A Novel Temporal Fusion Channel Network with Multi-Channel Hybrid Attention for the Remaining Useful Life Prediction of Rolling Bearings
Abstract
:1. Introduction
2. Methodology
2.1. Temporal Convolutional Network
2.1.1. Dilated Convolution
2.1.2. Causal Convolution
2.1.3. Residual Connection
2.2. Attention Mechanism
2.2.1. Channel Attention
2.2.2. Self-Attention Mechanism
3. RUL Prediction Method Based on MCHA-TFCN
3.1. Key Ideas
3.2. Data Processing
3.3. Construction of Prediction Model MCHA-TFCN
3.3.1. Design of Feature Fusion Module
3.3.2. Feature Fusion Network Construction
Algorithm 1 RUL prediction method based on MCHA-TFCN | |
Input: | Training set data for a single working condition: , and corresponding labels Y. |
Output: | MCHA-TFCN model trained under a single working condition. |
Training: | |
1 | Initialize the network parameters of the feature acquisition module and MCHA-TFCN. |
2 | for epochs , max do: |
3 | Input training data in batch order into the model to be trained. |
4 | Extract time domain and multi-scale depth features, and output a multi-dimensional feature sequence to be fused. |
5 | During the network forward propagation process, Formulas (18) and (19) are used to weight the input features, and Formulas (20) and (21) are used to perform feature fusion. |
6 | Calculate the loss of the predicted result and the actual label (MSELoss). |
7 | Use the Adam method to back-propagate and update the model parameters. |
8 | end for |
9 | Save the trained network structure. |
Test: | |
10 | Input the test data into the model to obtain the prediction results . |
11 | Evaluate the prediction effect of the model based on the evaluation index (RMSE). |
4. Verification
4.1. Dataset Description
4.2. Implementation Details
4.3. Effect Verification
4.4. RUL Estimation Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nieto, P.J.G.; García-Gonzalo, E.; Lasheras, F.S.; de Cos Juez, F.J. Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability. Reliab. Eng. Syst. Saf. 2015, 138, 219–231. [Google Scholar] [CrossRef]
- Psuj, G. Multi-sensor data integration using deep learning for characterization of defects in steel elements. Sensors 2018, 18, 292. [Google Scholar] [CrossRef] [PubMed]
- Alzhanov, N.; Tariq, H.; Amrin, A.; Zhang, D.; Spitas, C. Modelling and simulation of a novel nitinol-aluminium composite beam to achieve high damping capacity. Mater. Today Commun. 2023, 35, 105679. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Cao, R.; Xu, D.; Fan, Y. A rolling bearing fault diagnosis method based on the WOA-VMD and the GAT. Entropy 2023, 25, 889. [Google Scholar] [CrossRef]
- Pecht, M.; Gu, J. Physics-of-failure-based prognostics for electronic products. Trans. Inst. Meas. Control 2009, 31, 309–322. [Google Scholar] [CrossRef]
- Yu, W.; Tu, W.; Kim, I.Y.; Mechefske, C. A nonlinear-drift-driven Wiener process model for remaining useful life estimation considering three sources of variability. IEEE Trans. Instrum. Meas. 2021, 212, 107631. [Google Scholar] [CrossRef]
- Soualhi, A.; Medjaher, K.; Zerhouni, N. Bearing health monitoring based on Hilbert–Huang transform, support vector machine, and regression. Trans. Inst. Meas. Control 2014, 64, 52–62. [Google Scholar] [CrossRef]
- Cui, L.; Wang, X.; Wang, H.; Ma, J. Research on remaining useful life prediction of rolling element bearings based on time-varying Kalman filter. IEEE Trans. Instrum. Meas. 2019, 69, 2858–2867. [Google Scholar] [CrossRef]
- Aggab, T.; Vrignat, P.; Avila, M.; Kratz, F. Remaining useful life estimation based on the joint use of an observer and a hidden Markov model. J. Risk Reliab. 2022, 236, 676–695. [Google Scholar] [CrossRef]
- Gao, D.; Huang, M. Prediction of remaining useful life of lithium-ion battery based on multi-kernel support vector machine with particle swarm optimization. J. Power Electron. 2017, 17, 1288–1297. [Google Scholar]
- Wang, C.; Lu, N.; Cheng, Y.; Jiang, B. A data-driven aero-engine degradation prognostic strategy. IEEE Trans. Cybern. 2019, 51, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, R.; Zio, E. Remaining useful life prediction based on a double-convolutional neural network architecture. IEEE Trans. Ind. Electron. 2019, 66, 9521–9530. [Google Scholar] [CrossRef]
- Wu, M.; Ye, Q.; Mu, J.; Fu, Z.; Han, Y. Remaining Useful Life Prediction via a data-driven deep learning fusion model–CALAP. IEEE Access 2023, 11, 112085–112096. [Google Scholar] [CrossRef]
- Du, X.; Jia, W.; Yu, P.; Shi, Y.; Gong, B. RUL prediction based on GAM–CNN for rotating machinery. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 142. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Song, Y.; Gao, S.; Li, Y.; Jia, L.; Li, Q.; Pang, F. Distributed attention-based temporal convolutional network for remaining useful life prediction. IEEE Internet Things J. 2020, 8, 9594–9602. [Google Scholar] [CrossRef]
- Zeng, X.; Yang, C.; Liu, J.; Zhou, K.; Li, D.; Wei, S.; Liu, Y. Remaining useful life prediction for rotating machinery based on dynamic graph and spatial–temporal network. Meas. Sci. Technol. 2022, 34, 035102. [Google Scholar] [CrossRef]
- Liang, H.; Cao, J.; Zhao, X. Multi-sensor data fusion and bidirectional-temporal attention convolutional network for remaining useful life prediction of rolling bearing. Meas. Sci. Technol. 2023, 34, 105126. [Google Scholar] [CrossRef]
- Nie, L.; Xu, S.; Zhang, L. Multi-Head Attention Network with Adaptive Feature Selection for RUL Predictions of Gradually Degrading Equipment. Actuators 2023, 12, 158. [Google Scholar] [CrossRef]
- Ren, L.; Liu, Y.; Huang, D.; Huang, K.; Yang, C. MCTAN: A novel multichannel temporal attention-based network for industrial health indicator prediction. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 6456–6467. [Google Scholar] [CrossRef]
- Van Den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7 September 2015; pp. 3431–3440. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 5 July 2016; pp. 770–778. [Google Scholar]
- Cao, Y.; Ding, Y.; Jia, M.; Tian, R. A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings. Reliab. Eng. Syst. Saf. 2021, 215, 107813. [Google Scholar] [CrossRef]
- Bahdanau, D. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Vaswani, A. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–7 December 2017. [Google Scholar]
- Wang, X.; Li, Y.; Xu, Y.; Liu, X.; Zheng, T.; Zheng, B. Remaining useful life prediction for aero-engines using a time-enhanced multi-head self-attention model. Aerospace 2023, 10, 80. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 1 July 2018; pp. 7132–7141. [Google Scholar]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Data alignments in machinery remaining useful life prediction using deep adversarial neural networks. Knowl.-Based Syst. 2020, 197, 105843. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, L.; Zheng, L.; Gao, R.X. Temporal convolutional network with soft thresholding and attention mechanism for machinery prognostics. J. Manuf. Syst. 2021, 60, 512–526. [Google Scholar] [CrossRef]
No. | Layer | Setting Value |
---|---|---|
1 | Linear | 2560, 256 |
2 | BatchNorm1d | 256 |
3 | Tanh | / |
4 | Dropout | 0.2 |
5 | Linear | 256, 1 |
6 | PReLU | / |
Task | Conditions | Train | Test |
---|---|---|---|
Task-I | Load (N): 4000; Speed (r/min): 1800 | B1_1-B1_2 | B1_3-B1_7 |
Task-II | Load (N): 4200; Speed (r/min): 1650 | B2_1-B2_2 | B2_3-B2_7 |
Task-III | Load (N): 5000; Speed (r/min): 1500 | B3_1-B3_2 | B3_3 |
Module | Input-Size | Output-Size |
---|---|---|
Feature input | 32, 2, 2560 | 16, 32, 1, 2560 |
MCHA-TFCN-I | 16, 32, 1, 2560 | 8, 32, 32, 2560 |
MCHA-TFCN-II | 8, 32, 32, 2560 | 4, 32, 128, 2560 |
MCHA-TFCN-III | 4, 32, 128, 2560 | 2, 32, 64, 2560 |
MCHA-TFCN-IV | 2, 32, 64, 2560 | 32, 32, 2560 |
AdaptiveAvgPool1d | 32, 32, 2560 | 32, 1, 2560 |
Hyper-Parameter | Input-Size |
---|---|
Batch size | 32 |
Max epochs | 300 |
Initial learning rate | 0.1 |
Gamma | 0.1 |
Milestones | 10, 100, 150, 200 |
Number of features to be fused | |
Kernel sizes of multiscale conv1d layers | |
Strides of multiscale conv1d layers | 1, 1, 2, 2 |
Hidden channel list of MCHA-TFCN | [32, 128, 64, 32] |
Self-attention | |
Dropout rate | 0.2 |
Test | RMSE | |||
---|---|---|---|---|
TCN(1) | TCN(2) | TCN-SA | MCHA-TFCN | |
1–3 | 0.355 | 0.194 | 0.157 | 0.109 |
1–4 | 0.303 | 0.115 | 0.105 | 0.044 |
1–5 | 0.209 | 0.188 | 0.130 | 0.118 |
1–6 | 0.220 | 0.155 | 0.139 | 0.126 |
1–7 | 0.097 | 0.150 | 0.109 | 0.057 |
Avg | 0.237 | 0.151 | 0.128 | 0.091 |
Test | RMSE | |||
---|---|---|---|---|
TCN(1) | TCN(2) | TCN-SA | MCHA-TFCN | |
2–3 | 0.409 | 0.227 | 0.230 | 0.102 |
2–4 | 0.346 | 0.106 | 0.164 | 0.117 |
2–5 | 0.216 | 0.187 | 0.176 | 0.099 |
2–6 | 0.257 | 0.218 | 0.142 | 0.104 |
2–7 | 0.293 | 0.183 | 0.248 | 0.108 |
Avg | 0.304 | 0.184 | 0.190 | 0.106 |
Test | CNN-LSTM | DANN | TCN-SA | Bi-TACN | MCHA-TFCN |
---|---|---|---|---|---|
1–3 | 0.126 | 0.335 | 0.117 | 0.090 | 0.109 |
1–4 | 0.107 | 0.251 | 0.085 | 0.113 | 0.044 |
1–5 | 0.152 | 0.216 | 0.086 | 0.090 | 0.118 |
1–6 | 0.154 | 0.209 | 0.101 | 0.016 | 0.126 |
1–7 | 0.129 | 0.192 | 0.129 | 0.149 | 0.057 |
Avg | 0.127 | 0.222 | 0.104 | 0.114 | 0.091 |
Test | CNN-LSTM | DANN | TCN-SA | Bi-TACN | MCHA-TFCN |
---|---|---|---|---|---|
2–3 | 0.174 | 0.168 | 0.230 | 0.203 | 0.102 |
2–4 | 0.136 | 0.106 | 0.064 | 0.137 | 0.117 |
2–5 | 0.150 | 0.228 | 0.150 | 0.176 | 0.099 |
2–6 | 0.167 | 0.237 | 0.154 | 0.142 | 0.104 |
2–7 | 0.183 | 0.192 | 0.263 | 0.248 | 0.108 |
Avg | 0.162 | 0.186 | 0.172 | 0.181 | 0.106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Jiang, J.; Qi, H.; Zhang, D.; Han, X. A Novel Temporal Fusion Channel Network with Multi-Channel Hybrid Attention for the Remaining Useful Life Prediction of Rolling Bearings. Processes 2024, 12, 2762. https://doi.org/10.3390/pr12122762
Wang C, Jiang J, Qi H, Zhang D, Han X. A Novel Temporal Fusion Channel Network with Multi-Channel Hybrid Attention for the Remaining Useful Life Prediction of Rolling Bearings. Processes. 2024; 12(12):2762. https://doi.org/10.3390/pr12122762
Chicago/Turabian StyleWang, Cunsong, Junjie Jiang, Heng Qi, Dengfeng Zhang, and Xiaodong Han. 2024. "A Novel Temporal Fusion Channel Network with Multi-Channel Hybrid Attention for the Remaining Useful Life Prediction of Rolling Bearings" Processes 12, no. 12: 2762. https://doi.org/10.3390/pr12122762
APA StyleWang, C., Jiang, J., Qi, H., Zhang, D., & Han, X. (2024). A Novel Temporal Fusion Channel Network with Multi-Channel Hybrid Attention for the Remaining Useful Life Prediction of Rolling Bearings. Processes, 12(12), 2762. https://doi.org/10.3390/pr12122762