Designing Pickering Emulsions Stabilized by Modified Cassava Starch Nanoparticles: Effect of Curcumin Encapsulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Starch Nanoparticle Preparation
2.3. Production of Pickering Emulsions and Curcumin Encapsulation
2.4. Characterization of Pickering Emulsions
2.4.1. Physical Stability
2.4.2. Confocal Laser Scanning Microscopy (CLSM)
2.4.3. Morphology and Droplet Size Distribution
2.4.4. Dynamic Interfacial Tension
2.4.5. Zeta Potential
2.4.6. Rheological Behavior (Flow Curves)
2.5. Quantification of Encapsulated Curcumin
2.6. Economic Analysis
2.7. Statistical Analyses
3. Results and Discussion
3.1. Effect of SNP Type and Concentration on Emulsion Stability
3.1.1. Visual Appearance and Physical Stability
3.2. Characterization of Stable Pickering Emulsions
3.2.1. Microstructure by Confocal Laser Scanning Microscopy
3.2.2. Optical Microscopy and Droplet Size Distribution
3.2.3. Dynamic Interfacial Tension
3.2.4. Zeta Potential Determination
3.2.5. Rheological Behavior
3.3. Encapsulated Curcumin Quantification
3.4. Potential Applications and Economic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geremias-Andrade, I.M.; Souki, N.P.D.B.G.; Moraes, I.C.F.; Pinho, S.C. Rheological and Mechanical Characterization of Curcumin-Loaded Emulsion-Filled Gels Produced with Whey Protein Isolate and Xanthan Gum. LWT 2017, 86, 166–173. [Google Scholar] [CrossRef]
- Ghosh, S.; Banerjee, S.; Sil, P.C. The Beneficial Role of Curcumin on Inflammation, Diabetes and Neurodegenerative Disease: A Recent Update. Food Chem. Toxicol. 2015, 83, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Y.; Li, Y.; Li, Z.; Ma, Y.; Qin, X.; Chen, H. Extrusion-Based 3D Printing of Pickering High Internal Phase Emulsions Stabilized by Flaxseed Protein-Sodium Alginate Complexes for Encapsulating Curcumin. Colloids Surf. A Physicochem. Eng. Asp. 2023, 673, 131863. [Google Scholar] [CrossRef]
- Borrin, T.R.; Georges, E.L.; Moraes, I.C.F.; Pinho, S.C. Curcumin-Loaded Nanoemulsions Produced by the Emulsion Inversion Point (EIP) Method: An Evaluation of Process Parameters and Physico-Chemical Stability. J. Food Eng. 2016, 169, 1–9. [Google Scholar] [CrossRef]
- Raviadaran, R.; Chandran, D.; Shin, L.H.; Manickam, S. Optimization of Palm Oil in Water Nano-Emulsion with Curcumin Using Microfluidizer and Response Surface Methodology. LWT 2018, 96, 58–65. [Google Scholar] [CrossRef]
- Dammak, I.; do Sobral, P.J.A. Investigation into the Physicochemical Stability and Rheological Properties of Rutin Emulsions Stabilized by Chitosan and Lecithin. J. Food Eng. 2018, 229, 12–20. [Google Scholar] [CrossRef]
- Lee, Y.S.; Tarté, R.; Acevedo, N.C. Curcumin Encapsulation in Pickering Emulsions Co-Stabilized by Starch Nanoparticles and Chitin Nanofibers. RSC Adv. 2021, 11, 16275–16284. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, M.; Liu, M.; Wang, A.; Strappe, P.; Blanchard, C.; Zhou, Z. Characterization of Pickering Emulsion by SCFAs-Modified Debranched Starch and a Potent for Delivering Encapsulated Bioactive Compound. Int. J. Biol. Macromol. 2023, 231, 123164. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, W.W.; Lim, H.P.; Low, L.E.; Tey, B.T.; Chan, E.S. Food-Grade Pickering Emulsions for Encapsulation and Delivery of Bioactives. Trends Food Sci. Technol. 2020, 100, 320–332. [Google Scholar] [CrossRef]
- Kharat, M.; Zhang, G.; McClements, D.J. Stability of Curcumin in Oil-in-Water Emulsions: Impact of Emulsifier Type and Concentration on Chemical Degradation. Food Res. Int. 2018, 111, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Wang, Z.; An, J.; Li, Z.; Shi, L.; Shan, Y. Preparation and Emulsifying Properties of Carbon-Based Pickering Emulsifier. Processes 2023, 11, 1070. [Google Scholar] [CrossRef]
- Zhu, F. Starch Based Pickering Emulsions: Fabrication, Properties, and Applications. Trends Food Sci. Technol. 2019, 85, 129–137. [Google Scholar] [CrossRef]
- Santos, P.D.d.F.; do Siqueira, L.V.; Tadini, C.C.; Favaro-Trindade, C.S. Characterization of Cassava Starch Extruded Sheets Incorporated with Tucumã Oil Microparticles. Processes 2023, 11, 876. [Google Scholar] [CrossRef]
- Remanan, M.K.; Zhu, F. Encapsulation of Rutin in Pickering Emulsions Stabilized Using Octenyl Succinic Anhydride (OSA) Modified Quinoa, Maize, and Potato Starch Nanoparticles. Food Chem. 2023, 405, 134790. [Google Scholar] [CrossRef]
- Liang, R.; Jiang, Y.; Yokoyama, W.; Yang, C.; Cao, G.; Zhong, F. Preparation of Pickering Emulsions with Short, Medium and Long Chain Triacylglycerols Stabilized by Starch Nanocrystals and Their in Vitro Digestion Properties. RSC Adv. 2016, 6, 99496–99508. [Google Scholar] [CrossRef]
- Lu, X.; Xiao, J.; Huang, Q. Pickering Emulsions Stabilized by Media-Milled Starch Particles. Food Res. Int. 2018, 105, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Xiong, L.; Li, M.; Liu, J.; Yang, J.; Chang, R.; Liang, C.; Sun, Q. Characterizations of Pickering Emulsions Stabilized by Starch Nanoparticles: Influence of Starch Variety and Particle Size. Food Chem. 2017, 234, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Lima, K.T.d.S.; Garcez, J.; Alves, M.J.S.; Monteiro, A.R.; Valencia, G.A. Physicochemical Properties of Modified Starches Obtained by Anti-Solvent Precipitation Containing Anthocyanins from Jambolan (Syzygium Cumini) Fruit. Starch/Stärke 2021, 73, 2000221. [Google Scholar] [CrossRef]
- Haaj, S.B.; Magnin, A.; Boufi, S. Starch Nanoparticles Produced via Ultrasonication as a Sustainable Stabilizer in Pickering Emulsion Polymerization. RSC Adv. 2014, 4, 42638–42646. [Google Scholar] [CrossRef]
- Villamonte, G.; Jury, V.; de Lamballerie, M. Stabilizing Emulsions Using High-Pressure-Treated Corn Starch. Food Hydrocoll. 2016, 52, 581–589. [Google Scholar] [CrossRef]
- Li, S.; Ward, R.; Gao, Q. Effect of Heat-Moisture Treatment on the Formation and Physicochemical Properties of Resistant Starch from Mung Bean (Phaseolus Radiatus) Starch. Food Hydrocoll. 2011, 25, 1702–1709. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Halal, S.L.M.E.; Dias, A.R.G.; da Zavareze, E.R. Physical Modification of Starch by Heat-Moisture Treatment and Annealing and Their Applications: A Review. Carbohydr. Polym. 2021, 274, 118665. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.V.C.; Rabelo, M.E.A.; Pinho, S.C.d.; Valencia, G.A.; do Sobral, P.J.A.; Moraes, I.C.F. Dual Modification of Cassava Starch Using Physical Treatments for Production of Pickering Stabilizers. Foods 2024, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Piecyk, M.; Domian, K. Effects of Heat–Moisture Treatment Conditions on the Physicochemical Properties and Digestibility of Field Bean Starch (Vicia Faba Var. Minor). Int. J. Biol. Macromol. 2021, 182, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Zeng, Q.; Tai, K.; He, X.; Yao, Y.; Hong, X.; Yuan, F. Preparation of Curcumin-Loaded Emulsion Using High Pressure Homogenization: Impact of Oil Phase and Concentration on Physicochemical Stability. LWT 2017, 84, 34–46. [Google Scholar] [CrossRef]
- Owens, C.; Griffin, K.; Khouryieh, H.; Williams, K. Creaming and Oxidative Stability of Fish Oil-in-Water Emulsions Stabilized by Whey Protein-Xanthan-Locust Bean Complexes: Impact of PH. Food Chem. 2018, 239, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Lerche, D.; Sobisch, T. Direct and Accelerated Characterization of Formulation Stability. J. Dispers. Sci. Technol. 2011, 32, 1799–1811. [Google Scholar] [CrossRef]
- Ko, E.B.; Kim, J. Application of Starch Nanoparticles as a Stabilizer for Pickering Emulsions: Effect of Environmental Factors and Approach for Enhancing Its Storage Stability. Food Hydrocoll. 2021, 120, 106984. [Google Scholar] [CrossRef]
- Dacanal, G.C.; Hirata, T.A.M.; Menegalli, F.C. Fluid Dynamics and Morphological Characterization of Soy Protein Isolate Particles Obtained by Agglomeration in Pulsed-Fluid Bed. Powder Technol. 2013, 247, 222–230. [Google Scholar] [CrossRef]
- Benetti, J.V.M.; do Prado Silva, J.T.; Nicoletti, V.R. SPI Microgels Applied to Pickering Stabilization of O/W Emulsions by Ultrasound and High-Pressure Homogenization: Rheology and Spray Drying. Food Res. Int. 2019, 122, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.; Costa, A.L.R.; Cunha, R.L. Impact of Oil Type and WPI/Tween 80 Ratio at the Oil-Water Interface: Adsorption, Interfacial Rheology and Emulsion Features. Colloids Surf. B Biointerfaces 2018, 164, 272–280. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, C.; Han, Z.; Xiong, L.; Sun, Q. Evaluation of Rheological Behavior of Starch Nanocrystals by Acid Hydrolysis and Starch Nanoparticles by Self-Assembly: A Comparative Study. Food Hydrocoll. 2016, 52, 914–922. [Google Scholar] [CrossRef]
- Daudt, R.M.; Back, P.I.; Cardozo, N.S.M.; Marczak, L.D.F.; Külkamp-Guerreiro, I.C. Pinhão Starch and Coat Extract as New Natural Cosmetic Ingredients: Topical Formulation Stability and Sensory Analysis. Carbohydr. Polym. 2015, 134, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Chignell, C.F.; Bilskj, P.; Reszka, K.J.; Motten, A.G.; Sik, R.H.; Dahl, T.A. Spectral and Photochemical Properties of Curcumin. Photochem. Photobiol. 1994, 59, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Kamwilaisak, K.; Rittiwut, K.; Jutakridsada, P.; Iamamorphanth, W.; Pimsawat, N.; Knijnenburg, J.T.N.; Theerakulpisut, S. Rheology, Stability, Antioxidant Properties, and Curcumin Release of Oil-in-Water Pickering Emulsions Stabilized by Rice Starch Nanoparticles. Int. J. Biol. Macromol. 2022, 214, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.M.P.; De Oliveira, C.S.; Colman, T.A.D.; Da Costa, F.J.O.G.; Schnitzler, E. Effects of Heat-Moisture Treatment on Organic Cassava Starch: Thermal, Rheological and Structural Study. J. Therm. Anal. Calorim. 2014, 115, 2115–2122. [Google Scholar] [CrossRef]
- Dewi, A.M.P.; Santoso, U.; Pranoto, Y.; Marseno, D.W. Dual Modification of Sago Starch via Heat Moisture Treatment and Octenyl Succinylation to Improve Starch Hydrophobicity. Polymer 2022, 14, 1086. [Google Scholar] [CrossRef]
- Dickinson, E. Use of Nanoparticles and Microparticles in the Formation and Stabilization of Food Emulsions. Trends Food Sci. Technol. 2012, 24, 4–12. [Google Scholar] [CrossRef]
- Zembyla, M.; Murray, B.S.; Radford, S.J.; Sarkar, A. Water-in-Oil Pickering Emulsions Stabilized by an Interfacial Complex of Water-Insoluble Polyphenol Crystals and Protein. J. Colloid Interface Sci. 2019, 548, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Zembyla, M.; Murray, B.S.; Sarkar, A. Water-In-Oil Pickering Emulsions Stabilized by Water-Insoluble Polyphenol Crystals. Langmuir 2018, 34, 10001–10011. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhou, C.; Qayum, A.; Tang, J.; Liang, Q. Pickering Emulsion: A Multi-Scale Stabilization Mechanism Based on Modified Lotus Root Starch/Xanthan Gum Nanoparticles. Int. J. Biol. Macromol. 2023, 233, 123459. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Hu, Z.; Wang, K.; Zhu, X.; Chen, D.; Zhuang, H.; Yao, L.; Song, S.; Wang, H.; Sun, M. Emulsion-Based Delivery Systems for Curcumin: Encapsulation and Interaction Mechanism between Debranched Starch and Curcumin. Int. J. Biol. Macromol. 2020, 161, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Arkoumanis, P.G.; Norton, I.T.; Spyropoulos, F. Pickering Particle and Emulsifier Co-Stabilised Emulsions Produced via Rotating Membrane Emulsification. Colloids Surf. A 2019, 568, 481–492. [Google Scholar] [CrossRef]
- Han, L.; Li, L.; Liu, G.; Li, B. Starch Stearate as a Novel Encapsulation Wall Material and Its Effect on Oil–Water Interfacial Tension. J. Control. Release 2011, 152, e226–e227. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Shao, P.; Zhang, H.; Niu, B.; Jin, W. Physical Stabilities of Taro Starch Nanoparticles Stabilized Pickering Emulsions and the Potential Application of Encapsulated Tea Polyphenols. Int. J. Biol. Macromol. 2018, 118, 2032–2039. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, R.; Mag, T.; Eskin, N.A.M.; McDonald, B.E. Bailey’s Industrial Oil and Fat Products, 6th ed.; Shahidi, F., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Liu, Y.W.; Li, Q.H.; Li, S.Y.; Huang, G.Q.; Xiao, J.X. Interfacial Adsorption Behavior of the Aspergillus Oryzae Lipase-Chitosan Complex and Stability Evaluation of the Resultant Pickering Emulsion. Int. J. Biol. Macromol. 2023, 233, 123599. [Google Scholar] [CrossRef]
- Liu, F.; Tang, C.H. Soy Glycinin as Food-Grade Pickering Stabilizers: Part. I. Structural Characteristics, Emulsifying Properties and Adsorption/Arrangement at Interface. Food Hydrocoll. 2016, 60, 606–619. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids as Emulsifiers and Emulsion Stabilizers. Food Hydrocoll. 2009, 23, 1473–1482. [Google Scholar] [CrossRef]
- Vasile, F.E.; Martinez, M.J.; Pizones Ruiz-Henestrosa, V.M.; Judis, M.A.; Mazzobre, M.F. Physicochemical, Interfacial and Emulsifying Properties of a Non-Conventional Exudate Gum (Prosopis Alba) in Comparison with Gum Arabic. Food Hydrocoll. 2016, 56, 245–253. [Google Scholar] [CrossRef]
- Song, X.; Pei, Y.; Qiao, M.; Ma, F.; Ren, H.; Zhao, Q. Preparation and Characterizations of Pickering Emulsions Stabilized by Hydrophobic Starch Particles. Food Hydrocoll. 2015, 45, 256–263. [Google Scholar] [CrossRef]
- Qian, X.; Lu, Y.; Xie, W.; Wu, D. Viscoelasticity of Olive Oil/Water Pickering Emulsions Stabilized with Starch Nanocrystals. Carbohydr. Polym. 2020, 230, 115575. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.R.; Li, Y.; Jin, W.; An, Y.; He, L.; Li, Z.; Xu, W.; Li, B. Preparation and Optimization of Pickering Emulsion Stabilized by Chitosan-Tripolyphosphate Nanoparticles for Curcumin Encapsulation. Food Hydrocoll. 2016, 52, 369–377. [Google Scholar] [CrossRef]
- YOSEN. Lutein, CoQ10 and Astaxanthin Ydrosolv. Available online: https://yosen.com.br/ (accessed on 24 June 2024).
Sample | D[4,3] (µm) | D10 (µm) | D50 (µm) | D90 (µm) | Span |
---|---|---|---|---|---|
EH4 | 9.54 ± 0.18 a | 3.82 ± 0.23 a | 9.13 ± 0.23 a | 15.91 ± 0.04 a | 1.32 ± 0.06 a |
EHC4 | 6.07 ± 0.03 b | 3.56 ± 0.28 a | 6.07 ± 0.08 b | 8.54 ± 0.28 b | 0.82 ± 0.10 b |
Sample | Zeta Potential (mV) | n (Flow Index) | K (Pa.sn) | R2 |
---|---|---|---|---|
EH4 | −5.05 ± 0.46 a | 0.75 ± 0.01 a | 0.43 ± 0.02 a | 0.999 |
EHC4 | −4.20 ± 0.11 a | 0.76 ± 0.01 a | 0.29 ± 0.00 b | 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, G.V.C.; Pinho, S.C.d.; Gomes, A.; Dacanal, G.C.; Sobral, P.J.d.A.; Moraes, I.C.F. Designing Pickering Emulsions Stabilized by Modified Cassava Starch Nanoparticles: Effect of Curcumin Encapsulation. Processes 2024, 12, 1348. https://doi.org/10.3390/pr12071348
Ramos GVC, Pinho SCd, Gomes A, Dacanal GC, Sobral PJdA, Moraes ICF. Designing Pickering Emulsions Stabilized by Modified Cassava Starch Nanoparticles: Effect of Curcumin Encapsulation. Processes. 2024; 12(7):1348. https://doi.org/10.3390/pr12071348
Chicago/Turabian StyleRamos, Giselle Vallim Corrêa, Samantha Cristina de Pinho, Andresa Gomes, Gustavo César Dacanal, Paulo José do Amaral Sobral, and Izabel Cristina Freitas Moraes. 2024. "Designing Pickering Emulsions Stabilized by Modified Cassava Starch Nanoparticles: Effect of Curcumin Encapsulation" Processes 12, no. 7: 1348. https://doi.org/10.3390/pr12071348
APA StyleRamos, G. V. C., Pinho, S. C. d., Gomes, A., Dacanal, G. C., Sobral, P. J. d. A., & Moraes, I. C. F. (2024). Designing Pickering Emulsions Stabilized by Modified Cassava Starch Nanoparticles: Effect of Curcumin Encapsulation. Processes, 12(7), 1348. https://doi.org/10.3390/pr12071348