L.; Roelfsema, M.; Vivero-Serrano, G.D.; Lui, S.; et al. Twenty Years of Climate Policy: G20 Coverage and Gaps. Clim. Policy 2022, 22, 158–174. [Google Scholar] [CrossRef]
- Roelfsema, M.; Fekete, H.; Höhne, N.; Den Elzen, M.; Forsell, N.; Kuramochi, T.; De Coninck, H.; Van Vuuren, D.P. Reducing Global GHG Emissions by Replicating Successful Sector Examples: The ‘Good Practice Policies’ Scenario. Clim. Policy 2018, 18, 1103–1113. [Google Scholar] [CrossRef]
- Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement Climate Proposals Need a Boost to Keep Warming Well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef]
- Schreurs, M.A. The Paris Climate Agreement and the Three Largest Emitters: China, the United States, and the European Union. PaG 2016, 4, 219–223. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Y. Evolution of Blue Carbon Management Policies in China: Review, Performance and Prospects. Clim. Policy 2023, 23, 254–267. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Q.; Zhang, C. Central–Local Governance Gaps: The Evolving Differentiation of Climate Policies in China. Sustain. Sci. 2022, 17, 1757–1766. [Google Scholar] [CrossRef]
- Gao, D.; Wang, G. Does the Opening of High-Speed Rails Improve Urban Carbon Efficiency? Evidence from a Spatial Difference-in-Difference Method. Environ. Sci. Pollut. Res. 2023, 30, 101873–101887. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Feng, H.; Cao, Y. The Spatial Spillover Effect of Innovative City Policy on Carbon Efficiency: Evidence from China. Singap. Econ. Rev. 2024, 1–23. [Google Scholar] [CrossRef]
- Pan, A.; Zhang, W.; Shi, X.; Dai, L. Climate Policy and Low-Carbon Innovation: Evidence from Low-Carbon City Pilots in China. Energy Econ. 2022, 112, 106129. [Google Scholar] [CrossRef]
- Urpelainen, J.; Van De Graaf, T. United States Non-Cooperation and the Paris Agreement. Clim. Policy 2018, 18, 839–851. [Google Scholar] [CrossRef]
- Ogle, S.M.; Conant, R.T.; Fischer, B.; Haya, B.K.; Manning, D.T.; McCarl, B.A.; Zelikova, T.J. Policy Challenges to Enhance Soil Carbon Sinks: The Dirty Part of Making Contributions to the Paris Agreement by the United States. Carbon. Manag. 2023, 14, 2268071. [Google Scholar] [CrossRef]
- Busch, T.; Judick, L. Climate Change—That Is Not Real! A Comparative Analysis of Climate-Sceptic Think Tanks in the USA and Germany. Clim. Change 2021, 164, 18. [Google Scholar] [CrossRef]
- Funk, C.; Kennedy, B. The Politics of Climate. Pew Researsh Center, 4 October 2016. [Google Scholar]
- Cory, J.; Lerner, M.; Osgood, I. Supply Chain Linkages and the Extended Carbon Coalition. Am. J. Political Sci. 2021, 65, 69–87. [Google Scholar] [CrossRef]
- Infrastructure Investment and Jobs Act; Public Law No: 117-58; USAGov: Washington, DC, USA, 2021.
- Inflation Reduction Act; Internal Revenue Service: Washington, DC, USA, 2022.
- Upadhyaya, P.; Shrivastava, M.K.; Gorti, G.; Fakir, S. Capacity Building for Proportionate Climate Policy: Lessons from India and South Africa. Int. Political Sci. Rev. 2021, 42, 130–145. [Google Scholar] [CrossRef]
- Agarwal, S.; Pahuja, N. Green Growth and Climate Change Mitigation in India; Global Green Growth Institute: Seoul, Republic of Korea, 2015. [Google Scholar]
- Zheng, S.; Pu, Y.; Lu, H.; Zhang, J.J.; Wang, D.; Ma, X. Global Climate Policy Effectiveness: A Panel Data Analysis. J. Clean. Prod. 2023, 412, 137321. [Google Scholar] [CrossRef]
- Townshend, T. India’s Climate Change Laws. Climate Home News, 19 February 2013. [Google Scholar]
- Saran, S. India’s Climate Change Policy: Towards a Better Future; Ministry of External Affairs, Government of India: New Delhi, India, 2019.
- den Elzen, M.; Kuramochi, T.; Höhne, N.; Cantzler, J.; Esmeijer, K.; Fekete, H.; Fransen, T.; Keramidas, K.; Roelfsema, M.; Sha, F.; et al. Are the G20 Economies Making Enough Progress to Meet Their NDC Targets? Energy Policy 2019, 126, 238–250. [Google Scholar] [CrossRef]
- UNEP Copenhagen Climate Centre (UNEP-CCC). Emissions Gap Report 2020; Kuramochi, T., den Elzen, M., Peters, G.P., Eds.; Chapter 2; United Nations Environment Programme: Nairobi, Kenya, 2020; pp. 3–22. [Google Scholar]
- Le Quéré, C.; Korsbakken, J.I.; Wilson, C.; Tosun, J.; Andrew, R.; Andres, R.J.; Canadell, J.G.; Jordan, A.; Peters, G.P.; Van Vuuren, D.P. Drivers of Declining CO2 Emissions in 18 Developed Economies. Nat. Clim. Change 2019, 9, 213–217. [Google Scholar] [CrossRef]
- Mundaca, L.; Markandya, A. Assessing Regional Progress towards a ‘Green Energy Economy. Appl. Energy 2016, 179, 1372–1394. [Google Scholar] [CrossRef]
- Eskander, S.M.S.U.; Fankhauser, S. Reduction in Greenhouse Gas Emissions from National Climate Legislation. Nat. Clim. Change 2020, 10, 750–756. [Google Scholar] [CrossRef]
- Compston, H.; Bailey, I. Climate Policy Strength Compared: China, the US, the EU, India, Russia, and Japan. Clim. Policy 2016, 16, 145–164. [Google Scholar] [CrossRef]
- Green, J.F. Does Carbon Pricing Reduce Emissions? A Review of Ex-Post Analyses. Environ. Res. Lett. 2021, 16, 043004. [Google Scholar] [CrossRef]
- Chen, J.; Xian, Q.; Zhou, J.; Li, D. Impact of Income Inequality on CO2 Emissions in G20 Countries. J. Environ. Manag. 2020, 271, 110987. [Google Scholar] [CrossRef] [PubMed]
- Habib, Y.; Xia, E.; Hashmi, S.H.; Ahmed, Z. The Nexus between Road Transport Intensity and Road-Related CO2 Emissions in G20 Countries: An Advanced Panel Estimation. Environ. Sci. Pollut. Res. 2021, 28, 58405–58425. [Google Scholar] [CrossRef]
- Uddin, M.; Rashid, M.H.U.; Ahamad, S.; Ehigiamusoe, K.U. Impact of Militarization, Energy Consumption, and ICT on CO2 Emissions in G20 Countries. Environ. Dev. Sustain. 2023, 26, 11771–11793. [Google Scholar] [CrossRef]
- Kong, Y.; Feng, C.; Guo, L. Peaking Global and G20 Countries’ CO2 Emissions under the Shared Socio-Economic Pathways. Int. J. Environ. Res. Public Health 2022, 19, 11076. [Google Scholar] [CrossRef]
- Alotaibi, A.A.; Alajlan, N. Using Quantile Regression to Analyze the Relationship between Socioeconomic Indicators and Carbon Dioxide Emissions in G20 Countries. Sustainability 2021, 13, 7011. [Google Scholar] [CrossRef]
- Hussain, A.; Khan, F.; Albalawi, O. Modeling and Monitoring CO2 Emissions in G20 Countries: A Comparative Analysis of Multiple Statistical Models. Sustainability 2024, 16, 6114. [Google Scholar] [CrossRef]
- Deng, S.; Deng, X.; Chen, H.; Qin, Z. Estimating Fossil CO2 Emissions from COVID-19 Post-Pandemic Recovery in G20: A Machine Learning Approach. J. Clean. Prod. 2024, 442, 140875. [Google Scholar] [CrossRef]
- Wen, Y.; Song, P.; Yang, D.; Gao, C. Does Governance Impact on the Financial Development-Carbon Dioxide Emissions Nexus in G20 Countries. PLoS ONE 2022, 17, e0273546. [Google Scholar] [CrossRef] [PubMed]
- Liza, F.F.; Ahmad, F.; Wei, L.; Ahmed, K.; Rauf, A. Environmental Technology Development and Renewable Energy Transition Role toward Carbon-Neutrality Goals in G20 Countries. Clean Technol. Environ. Policy 2024, 1–22. [Google Scholar] [CrossRef]
- Sheraz, M.; Deyi, X.; Ahmed, J.; Ullah, S.; Ullah, A. Moderating the Effect of Globalization on Financial Development, Energy Consumption, Human Capital, and Carbon Emissions: Evidence from G20 Countries. Environ. Sci. Pollut. Res. 2021, 28, 35126–35144. [Google Scholar] [CrossRef]
- Demirtaş, F.; Kaya, E.; Bekun, F.V.; Çitil, M.; Torusdağ, M.; Barut, A. Do Institutional Quality and Military Expenditure of G20 Countries Affect Green Investments? Energy Environ. 2023. [Google Scholar] [CrossRef]
- Viglioni, M.T.D.; Calegario, C.L.L.; Viglioni, A.C.D.; Bruhn, N.C.P. Enforcement of Intellectual Property Rights, Foreign Direct Investment and Carbon Dioxide Emissions in G20 Members. 2023. Available online: https://ssrn.com/abstract=4678558 (accessed on 9 September 2024).
- Rabe-Hesketh, S.; Skrondal, A.; Rabe-Hesketh, S. Continuous Responses. In Multilevel and Longitudinal Modeling Using Stata/Sophia Rabe-Hesketh, Anders Skrondal, 5th ed.; Stata Press: College Station, TX, USA, 2022; ISBN 978-1-59718-136-5. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; MIT Press: Cambridge, MA, USA, 2010; ISBN 978-0-262-23258-6. [Google Scholar]
- Goldstein, H.; Browne, W.; Rasbash, J. Multilevel Modelling of Medical Data. Stat. Med. 2002, 21, 3291–3315. [Google Scholar] [CrossRef]
- Medeiros, E.; Valente, B.; Gonçalves, V.; Castro, P. How Impactful Are Public Policies on Environmental Sustainability? Debating the Portuguese Case of PO SEUR 2014–2020. Sustainability 2022, 14, 7917. [Google Scholar] [CrossRef]
- Nunes, A.; Coelho Junior, L.; Abrahão, R.; Santos Júnior, E.; Simioni, F.; Rotella Junior, P.; Rocha, L. Public Policies for Renewable Energy: A Review of the Perspectives for a Circular Economy. Energies 2023, 16, 485. [Google Scholar] [CrossRef]
- Neves, S.A.; Marques, A.C.; Patrício, M. Determinants of CO2 Emissions in European Union Countries: Does Environmental Regulation Reduce Environmental Pollution? Econ. Anal. Policy 2020, 68, 114–125. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R. Effects of Environmental Regulation on CO2 Emissions: An Empirical Analysis of 282 Cities in China. Sustain. Prod. Consum. 2022, 29, 259–272. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, Y.; Meng, F.; Chen, J.; Liu, G.; Song, M. Impacts of Local Public Expenditure on CO2 Emissions in Chinese Cities: A Spatial Cluster Decomposition Analysis. Resour. Conserv. Recycl. 2021, 164, 105217. [Google Scholar] [CrossRef]
- Hongqiao, H.; Xinjun, W.; Ahmad, M.; Zhonghua, L. Does Innovation in Environmental Technologies Curb CO2 Emissions? Evidence From Advanced Time Series Techniques. Front. Environ. Sci. 2022, 10, 930521. [Google Scholar] [CrossRef]
- Mahmood, H.; Alkhateeb, T.T.Y.; Furqan, M. Exports, Imports, Foreign Direct Investment and CO2 Emissions in North Africa: Spatial Analysis. Energy Rep. 2020, 6, 2403–2409. [Google Scholar] [CrossRef]
- Alkhateeb, T.T.Y.; Mahmood, H.; Altamimi, N.N.; Furqan, M. Role of Education and Economic Growth on the CO2 Emissions in Saudi Arabia. JESI 2020, 8, 195–209. [Google Scholar] [CrossRef]
- Eyuboglu, K.; Uzar, U. A New Perspective to Environmental Degradation: The Linkages between Higher Education and CO2 Emissions. Environ. Sci. Pollut. Res. 2021, 28, 482–493. [Google Scholar] [CrossRef]
- Zafar, M.W.; Saleem, M.M.; Destek, M.A.; Caglar, A.E. The Dynamic Linkage between Remittances, Export Diversification, Education, Renewable Energy Consumption, Economic Growth, and CO2 Emissions in Top Remittance-receiving Countries. Sustain. Dev. 2022, 30, 165–175. [Google Scholar] [CrossRef]
- Jawadi, F.; Rozin, P.; Bourghelle, D. Insights into CO2 Emissions in Europe in the Context of COVID-19: A Panel Data Analysis. Int. Econ. 2023, 173, 164–174. [Google Scholar] [CrossRef]
- Patel, N.; Mehta, D. The Asymmetry Effect of Industrialization, Financial Development and Globalization on CO2 Emissions in India. Int. J. Thermofluids 2023, 20, 100397. [Google Scholar] [CrossRef]
- Rickels, W.; Meier, F.; Quaas, M. The Historical Social Cost of Fossil and Industrial CO2 Emissions. Nat. Clim. Change 2023, 13, 742–747. [Google Scholar] [CrossRef]
- Arvin, M.B.; Pradhan, R.P.; Nair, M.S.; Dabir-Alai, P. Exploring the Temporal Links between Foreign Aid, Institutional Quality, and CO2 Emissions for Poorer Countries. Energy Build. 2022, 270, 112287. [Google Scholar] [CrossRef]
- Asampana Asosega, K.; Adebanji, A.O.; Aidoo, E.N.; Owusu-Dabo, E. Application of Hierarchical/Multilevel Models and Quality of Reporting (2010–2020): A Systematic Review. Sci. World J. 2024, 2024, 1–9. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Banja, M.; Solazzo, E.; Muntean, M.; Schaaf, E.; Pagani, F.; Monforti-Ferrario, F.; Olivier, J.G.J.; Quadrelli, R.; et al. CO2 Emissions of All World Countries; JRC Science for Policy Report; European Commission: Brussels, Belgium, 2022; p. 261. [Google Scholar]
- Llanos, C.; Kristjanpoller, W.; Michell, K.; Minutolo, M.C. Causal Treatment Effects in Time Series: CO2 Emissions and Energy Consumption Effect on GDP. Energy 2022, 249, 123625. [Google Scholar] [CrossRef]
- Headley, M.G.; Plano Clark, V.L. Multilevel Mixed Methods Research Designs: Advancing a Refined Definition. J. Mix. Methods Res. 2020, 14, 145–163. [Google Scholar] [CrossRef]
- Volpert-Esmond, H.I.; Page-Gould, E.; Bartholow, B.D. Using Multilevel Models for the Analysis of Event-Related Potentials. Int. J. Psychophysiol. 2021, 162, 145–156. [Google Scholar] [CrossRef]
- Goldstein, H. Multilevel Statistical Models. In Wiley Series in Probability and Statistics, 4th ed.; Wiley: Chichester, UK, 2011; ISBN 978-0-470-74865-7. [Google Scholar]
- Quené, H.; Van Den Bergh, H. On Multi-Level Modeling of Data from Repeated Measures Designs: A Tutorial. Speech Commun. 2004, 43, 103–121. [Google Scholar] [CrossRef]
- Humphrey, S.E.; LeBreton, J.M. (Eds.) The Handbook of Multilevel Theory, Measurement, and Analysis, 1st ed.; American Psychological Association: Washington, DC, USA, 2019; ISBN 978-1-4338-3009-9. [Google Scholar]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models. In Analytical methods for social research; Cambridge University Press: Cambridge, MA, USA, 2007; ISBN 978-0-521-86706-1. [Google Scholar]
- O’Connell, A.A.; McCoach, D.B.; Bell, B.A. (Eds.) Multilevel Modeling Methods with Introductory and Advanced Applications. In Quantitative Methods in Education and the Behavioral Sciences: Issues, Research, and Teaching; IAP/Information Age Publishing, Inc.: Charlotte, NC, USA, 2022; ISBN 978-1-64802-872-4. [Google Scholar]
- Bliese, P. Within-Group Agreement, Non-Independence, and Reliability: Implications for Data Aggregation and Analysis. In Multilevel Theory, Research, and Methods in Organizations: Foundations, Extensions, and New Directions; Jossey-Bass: San Francisco, CA, USA, 2000; pp. 349–381. [Google Scholar]
- Silvey, S.D. Statistical Inference; Penguin: Harmondsworth, London, UK, 1970; ISBN 978-0-14-080097-5. [Google Scholar]
- Nakagawa, S.; Schielzeth, H. A General and Simple Method for Obtaining R 2 from Generalized Linear Mixed-effects Models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Johnson, P.C.D. Extension of Nakagawa & Schielzeth’s R 2 GLMM to Random Slopes Models. Methods Ecol. Evol. 2014, 5, 944–946. [Google Scholar] [CrossRef]
- Nakagawa, S.; Johnson, P.C.D.; Schielzeth, H. The Coefficient of Determination R2 and Intra-Class Correlation Coefficient from Generalized Linear Mixed-Effects Models Revisited and Expanded. J. R. Soc. Interface 2017, 14, 20170213. [Google Scholar] [CrossRef]
- Stawski, R.S. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling (2nd Edition). Struct. Equ. Model. A Multidiscip. J. 2013, 20, 541–550. [Google Scholar] [CrossRef]
- Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 Establishing a System for Greenhouse Gas Emission Allowance Trading within the Union and Amending Council Directive 96/61/EC (Text with EEA Relevance). Text with EEA Relevance 2023. 2003. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC040305/ (accessed on 9 September 2024).
- Appunn, K.; Eriksen, F.; Wettengel, J. Germany’s Greenhouse Gas Emissions and Energy Transition Targets. Journalism for the Energy Transition, 11 September 2024. [Google Scholar]
- Regulation (EU) 2023/857 of The European Parliament and of The Council Amending Regulation (EU) 2018/842 on Binding Annual Greenhouse Gas Emission reductions by Member States from 2021 to 2030 Contributing to Climate Action to Meet Commitments under the Paris Agreement, and Regulation (EU) 2018/1999. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC217442/ (accessed on 9 September 2024).
- UK Climate Change Act 2008. Available online: https://www.legislation.gov.uk/ukpga/2008/27/contents (accessed on 9 September 2024).
Reference | Sample Characteristics | Modeling Strategy | Main Findings |
---|---|---|---|
Tripathy et al. [8] | Annual data. | Panel data regression | The authors suggest that bilateral foreign direct investment reduces the intensity of CO2 emissions and strengthens institutional quality in the G20. |
Nansai et al. [19] | Annual data. | Panel data regression | CO2 emissions appear to have an impact on 1.983 million premature deaths, at an average of 67 years, including 78.6 thousand deaths of newborns. |
Churchill et al. [30] | Annual data. | Panel data regression | The growth in CO2 emissions negatively affects international tourist arrivals, and this effect seems to be greater in the more-developed G20 economies. |
Yao and Tang [31] | Annual data. | STIRPAT modeling | The ratio between direct and indirect financing has a negative relationship with per capita carbon emissions in developed countries but is positive in developing economies. Furthermore, the interaction between financial structure and productivity has a positive relationship with carbon emissions in developing countries. |
Gao and Wang [38] | Cross-sectional data from G20 countries. | Spatial difference-in-differences model | The authors suggest positive spatial relationships between emissions between regions and that the opening of high-speed railroads seems to have a positive spillover effect. |
Gao et al. [39] | Cross-sectional data from G20 countries. | Data envelopment nnalysis and spatial difference-in-differences model | The study indicates that the innovative cities policy improves the efficiency of CO2 emissions and has positive spatial spillover effects on the surrounding regions. The spillover effect of the innovative cities policy is more intense in developed, coastal regions and/or those with advanced industrial structures. |
Chen et al. [60] | Annual data. | Quantile regression analysis | A more equal distribution of income favors the reduction in CO2 emissions per capita in developing countries, while in most developed countries, income inequality has little effect on CO2 emissions. |
Habib et al. [61] | Cross-sectional data from G20 countries. | Regression analysis | There seems to be a positive relationship between the intensity of road transport, road passenger transport, and road freight transport in CO2 emissions. Economic growth and urbanization are positively related to CO2 emissions from road transport, while openness to trade and the price of crude oil are negatively related to CO2 emissions. |
Uddin et al. [62] | Annual data. | Panel data regression | Positive relationships between military spending, energy consumption, and information and communication technologies on CO2 emissions. |
Kong et al. [63] | Annual data. | STIRPAT modeling and PLS regression | Looking at shared socioeconomic pathways, there was a suggestion that 13 countries, such as China, the United States, and the United Kingdom, could peak their CO2 emissions by 2050, while six countries, such as Argentina, India, and Saudi Arabia, could not. |
Alotaibi and Alajlan [64] | Annual data. | Panel data regression | Fossil fuel consumption is positively related to CO2 emissions, while urbanization and openness to trade are negatively related. |
Hussain et al. [65] | Annual data. | Classical regression model; quantile regression; panel data regression and multilevel model | Negative relations between renewable energies and CO2 emissions; urbanization has negative relations with CO2 emissions. |
Deng et al. [66] | Annual data. | Linear regression, ensemble modeling, support vector machines, and neural network | The authors suggest that post-pandemic CO2 emissions will be lower than projections prior to the COVID-19 pandemic. However, this reduction is still below the 1.5 °C climate target of the Paris Agreement. |
Wen et al. [67] | Annual data. | Panel data regression | The results suggest a positive relationship between the governance quality indicators and carbon emissions. However, there were negative relationships between financial development accompanied by good governance and carbon emissions. |
Liza et al. [68] | Annual data. | Panel data regression | The result identifies that non-renewable energy, financial development, and the workforce are significant contributors to CO2 emissions. |
Sheraz et al. [69] | Annual data. | Panel data regression | The results indicated a negative relationship between carbon emissions, financial development, and human capital and a positive relationship between carbon emissions, GDP, and energy consumption in the G20. |
Demirtaş et al. [70] | Annual data. | Panel data regression and multilevel model | Institutional quality is positively related to green investments, while military spending is negatively related. |
Viglioni et al. [71] | Annual data. | Multilevel model | Foreign direct investment increases CO2 emissions in G20 countries. |
This study | Annual data. | Multilevel model with time trend | Some G20 countries already have negative inclination rates regarding their CO2 emissions; since the emergence of the G20, the CO2 emissions of the signatory countries have generally continued to rise; as a rule, the speed at which climate policies are proposed does not match the speed at which these countries emit CO2. |
Variable | Min | 1st Q | Median | 3rd Q | Max | Mean | SD |
---|---|---|---|---|---|---|---|
0.0000 | 0.1590 | 0.3860 | 0.6603 | 11.4000 | 0.8263 | 1.451 |
Country | Min | 1st Q | Median | 3rd Q | Max | Mean | SD |
---|---|---|---|---|---|---|---|
ARG | 0.0298 | 0.0677 | 0.1090 | 0.1490 | 0.1910 | 0.1120 | 0.0499 |
AUS | 0.0544 | 0.1320 | 0.2390 | 0.3710 | 0.4140 | 0.2440 | 0.1230 |
BRA | 0.0196 | 0.0738 | 0.1910 | 0.3490 | 0.5550 | 0.2270 | 0.1600 |
CAN | 0.1530 | 0.2970 | 0.4340 | 0.5540 | 0.5900 | 0.4110 | 0.1450 |
CHN | 0.0784 | 0.6880 | 2.0400 | 4.9000 | 11.4000 | 3.4100 | 3.4900 |
DEU | 0.5080 | 0.7950 | 0.9150 | 1.0100 | 1.1100 | 0.8930 | 0.1400 |
FRA | 0.2010 | 0.3310 | 0.3880 | 0.4130 | 0.5360 | 0.3790 | 0.0810 |
GBR | 0.3240 | 0.5420 | 0.5670 | 0.5920 | 0.6570 | 0.5500 | 0.0724 |
IDN | 0.0093 | 0.0270 | 0.1210 | 0.3400 | 0.6560 | 0.1980 | 0.1930 |
IND | 0.0608 | 0.1700 | 0.4100 | 1.0700 | 2.6900 | 0.7620 | 0.7770 |
ITA | 0.0412 | 0.2440 | 0.3600 | 0.4300 | 0.5000 | 0.3230 | 0.1370 |
JPN | 0.1020 | 0.5410 | 0.9360 | 1.2200 | 1.3100 | 0.8660 | 0.4040 |
KOR | 0.0022 | 0.0365 | 0.1720 | 0.4850 | 0.6670 | 0.2610 | 0.2340 |
MEX | 0.0303 | 0.0924 | 0.2970 | 0.4090 | 0.4990 | 0.2680 | 0.1630 |
RUS | 0.4130 | 1.3000 | 1.6100 | 1.8300 | 2.5200 | 1.5400 | 0.5190 |
SAU | 0.0000 | 0.0280 | 0.1820 | 0.3500 | 0.6750 | 0.2290 | 0.2140 |
TUR | 0.0094 | 0.0354 | 0.1100 | 0.2370 | 0.4440 | 0.1540 | 0.1340 |
USA | 2.4800 | 3.7900 | 4.8300 | 5.4100 | 6.100 | 4.5900 | 1.1100 |
ZAF | 0.0607 | 0.1360 | 0.3120 | 0.4050 | 0.4920 | 0.2770 | 0.1410 |
Explanatory Variables | Description |
---|---|
t | Discrete metric variable that measures the time span from 1950 to 1971 for all G20 countries. It was rescaled between 0 and 71. |
g20_creation | and 1 otherwise. |
Parameters | Coefficients |
---|---|
(intercept) | 0.2169 (0.2069) |
() | 0.0165 ** (0.0079) |
() | 0.0703 * (0.0375) |
0.8029 (0.2705) | |
0.0012 (0.0004) | |
0.1453 (0.0056) | |
0.8468 | |
Marginal | 0.0622 |
Conditional | 0.9305 |
−735.2983 d.f. = 7 | |
1368 |
Estimation | d.f. | sig. LR Test | ||
---|---|---|---|---|
GLMM | −735.2983 | 7 | 1773.498 d.f. 15 | 0.000 |
GLM | −1622.0474 | 22 |
Country (1) | (2) | (3) | Current Situation (4) |
---|---|---|---|
ARG | −0.01545986 | 0.00107223 | |
AUS | −0.01198788 | 0.00454421 | |
BRA | −0.01033377 | 0.00619832 | |
CAN | −0.01113646 | 0.00539563 | |
CHN | 0.13325953 | 0.14979162 | |
DEU | −0.01774802 | −0.00121593 | |
FRA | −0.01707696 | −0.00054487 | |
GBR | −0.01980272 | −0.00327063 | |
IDN | −0.00922262 | 0.00730947 | |
IND | 0.01568263 | 0.03221472 | |
ITA | −0.01262307 | 0.00390902 | |
JPN | −0.00033306 | 0.01619903 | |
KOR | −0.00700209 | 0.00953000 | |
MEX | −0.01024704 | 0.00628505 | |
RUS | −0.00411994 | 0.01241215 | |
SAU | −0.00811614 | 0.00841595 | |
TUR | −0.01169314 | 0.00483895 | |
USA | 0.02918669 | 0.04571878 | |
ZAF | −0.01122607 | 0.00530602 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas Souza, R.; Cal, H.C.R.; Lima, F.G.; Corrêa, H.L.; Santos, F.L.; Zanin, R.B. G20 Countries and Sustainable Development: Do They Live up to Their Promises on CO2 Emissions? Processes 2024, 12, 2023. https://doi.org/10.3390/pr12092023
Freitas Souza R, Cal HCR, Lima FG, Corrêa HL, Santos FL, Zanin RB. G20 Countries and Sustainable Development: Do They Live up to Their Promises on CO2 Emissions? Processes. 2024; 12(9):2023. https://doi.org/10.3390/pr12092023
Chicago/Turabian StyleFreitas Souza, Rafael, Henrique Camano Rodrigues Cal, Fabiano Guasti Lima, Hamilton Luiz Corrêa, Francisco Lledo Santos, and Rodrigo Bruno Zanin. 2024. "G20 Countries and Sustainable Development: Do They Live up to Their Promises on CO2 Emissions?" Processes 12, no. 9: 2023. https://doi.org/10.3390/pr12092023
APA StyleFreitas Souza, R., Cal, H. C. R., Lima, F. G., Corrêa, H. L., Santos, F. L., & Zanin, R. B. (2024). G20 Countries and Sustainable Development: Do They Live up to Their Promises on CO2 Emissions? Processes, 12(9), 2023. https://doi.org/10.3390/pr12092023